Resonant Interactions and Chaotic Rotation of Pluto's Small Moons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Geology of the Rocky Bodies Inside Enceladus, Europa, Titan, and Ganymede
49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2905.pdf THE GEOLOGY OF THE ROCKY BODIES INSIDE ENCELADUS, EUROPA, TITAN, AND GANYMEDE. Paul K. Byrne1, Paul V. Regensburger1, Christian Klimczak2, DelWayne R. Bohnenstiehl1, Steven A. Hauck, II3, Andrew J. Dombard4, and Douglas J. Hemingway5, 1Planetary Research Group, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA ([email protected]), 2Department of Geology, University of Georgia, Athens, GA 30602, USA, 3Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH 44106, USA, 4Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA, 5Department of Earth & Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA. Introduction: The icy satellites of Jupiter and horizontal stresses, respectively, Pp is pore fluid Saturn have been the subjects of substantial geological pressure (found from (3)), and μ is the coefficient of study. Much of this work has focused on their outer friction [12]. Finally, because equations (4) and (5) shells [e.g., 1–3], because that is the part most readily assess failure in the brittle domain, we also considered amenable to analysis. Yet many of these satellites ductile deformation with the relation n –E/RT feature known or suspected subsurface oceans [e.g., 4– ε̇ = C1σ exp , (6) 6], likely situated atop rocky interiors [e.g., 7], and where ε̇ is strain rate, C1 is a constant, σ is deviatoric several are of considerable astrobiological significance. stress, n is the stress exponent, E is activation energy, R For example, chemical reactions at the rock–water is the universal gas constant, and T is temperature [13]. -
Demoting Pluto Presentation
WWhhaatt HHaappppeenneedd ttoo PPlluuttoo??!!!! Scale in the Solar System, New Discoveries, and the Nature of Science Mary L. Urquhart, Ph.D. Department of Science/Mathematics Education Marc Hairston, Ph.D. William B. Hanson Center for Space Sciences FFrroomm NNiinnee ttoo EEiigghhtt?? On August 24th Pluto was reclassified by the International Astronomical Union (IAU) as a “dwarf planet”. So what happens to “My Very Educated Mother Just Served Us Nine Pizzas”? OOffifficciiaall IAIAUU DDeefifinniittiioonn A planet: (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit. A dwarf planet must satisfy only the first two criteria. WWhhaatt iiss SScciieennccee?? National Science Education Standards (National Research Council, 1996) “…science reflects its history and is an ongoing, changing enterprise.” BBeeyyoonndd MMnneemmoonniiccss Science is “ not a collection of facts but an ongoing process, with continual revisions and refinements of concepts necessary in order to arrive at the best current views of the Universe.” - American Astronomical Society AA BBiitt ooff HHiiststoorryy • How have planets been historically defined? • Has a planet ever been demoted before? Planet (from Greek “planetes” meaning wanderer) This was the first definition of “planet” planet Latin English Spanish Italian French Sun Solis Sunday domingo domenica dimanche Moon Lunae Monday lunes lunedì lundi Mars Martis -
Spin-Orbit Coupling for Close-In Planets Alexandre C
A&A 630, A102 (2019) Astronomy https://doi.org/10.1051/0004-6361/201936336 & © ESO 2019 Astrophysics Spin-orbit coupling for close-in planets Alexandre C. M. Correia1,2 and Jean-Baptiste Delisle2,3 1 CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal e-mail: [email protected] 2 ASD, IMCCE, Observatoire de Paris, PSL Université, 77 Av. Denfert-Rochereau, 75014 Paris, France 3 Observatoire de l’Université de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland Received 17 July 2019 / Accepted 20 August 2019 ABSTRACT We study the spin evolution of close-in planets in multi-body systems and present a very general formulation of the spin-orbit problem. This includes a simple way to probe the spin dynamics from the orbital perturbations, a new method for computing forced librations and tidal deformation, and general expressions for the tidal torque and capture probabilities in resonance. We show that planet–planet perturbations can drive the spin of Earth-size planets into asynchronous or chaotic states, even for