Reuyl Crater, Mars: Insights from Fluvial Activities. S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sinuous Ridges in Chukhung Crater, Tempe Terra, Mars: Implications for Fluvial, Glacial, and Glaciofluvial Activity Frances E.G
Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity Frances E.G. Butcher, Matthew Balme, Susan Conway, Colman Gallagher, Neil Arnold, Robert Storrar, Stephen Lewis, Axel Hagermann, Joel Davis To cite this version: Frances E.G. Butcher, Matthew Balme, Susan Conway, Colman Gallagher, Neil Arnold, et al.. Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. Icarus, Elsevier, 2021, 10.1016/j.icarus.2020.114131. hal-02958862 HAL Id: hal-02958862 https://hal.archives-ouvertes.fr/hal-02958862 Submitted on 6 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Sinuous Ridges in Chukhung Crater, Tempe Terra, Mars: 2 Implications for Fluvial, Glacial, and Glaciofluvial Activity. 3 Frances E. G. Butcher1,2, Matthew R. Balme1, Susan J. Conway3, Colman Gallagher4,5, Neil 4 S. Arnold6, Robert D. Storrar7, Stephen R. Lewis1, Axel Hagermann8, Joel M. Davis9. 5 1. School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6 6AA, UK. 7 2. Current address: Department of Geography, The University of Sheffield, Sheffield, S10 8 2TN, UK ([email protected]). -
Volcanism on Mars
Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny. -
Sinuous Ridges in Chukhung Crater, Tempe Terra, Mars: Implications for Fluvial, Glacial, and Glaciofluvial Activity
This is a repository copy of Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166644/ Version: Published Version Article: Butcher, F.E.G. orcid.org/0000-0002-5392-7286, Balme, M.R., Conway, S.J. et al. (6 more authors) (2021) Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. Icarus, 357. 114131. ISSN 0019-1035 https://doi.org/10.1016/j.icarus.2020.114131 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Journal Pre-proof Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity Frances E.G. Butcher, Matthew R. Balme, Susan J. Conway, Colman Gallagher, Neil S. Arnold, Robert D. Storrar, Stephen R. Lewis, Axel Hagermann, Joel M. Davis PII: S0019-1035(20)30473-5 DOI: https://doi.org/10.1016/j.icarus.2020.114131 Reference: YICAR 114131 To appear in: Icarus Received date: 2 June 2020 Revised date: 19 August 2020 Accepted date: 28 September 2020 Please cite this article as: F.E.G. -
Seasonal Melting and the Formation of Sedimentary Rocks on Mars, with Predictions for the Gale Crater Mound
Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound Edwin S. Kite a, Itay Halevy b, Melinda A. Kahre c, Michael J. Wolff d, and Michael Manga e;f aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA bCenter for Planetary Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel cNASA Ames Research Center, Mountain View, California 94035, USA dSpace Science Institute, 4750 Walnut Street, Suite 205, Boulder, Colorado, USA eDepartment of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720, USA f Center for Integrative Planetary Science, University of California Berkeley, Berkeley, California 94720, USA arXiv:1205.6226v1 [astro-ph.EP] 28 May 2012 1 Number of pages: 60 2 Number of tables: 1 3 Number of figures: 19 Preprint submitted to Icarus 20 September 2018 4 Proposed Running Head: 5 Seasonal melting and sedimentary rocks on Mars 6 Please send Editorial Correspondence to: 7 8 Edwin S. Kite 9 Caltech, MC 150-21 10 Geological and Planetary Sciences 11 1200 E California Boulevard 12 Pasadena, CA 91125, USA. 13 14 Email: [email protected] 15 Phone: (510) 717-5205 16 2 17 ABSTRACT 18 A model for the formation and distribution of sedimentary rocks on Mars 19 is proposed. The rate{limiting step is supply of liquid water from seasonal 2 20 melting of snow or ice. The model is run for a O(10 ) mbar pure CO2 atmo- 21 sphere, dusty snow, and solar luminosity reduced by 23%. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
PSRD: Timeline of Martian Volcanism
