Methane Emissions from the Natural Gas Industry, Volume1: Executive Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
U.S. Energy in the 21St Century: a Primer
U.S. Energy in the 21st Century: A Primer March 16, 2021 Congressional Research Service https://crsreports.congress.gov R46723 SUMMARY R46723 U.S. Energy in the 21st Century: A Primer March 16, 2021 Since the start of the 21st century, the U.S. energy system has changed tremendously. Technological advances in energy production have driven changes in energy consumption, and Melissa N. Diaz, the United States has moved from being a net importer of most forms of energy to a declining Coordinator importer—and a net exporter in 2019. The United States remains the second largest producer and Analyst in Energy Policy consumer of energy in the world, behind China. Overall energy consumption in the United States has held relatively steady since 2000, while the mix of energy sources has changed. Between 2000 and 2019, consumption of natural gas and renewable energy increased, while oil and nuclear power were relatively flat and coal decreased. In the same period, production of oil, natural gas, and renewables increased, while nuclear power was relatively flat and coal decreased. Overall energy production increased by 42% over the same period. Increases in the production of oil and natural gas are due in part to technological improvements in hydraulic fracturing and horizontal drilling that have facilitated access to resources in unconventional formations (e.g., shale). U.S. oil production (including natural gas liquids and crude oil) and natural gas production hit record highs in 2019. The United States is the largest producer of natural gas, a net exporter, and the largest consumer. Oil, natural gas, and other liquid fuels depend on a network of over three million miles of pipeline infrastructure. -
Central African Republic Overview of Bilateral, Regional, Multilateral, and Global Programs Overview of U.S
Meeting the Fast Start Commitment U.S. Climate Finance in Fiscal Year 2011 Central African Republic Overview of Bilateral, Regional, Multilateral, and Global Programs Overview of U.S. Fast Start Climate Financing in Fiscal Years 2010 & 2011 n December 2009, President Obama and contribution to fast start financing will also leaders from around the world came include funding from FY 2012. together in Copenhagen at the 15th Consistent with President Obama’s Global IConference of the Parties to the United Nations Development Policy, we are using the full range Framework Convention on Climate Change of mechanisms – bilateral, multilateral, and (UNFCCC) to chart a new course in the global private – to ensure that our climate finance is effort to tackle climate change. The resulting efficient, effective, and innovative; based on Copenhagen Accord reflected - for the first country-owned plans; and focused on achieving time in an international outcome - measurable, measurable results. We are focusing our bilateral reportable and verifiable mitigation targets and efforts on those countries and regions where actions by all major economies, and set out we have a comparative advantage and are new institutions and approaches for adaptation, coordinating closely with other donors. U.S. fast technology and finance. start finance is provided to developing countries The finance outcomes in Copenhagen included through a variety of channels, including: a collective commitment by developed countries Q Congressionally appropriated climate to provide resources to developing countries finance: grant-based assistance through approaching $30 billion in the period 2010- the Global Climate Change Initiative – a 2012. The elements that leaders endorsed in the whole-of-government effort to promote low Copenhagen Accord, including this “fast start” emission, climate resilient economic growth finance commitment, were carried forward in around the world – and additional grant- decisions of the 16th Conference of the Parties in based assistance that delivers significant Cancun in December 2010. -
Methane Emissions from Landfills
Methane Emissions from Landfills Haokai Zhao Advisors: Prof. Nickolas J. Themelis Prof. A.C. (Thanos) Bourtsalas Prof. Wade R. McGillis Department of Earth and Environmental Engineering Fu Foundation School of Engineering and Applied Science Columbia University January, 2019 Submitted in partial fulfillment of the requirements for M.S. in Earth and Environmental Engineering Research co-sponsored by Methane Emissions from Landfills H. Zhao Executive Summary Methane, one of the main greenhouse gases (GHGs), has been assessed to have 28 times the global warming potential (GWP) of carbon dioxide over a 100-year time horizon in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). In municipal solid waste (MSW) landfills, methane is generated as a product of