nearly circular orbits. We apply our results to Mercury and to the KOI-1599 system of two super-Earths in a 3/2 mean motion resonance. Key words. celestial mechanics – planets and satellites: general – chaos 1. Introduction resonant rotation with the orbital libration frequency (Correia & Robutel 2013; Leleu et al. 2016; Delisle et al. 2017). The inner planets of the solar system, like the majority of the Despite the proximity of solar system bodies, the determi- main satellites, currently present a rotation state that is differ- nation of their rotational periods has only been achieved in ent from what is believed to have been the initial state (e.g., the second half of the 20th century. -
New Horizons Pluto/KBO Mission Impact Hazard
New Horizons Pluto/KBO Mission Impact Hazard Hal Weaver NH Project Scientist The Johns Hopkins University Applied Physics Laboratory Outline • Background on New Horizons mission • Description of Impact Hazard problem • Impact Hazard mitigation – Hubble Space Telescope plays a key role New Horizons: To Pluto and Beyond The Initial Reconnaissance of The Solar System’s “Third Zone” KBOs Pluto-Charon Jupiter System 2016-2020 July 2015 Feb-March 2007 Launch Jan 2006 PI: Alan Stern (SwRI) PM: JHU Applied Physics Lab New Horizons is NASA’s first New Frontiers Mission Frontier of Planetary Science Explore a whole new region of the Solar System we didn’t even know existed until the 1990s Pluto is no longer an outlier! Pluto System is prototype of KBOs New Horizons gives the first close-up view of these newly discovered worlds New Horizons Now (overhead view) NH Spacecraft & Instruments 2.1 meters Science Team: PI: Alan Stern Fran Bagenal Rick Binzel Bonnie Buratti Andy Cheng Dale Cruikshank Randy Gladstone Will Grundy Dave Hinson Mihaly Horanyi Don Jennings Ivan Linscott Jeff Moore Dave McComas Bill McKinnon Ralph McNutt Scott Murchie Cathy Olkin Carolyn Porco Harold Reitsema Dennis Reuter Dave Slater John Spencer Darrell Strobel Mike Summers Len Tyler Hal Weaver Leslie Young Pluto System Science Goals Specified by NASA or Added by New Horizons New Horizons Resolution on Pluto (Simulations of MVIC context imaging vs LORRI high-resolution "noodles”) 0.1 km/pix The Best We Can Do Now 0.6 km/pix HST/ACS-PC: 540 km/pix New Horizons Science Status • -
A Deep Search for Additional Satellites Around the Dwarf Planet
Search for Additional Satellites around Haumea A Preprint typeset using LTEX style emulateapj v. 01/23/15 A DEEP SEARCH FOR ADDITIONAL SATELLITES AROUND THE DWARF PLANET HAUMEA Luke D. Burkhart1,2, Darin Ragozzine1,3,4, Michael E. Brown5 Search for Additional Satellites around Haumea ABSTRACT Haumea is a dwarf planet with two known satellites, an unusually high spin rate, and a large collisional family, making it one of the most interesting objects in the outer solar system. A fully self-consistent formation scenario responsible for the satellite and family formation is still elusive, but some processes predict the initial formation of many small moons, similar to the small moons recently discovered around Pluto. Deep searches for regular satellites around KBOs are difficult due to observational limitations, but Haumea is one of the few for which sufficient data exist. We analyze Hubble Space Telescope (HST) observations, focusing on a ten-consecutive-orbit sequence obtained in July 2010, to search for new very small satellites. To maximize the search depth, we implement and validate a non-linear shift-and-stack method. No additional satellites of Haumea are found, but by implanting and recovering artificial sources, we characterize our sensitivity. At distances between 10,000 km and 350,000 km from Haumea, satellites with radii as small as 10 km are ruled out, assuming∼ an albedo∼ (p 0.7) similar to Haumea. We also rule out satellites larger∼ than &40 km in most of the Hill sphere using≃ other HST data. This search method rules out objects similar in size to the small moons of Pluto. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
The Chaotic Rotation of Hyperion*