PSRD: Timeline of Martian Volcanism http://www.psrd.hawaii.edu/May11/Mars_volc_timeline.html May 27, 2011 --- High-resolution images allow a larger range of crater sizes to date calderas and the last major periods of volcanic activity on Mars. Written by Linda M. V. Martel Hawai'i Institute of Geophysics and Planetology A recent study of Martian volcanism presents a timeline of the last major eruptions from 20 large volcanoes, based on the relative ages of caldera surfaces determined by crater counting. Stuart Robbins, Gaetano Di Achille, and Brian Hynek (University of Colorado) counted craters on high-resolution images from the the Context Camera (CTX) on Mars Reconnaissance Orbiter to date individual calderas, or terraces within calderas, on the 20 major Martian volcanoes. Based on their timeline and mapping, rates and durations of eruptions and transitions from explosive to effusive activity varied from volcano to volcano. The work confirms previous findings by others that volcanism was continuous throughout Click for full image data Martian geologic history until about one to two hundred million years ago, the final volcanic . events were not synchronous across the planet, and the latest large-scale caldera activity ended about 150 million years ago in the Tharsis province. This timing correlates well with the crystallization ages (~165-170 million years) determined for the youngest basaltic Martian meteorites. Reference: Robbins, S. J., Di Achille, G., and Hynek, B. M. (2011) The Volcanic History of Mars: High-Resolution Crater-Based Studies of the Calderas of 20 Volcanoes, Icarus, v. 211, p. 1179-1203, doi: 10.1016/j.icarus.2010.11.012. -
MARS GEOMORPHOLOGY: FLUVIAL 10:15 A.M
42nd Lunar and Planetary Science Conference (2011) sess702.pdf Friday, March 11, 2011 MARS GEOMORPHOLOGY: FLUVIAL 10:15 a.m. Waterway Ballroom 1 Chairs: Devon Burr Justin Wilkinson 10:15 a.m. Gregg T. K. P. * Krysak D. J. Apollinaris Mons, Mars: A New Name and a New Past [#1922] Geologic mapping of Apollinaris Mons, Mars, reveals that the volcano was active throughout the Hesperian and that the fan deposit is likely composed of pyroclastic or volcaniclastic materials. 10:30 a.m. Catling D. C. * Leovy C. B. Wood S. E. Day M. D. A Lava Sea in the Northern Plains of Mars: Circumpolar Hesperian Oceans Reconsidered [#2529] The Vastitas Borealis Formation (VBF) in the martian northern plains is commonly attributed to sediments from a circumpolar Hesperian ocean of water. We present evidence that the VBF formed from a sea of flooded lava, not water. 10:45 a.m. Stepinski T. F. Luo W. * On Orientation of Martian Valley Networks [#1266] Distribution of valley networks orientations is shown to be consistent with distribution of orientations of long baseline slopes. 11:00 a.m. Mangold N. * Post-Early Mars Fluvial Landforms on Mid-Latitude Impact Ejecta [#1378] Fluvial landforms on ejecta of large craters were found in the mid-latitude band in both hemispheres. Processes associated with impact craters such as shallow water ice melted by warm ejecta are favored to explain this fluvial activity. 11:15 a.m. Cannarsa F. * Ori G. G. Morphological Analyses of Relief-Inverted Channelled Distributary Systems in the Aeolis/Zephyria Plana Region: Insights from DEMs Data Set [#2169] We report morphometric analyses of a distributary system in the Aeolis/Zephyria Plana region of Mars carried out with a series of topographic profiles derived from the DEMs data set. -
100% Renewable
100% Renewable — Edited by Peter Droege 234mm x 156mm trim size — PPC hardback — Spine width: 31mm — ISBN 978-1-84407-718-2 100% RENEWABLE 100% ‘This inspiring book is long overdue. It tackles The greatest challenge of our time is to build a an essential question for human survival in the world based on the sustainable use of renewable 21st century: will we be able to transform our power. Our massive dependence on fossil fuels lives, businesses, buildings, settlements and has upset the very climatic system that made the transport networks connecting them from human evolution possible. The global economy unsustainable, oil-based and greenhouse-gas- and its financial system are in jeopardy, running emitting into sustainable, fossil-fuel-free, zero- hot on overtly cheap yet increasingly costly and carbon metabolisms? This important volume and fast depleting oil. A 100% renewable world is its two dozen contributors show that this path is seen by many as an impossible dream in anything necessary, practical and affordable. Read this but the very long term. But not only do a growing book: its exciting, fresh insights will show you number of initiatives and plans dare to make the how to move from promise to practice.’ change but many have already achieved it. Marco KEinEr Director, Environment, Housing and Land This rich collection presents a series of pioneering Management Division, United nations efforts and their champions, and the paths to their Economic commission for Europe successes. Ranging from initiatives by individuals to visions for companies, communities and entire ‘100% renewable was always more than a Moon countries, it defeats tired economic and technical Shot or a Manhattan Project as we just could counter-arguments, showing how the schemes not imagine how it could ever happen. -
Erosional History of the Northeastern Flank of Apollinaris Mons, Mars: Insights from High-Resolution Morphology, Topography and Crater Populations
Lunar and Planetary Science XLVIII (2017) 2126.pdf EROSIONAL HISTORY OF THE NORTHEASTERN FLANK OF APOLLINARIS MONS, MARS: INSIGHTS FROM HIGH-RESOLUTION MORPHOLOGY, TOPOGRAPHY AND CRATER POPULATIONS. F. C. Chuang, D. A. Crown, and D. C. Berman, Planetary Science Institute, 1700 E. Ft. Lowell Road, Suite 106, Tucson, AZ 85719 USA ([email protected]). Introduction: Mars has an abundance of volcanic currently mapping the geology of a 1° latitude x 1° landforms that have been observed and studied during longitude portion of the northeast flanks (6.9-7.9° S, more than four decades of exploration of the Martian 174.3-175.4° E; 4095.5 km2) using ~5-6 m/pixel CTX surface [1-4]. Comparisons within and between images (Figure 1). For slope and topographic relief Martian volcanic centers have provided general estimates of material units, we use individual MOLA constraints on the spatial variability and history of PEDR tracks with ~300 m shot spacing. In addition to volcanism on the planet. As surface images and other these analyses, we also compile crater size-frequency datasets have improved in coverage and resolution, distributions (CSFD) for each unit and map specific more details about Martian volcanism are emerging, erosional features such as small valleys or channels. including constraints on lava rheology, eruption For mapping, topography and crater counts, we conditions, and eruptive styles and magnitudes [5-10]. utilize both ESRI ArcGIS for Desktop 10.4 software Apollinaris Mons (formerly Apollinaris Patera) is a and the CraterTools 2.1 add-on tool for ArcGIS [22]. ~5.4 km high and ~190 km wide volcanic edifice with For CSFD age estimates, we use CraterStats II a 85 km wide summit caldera complex [11]. -
Ebook < Impact Craters on Mars # Download
7QJ1F2HIVR # Impact craters on Mars « Doc Impact craters on Mars By - Reference Series Books LLC Mrz 2012, 2012. Taschenbuch. Book Condition: Neu. 254x192x10 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 50. Chapters: List of craters on Mars: A-L, List of craters on Mars: M-Z, Ross Crater, Hellas Planitia, Victoria, Endurance, Eberswalde, Eagle, Endeavour, Gusev, Mariner, Hale, Tooting, Zunil, Yuty, Miyamoto, Holden, Oudemans, Lyot, Becquerel, Aram Chaos, Nicholson, Columbus, Henry, Erebus, Schiaparelli, Jezero, Bonneville, Gale, Rampart crater, Ptolemaeus, Nereus, Zumba, Huygens, Moreux, Galle, Antoniadi, Vostok, Wislicenus, Penticton, Russell, Tikhonravov, Newton, Dinorwic, Airy-0, Mojave, Virrat, Vernal, Koga, Secchi, Pedestal crater, Beagle, List of catenae on Mars, Santa Maria, Denning, Caxias, Sripur, Llanesco, Tugaske, Heimdal, Nhill, Beer, Brashear Crater, Cassini, Mädler, Terby, Vishniac, Asimov, Emma Dean, Iazu, Lomonosov, Fram, Lowell, Ritchey, Dawes, Atlantis basin, Bouguer Crater, Hutton, Reuyl, Porter, Molesworth, Cerulli, Heinlein, Lockyer, Kepler, Kunowsky, Milankovic, Korolev, Canso, Herschel, Escalante, Proctor, Davies, Boeddicker, Flaugergues, Persbo, Crivitz, Saheki, Crommlin, Sibu, Bernard, Gold, Kinkora, Trouvelot, Orson Welles, Dromore, Philips, Tractus Catena, Lod, Bok, Stokes, Pickering, Eddie, Curie, Bonestell, Hartwig, Schaeberle, Bond, Pettit, Fesenkov, Púnsk, Dejnev, Maunder, Mohawk, Green, Tycho Brahe, Arandas, Pangboche, Arago, Semeykin, Pasteur, Rabe, Sagan, Thira, Gilbert, Arkhangelsky, Burroughs, Kaiser, Spallanzani, Galdakao, Baltisk, Bacolor, Timbuktu,... READ ONLINE [ 7.66 MB ] Reviews If you need to adding benefit, a must buy book. Better then never, though i am quite late in start reading this one. I discovered this publication from my i and dad advised this pdf to find out. -- Mrs. Glenda Rodriguez A brand new e-book with a new viewpoint. -
Mariner Mars 1964 Handbook
NATIONALAERONAUTICSANDSPACEADMINISTRATION MARINER MARS 1964 HANDBOOK RobertVanBuren JETPROPULSIONLABORATORY CaliforniaInstituteofTechnology December1, 1965 JPLTechnicalMemorandum33-265 Copyright© 1965 Jet PropulsionLaboratory California Institute of Technology Prepared under Contract No. NAS7-100 National Aerenauticsand Space Administration Preface This book presents a compilation of significant technical data relative to Mariner Mars 1964. Its purpose is to collect, in one location, a wide variety of statistical information that would otherwise be scattered throughout a large number of miscellaneous documents. The information presented here pertains primarily to the Mariner spacecraft, itself; it does not include the Launch Vehicle System, the ground support equipment, the Deep Space Network System, or other areas of the total Mariner Mars 1964 project. The primary Mariner Mars ]964 mission is considered in this book to have ended on October 1, 1965. Historical data are carried only to that date, although some orbital parame. ters are projected to 1967 and 1971 in the tables and figures. It is expected that the user of this handbook will have somefamiliarity with the terminology, operational procedures, and engineering concepts related to an interplanetary space- craft project and, specifically, to the Mariner Mars 1964 proj- ect. The handbook's function is more to remind those who already know than to instruct those who don't. A list of documentspertaining to the Mariner Mars 1964 mission is included (Table 25) for reference purposes. The list is complete as of the publication date of this handbook, but many articles and reports are still being prepared and will continueto be published for sometime to come. CONTENTS AbsorptivityStandard ..................................... 1 Acquisition(see Sun Acquisition,Star Acquisition) Albedo (see Mars) Alpha Particles (see Scientific Data, CosmicRay Telescope) Altitude .............................................. -
Identifying Evidence for Explosive Volcanism on Mars Through Geomorphologic and Thermophysical Observations
IDENTIFYING EVIDENCE FOR EXPLOSIVE VOLCANISM ON MARS THROUGH GEOMORPHOLOGIC AND THERMOPHYSICAL OBSERVATIONS by Gabriel Cecilio Garcia A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geosciences Boise State University May 2018 © 2018 Gabriel Cecilio Garcia ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Gabriel Cecilio Garcia Thesis Title: Identifying Evidence for Explosive Volcanism on Mars through Geomorphologic and Thermophysical Observations Date of Final Oral Examination: 24 January 2018 The following individuals read and discussed the thesis submitted by student Gabriel Cecilio Garcia, and they evaluated his presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Brittany D. Brand, Ph.D. Chair, Supervisory Committee Joshua L. Bandfield, Ph.D. Member, Supervisory Committee Jennifer L. Pierce, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by Brittany D. Brand, Ph.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate College. DEDICATION I dedicate this thesis to my parents. Their love and support has provided me the opportunity to strive for greatness and live a life that I can truly be proud of. No matter where I go, I will always live by your example. iv ACKNOWLEDGEMENTS I would like to thank my advisors, Brittany Brand and Joshua Bandfield, for all they have helped me with. I would not be the scientist I am now without their guidance and teachings. I would also like to thank the Idaho Space Grant Consortium for funding this research.