the anaerobic degradation of organic waste. United States Environmental Protection Agency (U.S. EPA) estimated that, in 2016, landfill methane emissions in the U.S. were approximately 107.7 million tons carbon dioxide equivalent (Mt CO2 e). And globally, it was estimated that methane emissions from landfilling of solid waste were 794.0 million tons of CO2 e in 2005. At both the U.S. and the global levels, landfilling was the third largest source of methane emissions, after enteric fermentation and natural gas & oil systems. A broad range of topics about methane emissions from landfill are covered in this report, including the gas-generating processes in landfill, the theories about modeling landfill gas generation and emission, the developed models and the current estimates of landfill emissions, as well as the calculation and analysis on several aspects: 1) theoretical maximum methane generation per ton of MSW and actual methane emission per ton of MSW; 2) climate zone statistics about landfill gas generation model parameter, landfill methane generation, emission and recovery; 3) the time series of global landfill methane emissions with regional analysis and per capita analysis. -
Greenhouse Gas Inventory South Africa
GREENHOUSE GAS INVENTORY SOUTH 1990 TO AFRICA 2000 COMPILATION UNDER THE NATIONAL UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE (UNFCCC) INVENTORY REPORT MAY 2009 Greenhouse gas inventory South Africa PREFACE This report is the result of work commissioned by the Department of Environmental Affairs and Tourism (DEAT) to develop the 2000 national inventory of greenhouse gases (GHGs) for South Africa. Information on energy and industrial processes was prepared by the Energy Research Centre (ERC) of the University of Cape Town, while information on agriculture, land use changes, forestry and waste was provided by the Centre for Scientific and Industrial Research (CSIR). This report is published by the Department of Environmental Affairs and Tourism, South Africa. An electronic version of the report, along with the Common Reporting Format (CRF) tables, is available on the website of DEAT: http://www.saaqis.org.za/. Information from this report may be reproduced, provided the source is acknowledged. AUTHORS AND CONTRIBUTORS General responsibility: Stanford Mwakasonda (ERC), Rina Taviv (CSIR), Peter Lukey (DEAT) Jongikhaya Witi (DEAT),argot Richardson (DEAT), Tsietsi Mahema (DEAT), Ajay Trikam (ERC). Individual chapters: Summary Stanford Mwakasonda Chapter 1 Stanford Mwakasonda, Stephen Davies (Section 1.5) Chapter 2 Stanford Mwakasonda Chapter 3. Stanford Mwakasonda, Thapelo Letete, Philip Lloyd (section 3.2.1) Chapter 4 Stanford Mwakasonda, Thapelo Letete, Mondli Guma Chapter 5 Rina Taviv, Heidi van Deventer, Bongani Majeke, Sally Archibald Chapter 6 Ndeke Musee Report reviews: Harald Winkler, Marna van der Merwe, Bob Scholes Report compilation: Stanford Mwakasonda, Ajay Trikam Language editor: Robert Berold Quality assurance: TBA i Greenhouse gas inventory South Africa SUMMARY SOUTH AFRICA’S GREENHOUSE GAS INVENTORIES In August 1997 the Republic of South Africa joined the majority of countries in the international community in ratifying the United Nations Framework Convention on Climate Change (UNFCCC). -
Natural Gas and Propane
Construction Concerns: Natural Gas and Propane Article by Gregory Havel September 28, 2015 For the purposes of this article, I will discuss the use of natural gas and propane [liquefied propane (LP)] gas in buildings under construction, in buildings undergoing renovation, and in the temporary structures that are found on construction job sites including scaffold enclosures. In permanent structures, natural gas is carried by pipe from the utility company meter to the location of the heating appliances. Natural gas from utility companies is lighter than air and is odorized. In temporary structures and in buildings under construction or renovation, the gas may be carried from the utility company meter by pipe or a hose rated for natural gas at the pressure to be used to the location of the heating appliances. These pipes and hoses must be properly supported and must be protected from damage including from foot and wheeled traffic. The hoses, pipes, and connections must be checked regularly for leaks. For permanent and temporary structures, LP gas is usually stored in horizontal tanks outside the structure (photo 1) at a distance from the structure. September 28, 2015 (1) In Photo 1, note the frost on the bottom third of the tank that indicates the approximate amount of LP that is left in the tank. LP gas for fuel is heavier than air and is odorized. It is carried from the tank to the heating appliances by pipe or hose rated for LP gas at the pressure to be used. As it is for natural gas, these pipes and hoses must be properly supported and protected from damage including from foot and wheeled traffic. -