ICARUS 58, 137-152 (1984) The Chaotic Rotation of Hyperion* JACK WISDOM AND STANTON J. PEALE Department of Physics, University of California, Santa Barbara, California 93106 AND FRANGOIS MIGNARD Centre d'Etudes et de Recherehes G~odynamique et Astronomique, Avenue Copernic, 06130 Grasse, France Received August 22, 1983; revised November 4, 1983 A plot of spin rate versus orientation when Hyperion is at the pericenter of its orbit (surface of section) reveals a large chaotic zone surrounding the synchronous spin-orbit state of Hyperion, if the satellite is assumed to be rotating about a principal axis which is normal to its orbit plane. This means that Hyperion's rotation in this zone exhibits large, essentially random variations on a short time scale. The chaotic zone is so large that it surrounds the 1/2 and 2 states, and libration in the 3/2 state is not possible. Stability analysis shows that for libration in the synchronous and 1/2 states, the orientation of the spin axis normal to the orbit plane is unstable, whereas rotation in the 2 state is attitude stable. Rotation in the chaotic zone is also attitude unstable. A small deviation of the principal axis from the orbit normal leads to motion through all angles in both the chaotic zone and the attitude unstable libration regions. Measures of the exponential rate of separation of nearby trajectories in phase space (Lyapunov characteristic exponents) for these three-dimensional mo- tions indicate the the tumbling is chaotic and not just a regular motion through large angles. As tidal dissipation drives Hyperion's spin toward a nearly synchronous value, Hyperion necessarily enters the large chaotic zone. -
CHORUS: Let's Go Meet the Dwarf Planets There Are Five in Our Solar
Meet the Dwarf Planet Lyrics: CHORUS: Let’s go meet the dwarf planets There are five in our solar system Let’s go meet the dwarf planets Now I’ll go ahead and list them I’ll name them again in case you missed one There’s Pluto, Ceres, Eris, Makemake and Haumea They haven’t broken free from all the space debris There’s Pluto, Ceres, Eris, Makemake and Haumea They’re smaller than Earth’s moon and they like to roam free I’m the famous Pluto – as many of you know My orbit’s on a different path in the shape of an oval I used to be planet number 9, But I break the rules; I’m one of a kind I take my time orbiting the sun It’s a long, long trip, but I’m having fun! Five moons keep me company On our epic journey Charon’s the biggest, and then there’s Nix Kerberos, Hydra and the last one’s Styx 248 years we travel out Beyond the other planet’s regular rout We hang out in the Kuiper Belt Where the ice debris will never melt CHORUS My name is Ceres, and I’m closest to the sun They found me in the Asteroid Belt in 1801 I’m the only known dwarf planet between Jupiter and Mars They thought I was an asteroid, but I’m too round and large! I’m Eris the biggest dwarf planet, and the slowest one… It takes me 557 years to travel around the sun I have one moon, Dysnomia, to orbit along with me We go way out past the Kuiper Belt, there’s so much more to see! CHORUS My name is Makemake, and everyone thought I was alone But my tiny moon, MK2, has been with me all along It takes 310 years for us to orbit ‘round the sun But out here in the Kuiper Belt… our adventures just begun Hello my name’s Haumea, I’m not round shaped like my friends I rotate fast, every 4 hours, which stretched out both my ends! Namaka and Hi’iaka are my moons, I have just 2 And we live way out past Neptune in the Kuiper Belt it’s true! CHORUS Now you’ve met the dwarf planets, there are 5 of them it’s true But the Solar System is a great big place, with more exploring left to do Keep watching the skies above us with a telescope you look through Because the next person to discover one… could be me or you… . -
Comparative Planetology Beyond Neptune Enabled by a Near-Term Interstellar Probe
51st Lunar and Planetary Science Conference (2020) 1464.pdf COMPARATIVE PLANETOLOGY BEYOND NEPTUNE ENABLED BY A NEAR-TERM INTERSTELLAR PROBE. K. D. Runyon ([email protected]), K. E. Mandt, P. Brandt, M. Paul, C. Lisse, R. McNutt, Jr. (Johns Hopkins APL, 11101 Johns Hopkins Rd., Laurel, MD, 20723, USA), C.B. Beddingfield (NASA/Ames), S.A. Stern (Southwest Research Institute) Summary: A properly instrumented Interstellar surprising differences despite water having played a Probe could enable flyby geoscience investigations of a substantial role in the surface and subsurface of each Kuiper belt dwarf planet, advancing comparative plan- planet (e.g., Prettyman et al., 2017; Prockter et al., 2005; etology in the trans-Neptunian region. Nimmo and Pappalardo, 2016; Beyer et al., 2019). With Introduction: Comparative planetology among the long time frames and relative difficulty in reaching KBO dwarf planets A) should be a priority for future trans-Neptunian planets, Interstellar Probe could ad- NASA missions; and B) could be partly addressed by a vance the field via in situ exploration of just one more targeted flyby of a dwarf planet by an interstellar probe planet, such as Quaoar, “Gonggong” (officially 2007 leaving the Solar System, such as described by McNutt OR10), or another. et al. (2019). This abstract is based on a near-term white A camera-instrumented Interstellar Probe could tar- paper to be submitted by mid-2020 to the National get high resolution images of a dwarf planet’s surface, Academies Planetary Science Decadal Survey Panel. similar to New Horizons’ flyby images of Pluto, Charon, Please contact the first author to be added to the white and Arrokoth (2014 MU69). -
2018: Aiaa-Space-Report
AIAA TEAM SPACE TRANSPORTATION DESIGN COMPETITION TEAM PERSEPHONE Submitted By: Chelsea Dalton Ashley Miller Ryan Decker Sahil Pathan Layne Droppers Joshua Prentice Zach Harmon Andrew Townsend Nicholas Malone Nicholas Wijaya Iowa State University Department of Aerospace Engineering May 10, 2018 TEAM PERSEPHONE Page I Iowa State University: Persephone Design Team Chelsea Dalton Ryan Decker Layne Droppers Zachary Harmon Trajectory & Propulsion Communications & Power Team Lead Thermal Systems AIAA ID #908154 AIAA ID #906791 AIAA ID #532184 AIAA ID #921129 Nicholas Malone Ashley Miller Sahil Pathan Joshua Prentice Orbit Design Science Science Science AIAA ID #921128 AIAA ID #922108 AIAA ID #761247 AIAA ID #922104 Andrew Townsend Nicholas Wijaya Structures & CAD Trajectory & Propulsion AIAA ID #820259 AIAA ID #644893 TEAM PERSEPHONE Page II Contents 1 Introduction & Problem Background2 1.1 Motivation & Background......................................2 1.2 Mission Definition..........................................3 2 Mission Overview 5 2.1 Trade Study Tools..........................................5 2.2 Mission Architecture.........................................6 2.3 Planetary Protection.........................................6 3 Science 8 3.1 Observations of Interest.......................................8 3.2 Goals.................................................9 3.3 Instrumentation............................................ 10 3.3.1 Visible and Infrared Imaging|Ralph............................ 11 3.3.2 Radio Science Subsystem................................. -
The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring. -
Long-Term Orbital and Rotational Motions of Ceres and Vesta T
A&A 622, A95 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833342 & © ESO 2019 Astrophysics Long-term orbital and rotational motions of Ceres and Vesta T. Vaillant, J. Laskar, N. Rambaux, and M. Gastineau ASD/IMCCE, Observatoire de Paris, PSL Université, Sorbonne Université, 77 avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 2 May 2018 / Accepted 24 July 2018 ABSTRACT Context. The dwarf planet Ceres and the asteroid Vesta have been studied by the Dawn space mission. They are the two heaviest bodies of the main asteroid belt and have different characteristics. Notably, Vesta appears to be dry and inactive with two large basins at its south pole. Ceres is an ice-rich body with signs of cryovolcanic activity. Aims. The aim of this paper is to determine the obliquity variations of Ceres and Vesta and to study their rotational stability. Methods. The orbital and rotational motions have been integrated by symplectic integration. The rotational stability has been studied by integrating secular equations and by computing the diffusion of the precession frequency. Results. The obliquity variations of Ceres over [ 20 : 0] Myr are between 2◦ and 20◦ and the obliquity variations of Vesta are between − 21◦ and 45◦. The two giant impacts suffered by Vesta modified the precession constant and could have put Vesta closer to the resonance with the orbital frequency 2s s . Given the uncertainty on the polar moment of inertia, the present Vesta could be in this resonance 6 − V where the obliquity variations can vary between 17◦ and 48◦.