Characterizing Methane (CH4) Emissions in Urban Environments (Paris) Sara Defratyka
Characterizing methane (CH4) emissions in urban environments (Paris) Sara Defratyka To cite this version: Sara Defratyka. Characterizing methane (CH4) emissions in urban environments (Paris). Other. Université Paris-Saclay, 2021. English. NNT : 2021UPASJ002. tel-03230140 HAL Id: tel-03230140 https://tel.archives-ouvertes.fr/tel-03230140 Submitted on 19 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Characterization of CH4 emissions in urban environments (Paris) Caractérisation des émissions de CH4 en milieu urbain (Paris) Thèse de doctorat de l'université Paris-Saclay École doctorale n° 129 Sciences de l’environnement d’Ile-de-France (SEIF) Spécialité de doctorat: météorologie, océanographie, physique de l’environnement Unité de recherche : Université Paris-Saclay, CNRS, CEA, UVSQ, Laboratoire des sciences du climat et de l’environnement Référent : Université de Versailles-Saint-Quentin-en-Yvelines Thèse présentée et soutenue à Paris-Saclay, le 19/01/2021, par Sara DEFRATYKA Composition du Jury Valéry CATOIRE Professeur des universités, -
A Full Greenhouse Gases Budget of Africa: Synthesis, Uncertainties, and Vulnerabilities
Biogeosciences, 11, 381–407, 2014 Open Access www.biogeosciences.net/11/381/2014/ doi:10.5194/bg-11-381-2014 Biogeosciences © Author(s) 2014. CC Attribution 3.0 License. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities R. Valentini1,2, A. Arneth3, A. Bombelli2, S. Castaldi2,4, R. Cazzolla Gatti1, F. Chevallier5, P. Ciais5, E. Grieco2, J. Hartmann6, M. Henry7, R. A. Houghton8, M. Jung9, W. L. Kutsch10, Y. Malhi11, E. Mayorga12, L. Merbold13, G. Murray-Tortarolo15, D. Papale1, P. Peylin5, B. Poulter5, P. A. Raymond14, M. Santini2, S. Sitch15, G. Vaglio Laurin2,16, G. R. van der Werf17, C. A. Williams18, and R. J. Scholes19 1Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, via S. Camillo de Lellis, 01100 Viterbo, Italy 2Euro-Mediterranean Center on Climate Change (CMCC), Via Augusto Imperatore 16, 73100 Lecce, Italy 3Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Kreuzeckbahn Str. 19, 82467 Garmisch-Partenkirchen, Germany 4Dipartimento di Scienze Ambientali, Biologiche e Farmaceutiche (DISTABIF), Seconda Università di Napoli, via Vivaldi 43, 81100 Caserta, Italy 5LSCE, CEA-CNRS-UVSQ, L’Orme des Merisiers, Bat 701, 91191 Gif-sur-Yvette, France 6Institute for Biogeochemistry and Marine Chemistry, 20146, Hamburg, Germany 7FAO, Forestry Department, UN-REDD Programme, Viale delle terme di Caracalla 1, 00153 Rome, Italy 8Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540, -
Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
energies Review Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State Stephanie Taboada 1,2, Lori Clark 2,3, Jake Lindberg 1,2, David J. Tonjes 2,3,4 and Devinder Mahajan 1,2,* 1 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; [email protected] (S.T.); [email protected] (J.L.) 2 Institute of Gas Innovation and Technology, Advanced Energy Research and Technology, Stony Brook, NY 11794, USA; [email protected] (L.C.); [email protected] (D.J.T.) 3 Department of Technology and Society, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA 4 Waste Data and Analysis Center, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA * Correspondence: [email protected] Abstract: Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid, used as a transportation fuel, or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals, such as methanol, dimethyl ether, and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e., Citation: Taboada, S.; Clark, L.; the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). -
Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions
Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions K. Blok, C.A. Hendriks, W.C. Turkenburg Depanrnent of Science,Technology and Society University of Utrecht Oudegracht320, NL-351 1 PL Utrecht, The Netherlands R.H. Williams Center for Energy and Environmental Studies Princeton University Princeton, New Jersey08544, USA June 1991 Abstract. New energy technologies are needed to limit CO2 emissions and the detrimental effects of global warming. In this article we describe a process which produces a low-carbon gaseousfuel from coal. Synthesis gas from a coal gasifier is shifted to a gas mixture consisting mainly of H2 and CO2. The CO2 is isolated by a physical absorption process, compressed,and transported by pipeline to a depleted natural gas field where it is injected. What remains is a gaseousfuel consisting mainly of hydrogen. We describe two applications of this fuel. The first involves a combined cycle power plant integrated with the coal gasifier, the shift reactor and the CO2 recovery units. CO2 recovery and storage will increase the electricity production cost by one third. The secondprovides hydrogen or a hydrogen-rich fuel gas for distributed applications, including transportation; it is shown that the fuel can be produced at a cost comparable to projected costs for gasoline. A preliminary analysis reveals that all components of the process described here are in such a phase of development that the proposed technology is ready for demonstration. ~'> --. ~'"' .,.,""~ 0\ ~ 0\0 ;.., ::::. ~ ~ -.., 01) §~ .5~ c0 ~.., ~'> '" .~ ~ ..::. ~ ~ "'~'" '" 0\00--. ~~ ""00 Q....~~ '- ~~ --. ~.., ~ ~ ""~ 0000 .00 t¥") $ ~ .9 ~~~ .- ..~ c ~ ~ ~ .~ O"Oe) """1;3 .0 .-> ...~ 0 ~ ,9 u u "0 ...~ --. -
Natural Gas Energy Efficiency: Progress and Opportunities
Natural Gas Energy Efficiency: Progress and Opportunities Steven Nadel July 2017 Report U1708 © American Council for an Energy-Efficient Economy 529 14th Street NW, Suite 600, Washington, DC 20045 Phone: (202) 507-4000 • Twitter: @ACEEEDC Facebook.com/myACEEE • aceee.org NATURAL GAS ENERGY EFFICIENCY © ACEEE Contents About the Author ...............................................................................................................................iii Acknowledgments ..............................................................................................................................iii Executive Summary ........................................................................................................................... iv Introduction .......................................................................................................................................... 1 The Natural Gas Industry................................................................................................................... 1 Natural Gas Efficiency Trends ........................................................................................................... 2 Contributors to Natural Gas Efficiency Progress ............................................................................ 2 New Technologies .................................................................................................................... 3 Price Effects .............................................................................................................................. -
Methane Emissions in the United States: Sources, Solutions & Opportunities for Reductions
Methane Emissions in the United States: Sources, Solutions & Opportunities for Reductions May 23, 2019 Presentation Overview • U.S. methane emissions & sources • Why methane matters • Methane mitigation by emission source • Spotlight on Renewable Natural Gas • Helpful tools and resources 2 U.S. Greenhouse Gas Emission Sources Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017 3 2017 U.S. Methane Emissions, by Source Other Coal Mining 38.3 MMTCO2e 55.7 MMTCO2e Coal Mining 8% Wastewater Treatment 14.2 MMTCO2e Oil and Natural Gas Systems 31% Landfills 107.7 MMTCO2e Oil and Natural Total Methane Gas Systems Agriculture 36% Emissions 203.3 MMTCO2e 656.3 MMTCO2e Waste 19% Enteric Fermentation Other 6% 175.4 MMTCO2e Manure Management 61.7 MMTCO2e Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017 4 Why Methane Matters Positive Outcomes of Capturing and Using Methane Methane Emissions Better air and water quality Trap 28 times more Methane Mitigation heat than carbon dioxide over 100 years Improved human health Opportunity to capture Contribute to ground- and convert methane Increased worker safety level ozone pollution to useful energy Enhanced energy security Create industrial safety problem Economic growth Reduced odors 5 Methane Mitigation by Emission Source • Coal Mines • Oil and Natural Gas Systems • Agriculture (Manure Management and Enteric Fermentation) • Waste (Wastewater Treatment and Landfills) 6 8% 55.7 MMTCO2e Coal Mines Total 656.3 Methane is released from MMTCO2e coal and surrounding rock ▪ Coal strata due to mining activities. In abandoned mines and surface mines, methane might also escape to the atmosphere through natural fissures or other diffuse sources. -
Global Trends of Methane Emissions and Their Impacts on Ozone Concentrations
Global trends of methane emissions and their impacts on ozone concentrations Van Dingenen, R., Crippa, M., Maenhout, G., Guizzardi, D., Dentener, F. 2018 EUR 29394 EN This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Name: R. Van Dingenen Address: European Commission, Joint Research Centre, via E. Fermi 2749, I-21027 Ispra, ITALY Email: [email protected] JRC Science Hub https://ec.europa.eu/jrc JRC113210 EUR 29394 EN PDF ISBN 978-92-79-96550-0 ISSN 1831-9424 doi:10.2760/820175 Print ISBN 978-92-79-96551-7 ISSN 1018-5593 doi:10.2760/73788 Luxembourg: Publications Office of the European Commission, 2018 © European Union, 2018 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders.