Antileprotic Drugs Chapter 56

Total Page:16

File Type:pdf, Size:1020Kb

Antileprotic Drugs Chapter 56 Antileprotic Drugs Chapter 56 Leprosy, caused by Mycobacterium leprae, has Activity and mechanism Dapsone is che- been considered incurable since ages and bears mically related to sulfonamides and has the same a social stigma. Due to availability of effective mechanism of action, i.e. inhibition of PABA antileprotic drugs now, it is entirely curable, but incorporation into folic acid by folate synthase. deformities/defects already incurred may not The antibacterial action of dapsone is antagonized reverse. by PABA. It is leprostatic at very low concentra- tions, while growth of many other bacteria Chaulmoogra oil with weak antileprotic property was used in Indian medicine for centuries. Shortly after the sensitive to sulfonamides is arrested at relatively demonstration of antibacterial property of sulfonamides, higher concentrations. Specificity for M. leprae congeners were tested and dapsone, the parent sulfone, was may be due to difference in the affinity of its found to be an active antileprotic. Demonstration of its folate synthase. Doses of dapsone needed for efficacy in experimental tuberculosis and leprosy led to clinical trials in the 1940s, and since then it is the sheet-anchor of treatment of acute pyogenic bacterial infections treatment of leprosy. Few other sulfones were added, but none are too toxic, so not used. could excel dapsone. Clofazimine was inducted in the early Dapsone-resistance among M. leprae, first 1960s as a useful adjunct, and soon rifampin, developed for noted in 1964, has spread and has necessitated TB, was found to be a rapidly acting cidal drug for M.leprae as well. Lately good antileprotic activity has been detected the use of multidrug therapy (MDT). When in some fluoroquinolones, macrolides and minocycline. dapsone resistance is encountered in an untreated patient, it is called ‘primary’, and indicates that CLASSIFICATION the infection was contacted from a patient harbouring resistant bacilli. Resistance which 1. Sulfone Dapsone (DDS) develops during monotherapy in an individual 2. Phenazine derivative Clofazimine patient with dapsone is called ‘secondary’.The 3. Antitubercular drugs Rifampin, incidence of primary dapsone resistance reported Ethionamide from different parts of the world, from time- 4. Other antibiotics Ofloxacin, to-time, has been variable; whereas secondary Moxifloxacin, dapsone resistance occurred in upto 20% patients Minocycline, treated with monotherapy. The mechanism of Clarithromycin secondary resistance appears to be the same as for M. tuberculosis, i.e. selective propagation Dapsone (DDS) of resistant bacilli over time. Dapsone resistant It is diamino diphenyl sulfone (DDS), the M. leprae have mutated folate synthase which simplest, oldest, cheapest, most active and most has lower affinity for dapsone. However, the peak commonly used member of its class. All other serum concentration of dapsone after 100 mg/ sulfones have become obsolete. day dose exceeds MIC for M. leprae by nearly 500 times; it continues to be active against low to moderately resistant bacilli, and the risk of relapse due to dapsone resistance is reported to be 2–3%. In addition to resistance, there is the problem of ‘persisters’, that are drug ANTILEPROTIC DRUGS 781 sensitive bacilli which become dormant, hide in treatment: consists of fever, malaise, lymph node some tissues and are not affected by any drug. enlargement, desquamation of skin, jaundice and They may stage a comeback after the drug is anaemia. It is generally seen in malnourished withdrawn. patients, and has become more frequent after the Dapsone is active against certain protozoa introduction of MDT. Some or all of the above as well. Combined with pyrimethamine, it is an symptoms may occur. Its treatment consists of alternative to sulfadoxine-pyrimethamine for stopping dapsone and instituting corticosteroid P. falciparum and Toxoplasma gondii infections, therapy along with supportive measures. as well as for the fungus Pneumocystis jirovecii. Contraindications Dapsone should not be used CHAPTER 56 Antiinflammatory property has been detected in in patients with severe anaemia (Hb < 7 g/dl), dapsone. G-6-PD deficiency and in those showing hyper- Pharmacokinetics Dapsone is completely sensitivity reactions. absorbed after oral administration and is widely Other use In combination with pyrimethamine, distributed in the body, though penetration in CSF is poor. It is 70% plasma protein bound, but more dapsone can be used for chloroquine-resistant importantly it is concentrated in skin (especially malaria, toxoplasmosis and P. jirovecii infection. lepromatous skin), muscle, liver and kidney. Dapsone is acetylated as well as glucuronide Clofazimine (Clo) and sulfate conjugated in liver. Metabolites are It is a dye with leprostatic and antiinflammatory excreted in bile and reabsorbed from intestine, properties. The putative mechanisms of anti- so that ultimate excretion occurs mostly in urine. leprotic action of clofazimine are: The plasma t½ of dapsone is variable, though • Interference with template function of DNA often > 24 hrs. The drug is cumulative due to in M.leprae retention in tissues and enterohepatic circulation. • Alteration of membrane stucture and its Elimination takes 1–2 weeks or longer. transport function. DAPSONE 25, 50, 100 mg tab. • Disruption of mitochondrial electron trans- Adverse effects Dapsone is generally well port chain. tolerated at doses 100 mg/day or less. When used alone, the clinical response to Mild haemolytic anaemia is common. It is a dose- clofazimine is slower than that to dapsone, and related toxicity—reflects oxidising property of resistance develops in 1–3 years. Dapsone- the drug. Patients with G-6-PD deficiency are resistant M. leprae respond to clofazimine, but more susceptible; doses > 50 mg/day produce apparently after a lag period of about 2 months. haemolysis in such subjects. Clofazimine is orally active (40–70% absor- Gastric intolerance—nausea and anorexia are bed). It accumulates in macrophages and gets frequent in the beginning, decrease later. deposited in many tissues including subcuta- Other side effects are methaemoglobinaemia, neous fat, as needle-shaped crystals. However, headache, paresthesias, mental symptoms and entry in CSF is poor. The t½ is 70 days so that drug fever. intermittent therapy is possible. Cutaneous reactions include allergic rashes, CLOFOZINE, HANSEPRAN 50, 100 mg cap. fixed drug eruption, hypermelanosis, photo- Clofazimine is used as a component of toxicity and rarely exfoliative dermatitis. multidrug therapy (MDT) of leprosy. Because Hepatitis and agranulocytosis are rare complica- of its antiinflammatory property, it is valuable tions. in lepra reaction. Sulfone syndrome It is the reaction which Occasionally, it is used as a component of develops 4–6 weeks after starting dapsone MDT for MAC infection. 782 ANTIMICROBIAL DRUGS Adverse effects In the doses employed for nontoxic and does not cause enzyme induction MDT, clofazimine is well tolerated. to affect metabolism of other drugs. However, it should not be given to patients with hepatic Skin The major disadvantage is reddish-black or renal dysfunction, as well as during ‘erythema discolouration of skin, especially on exposed nodosum leprosum’ (ENL) and ‘reversal parts. Discolouration of hair and body secretions reaction’ in leprosy patients, because it can may also occur. Dryness of skin and itching is release large quantities of mycobacterial often troublesome. Acneform eruptions and antigens by inducing rapid bacillary killing. phototoxicity have been noted. Conjunctival pigmentation may create cosmetic problem. Ethionamide This antitubercular drug has significant antileprotic activity, but is poorly tolerated and causes GI symptoms Nausea, anorexia, abdominal hepatotoxicity in ~ 10% patients. It has been used as an pain, weight loss and enteritis with intermittent alternative to clofazimine, but other substitutes are preferred. loose stools can occur, particularly when higher Ethionamide 250 mg/day may be used only when absolutely doses are used to control lepra reaction. The necessary. SECTION 12 early syndrome is a reflection of irritant effect Ofloxacin of the drug—subsides with dose adjustment and by taking the drug with meals. A late syndrome Many fluoroquinolones like ofloxacin, pefloxa- occurring after few months of therapy—is due cin, moxifloxacin, sparfloxacin are highly active to deposition of clofazimine crystals in the against M.leprae, but ciprofloxacin has poor intestinal submucosa. activity. Clinically, ofloxacin has been used to Clofazimine is to be avoided during early the largest extent. As a component of MDT, it pregnancy and in patients with liver or kidney has been found to hasten the bacteriological and damage. clinical response. It is cidal to M.leprae, and in one study, over 99.9% bacilli were found to Rifampin (R) be killed by 22 daily doses of ofloxacin monotherapy. However, it is not yet included in This important tuberculocidal drug is also the the standard treatment protocols, but can be used most potent cidal drug for M.leprae; rapidly in alternative regimens in case rifampin cannot renders leprosy patients noncontagious. Upto be used, or to shorten the duration of treatment 99.99% M.leprae are killed in 3–7 days by 600 and reduce chances of drug resistance. Its safety mg/day dose. Clinical effects of rifampin are during long-term use is not well documented. very rapid; nasal symptoms in lepromatous Dose: 400 mg/day. leprosy subside within 2–3 weeks and skin Moxifloxacin
Recommended publications
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • 2019 National Library of Medicine Classification Schedules
    National Library of Medicine Classification 2019 Schedule S-1 QS Human Anatomy Classify here general works on normal human anatomy. Works that treat men, women, or children separately are classed here. • Classify works on anatomy of a part of the body with the part. • Classify works on surgical anatomy in WO 101. • Classify works on artistic anatomy of human or animal in NC 760-783.8. • Classify works on anatomy of animals in QL or SF. QS 1-132 Anatomy QS 504-532 Histology QS 604-681 Embryology Anatomy Note that form numbers are also used under Histology (QS 504-539) and under Embryology (QS 604-681). QS 1 Organizations. Societies (General or not elsewhere classified) (Cutter from name of organization or society) (Table G) (Used for both monographs and serials) Includes membership lists issued serially or separately. Classify directories in QS 22. Classify annual reports, journals, etc., in W1. For academies and institutes, see QS 23-24. QS 4 General works Classify here works on regional anatomy. If written for the surgeon, classify in WO 101 Surgical anatomy. Classify material on comparative anatomy in QS 124. Collected works QS 5 By several authors QS 7 By individual authors QS 9 Addresses. Essays. Lectures QS 11 History (Table G) QS 11.1 General coverage (Not Table G) QS 13 Dictionaries. Encyclopedias QS 15 Classification. Terminology (Used for both monographs and serials) QS 16 Tables. Statistics. Surveys (Table G) (Used for both monographs and serials) QS 16.1 General coverage (Not Table G) (Used for both monographs and serials) QS 17 Atlases.
    [Show full text]
  • AMEG Categorisation of Antibiotics
    12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity
    molecules Review Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity Valery M. Dembitsky 1,2,*, Ekaterina Ermolenko 2, Nick Savidov 1, Tatyana A. Gloriozova 3 and Vladimir V. Poroikov 3 1 Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada; [email protected] 2 A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; [email protected] 3 Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; [email protected] (T.A.G.); [email protected] (V.V.P.) * Correspondence: [email protected]; Tel.: +1-403-320-3202 (ext. 5463); Fax: +1-888-858-8517 Abstract: Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, Citation: Dembitsky, V.M.; which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, Ermolenko, E.; Savidov, N.; the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with Gloriozova, T.A.; Poroikov, V.V.
    [Show full text]
  • Tuberculosis Medicines Technology and Market Landscape
    2014 Tuberculosis Medicines Technology and Market Landscape OCTOBER 2014 2014 Tuberculosis Medicines Technology and Market Landscape UNITAID Secretariat World Health Organization Avenue Appia 20 CH-1211 Geneva 27 Switzerland T +41 22 791 55 03 F +41 22 791 48 90 [email protected] www.unitaid.org UNITAID is hosted and administered by the World Health Organization © 2014 World Health Organization (acting as the host organization for the Secretariat of UNITAID) The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind either expressed or implied. The responsibility and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. Overall coordination of this report was undertaken by Janet Ginnard. Components of this report were prepared by Patrick Aylward, Philippa Crompton, Colleen Daniels, Janet Ginnard, Erica Lessem and Megan Paterson with support from UNITAID. All reasonable precautions have been taken by the authors to verify the information contained in this publication.
    [Show full text]
  • Type IA Topoisomerases As Targets for Infectious Disease Treatments
    microorganisms Review Type IA Topoisomerases as Targets for Infectious Disease Treatments Ahmed Seddek 1,2 , Thirunavukkarasu Annamalai 1 and Yuk-Ching Tse-Dinh 1,2,* 1 Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; asedd001@fiu.edu (A.S.); athiruna@fiu.edu (T.A.) 2 Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA * Correspondence: ytsedinh@fiu.edu; Tel.: +1-305-348-4956 Abstract: Infectious diseases are one of the main causes of death all over the world, with antimi- crobial resistance presenting a great challenge. New antibiotics need to be developed to provide therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoi- somerases control the topology of DNA via DNA cleavage–rejoining coupled to DNA strand passage. The change in DNA topological features must be controlled in vital processes including DNA repli- cation, transcription, and DNA repair. Type IIA topoisomerases are well established targets for antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase present, which makes it a valuable antibiotic target. This review will summarize recent attempts that have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor–enzyme complexes and more in-depth knowledge of their mechanisms of actions will help to establish the structure–activity relationship of potential drug leads and develop potent and selective therapeutics that can aid in combating the drug resistant bacterial infections that threaten public health.
    [Show full text]
  • Cytotoxicity and Antiprotozoal Activity Of
    Journal of Medicinal Plants Research Vol. 4(9), pp. 726-731, 4 May, 2010 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR09.188 ISSN 1996-0875© 2010 Academic Journals Full Length Research Paper Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa E. S. K. Mwangi1, J. M. Keriko1, A. K. Machocho2, A. W. Wanyonyi2, H. M. Malebo2, S. C. Chhabra2* and P. K. Tarus3 1Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya. 2Department of Chemistry, Kenyatta University, P. O. Box 43844-00100 Nairobi, Kenya. 3Department of Physical Science (Chemistry), Masinde Muliro University of Science and Technology, P. O. Box 190 - 50100 Kakamega, Kenya. Accepted 5 January, 2010 Chromatographic separation of the leaves of Teclea trichocarpa (Engl.) Engl. (Rutaceae) used traditionally by Akamba tribe in Kenya yielded three acridone alkaloids, a furoquinoline alkaloid and two triterpenoids. The total extract (methanol) of the leaves of this plant and the isolated compounds were screened for in vitro for cytotoxicity and against parasitic protozoa, Plasmodium falciparum, Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania donovani. Among the compounds -amyrin had the best anti-plasmodial activity (IC50 = 0.96 g/ml), normelicopicine and skimmianine had the best anti-trypanosomal activity against T. b. rhodesiense (IC50 = 5.24 g/ml) and T. cruzi (IC50 = 14.50 g/ml), respectively. Normelicopicine also exhibited best anti-leishmanial activity (IC50 = 1.08 g/ml). Arborinine exhibited moderate cytotoxicity (IC50 = 12.2 g/ml) against L-6 cells. The compounds with low anti-protozoal and high cytotoxicity IC50 values are potential source of template drug against parasitic protozoa.
    [Show full text]
  • Antiprotozoal Agents from Higher Plants
    Substanœs naturelles d'origine végétale 67 ANTIPROTOZOAL AGENTS FROM HIGHER PLANTS I2arid L PHILLIPSON and C. W. WRIGHT Department ofPharmacognosy, The School ofPharmacy, University ofLondon 29-39 Brunswick Square. London WCJN JAX, U.K. Résumé: la malaria, les amibiases, leishmanioses et trypanosomiases sont des maladies tropicales importantes provoquées par des protozoaires. De nouveaux médicaments sont nécessaires pour soigner ces maladies, et il est essentiel d'évaluer l'efficacité et la toxicité des plantes utilisées en médecine traditionnelle pour le traitement de ces infections. Pour de telles recherches. des méthodes d'essais biologiques in vitro existent afin de tester et guider le fractionnement chimique des extraits de ces plantes. Quelques uns des produits naturels de plantes supérieures possédant une activité anti­ protozoaire sont revus ici. Abstract : malaria. amoebiasis. leishmaniasis and trypanosomiasis are major tropical diseases which are caused by protozoal infections. New drugs are needed to treat these diseases and it is essential tOOt plants which are used in traditional medicine for the treatment ofprotozoal infections be evaluatedfor their efficacy and toxicity. ln vitro test methods are avai/able for bioassay guidedfractionation ofplant extracts for such investigations. Sorne of the higher plant natural products which have antiprotozoal activity are reviewed. Introduction During the 1950s it was believed that malaria would be eradicated because of the clinical effectiveness of drugs such as chloroquine against malaria parasites and because insecticides such as DDT were highly active against vector mosquitoes. The resistance of Plasmodiumfalciparum, in particuJar 10 chloroquine, and the resistance of mosquitoes 10 DDT coupled with restrictions imposed on the use of insecticides, have resulted in today's world­ wide epidemic of malaria (l,2).
    [Show full text]
  • Marine Pharmacology in 2003–4: Marine
    Comparative Biochemistry and Physiology, Part C 145 (2007) 553–581 www.elsevier.com/locate/cbpc Marine pharmacology in 2003–4: Marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action ⁎ Alejandro M.S. Mayer a, , Abimael D. Rodríguez b, Roberto G.S. Berlinck c, Mark T. Hamann d a Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA b Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, USA c Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 13560-970, Brazil d School of Pharmacy, The University of Mississippi, Faser Hall, University, Mississippi 38677, USA Received 28 October 2006; received in revised form 29 January 2007; accepted 30 January 2007 Available online 9 February 2007 Abstract The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998–2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes.
    [Show full text]
  • Antiprotozoal and Cytotoxic Activities, and the Acute Toxicity of Extracts from of Brucea Sumatrana Roxb. (Simaroubaceae) Leaves
    Vol. 7(4), pp. 35-44, April 2015 DOI: 10.5897/JPP2014.0321 Article Number: 9FBD09751707 Journal of Pharmacognosy ISSN 2141-2502 Copyright © 2015 and Phytotherapy Author(s) retain the copyright of this article http://www.academicjournals.org/JPP Full Length Research Paper Antiprotozoal and cytotoxic activities, and the acute toxicity of extracts from of Brucea sumatrana Roxb. (Simaroubaceae) leaves collected in Mai-Ndombe, Democratic Republic of Congo Cimanga R. Kanyanga1,3*, Tshodi M. Ehata1, Nsaka S. Lumpu1, Kikweta C. Munduku1, Mbenza A. Phuati1, Kambu O. Kabangu1, Cos, P.2, Maes, L.2, Apers, S.3, Vlietinck, A. J. and Pieters, L.3 1Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212, Kinshasa XI, Democratic Republic of Congo. 2Faculty of Pharmaceutical Sciences, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universisteitsplein 1, B-2610 Antwerp, Belgium. 3Department of Pharmaceutical Sciences, Laboratory of Natural Products and Food-Research and Analysis (NatuRa), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium. Received 10 June, 2014; Accepted 16 March, 2015 Results from the in vitro evaluation of the antiprotozoal activity of the aqueous extract, the 80% methanol extract and its fractions from the leaves of Brucea sumatrana against Trypanosoma brucei brucei, Trypanosoma cruzi, Lesihmania infantum, the multidrug-resistant K1 and chloroquine-sensitive NF54 strains of Plasmodium falciparum indicated that all samples from the leaves extract presented interesting antiprotozoal activity at different extents. The 80% methanol extract, its chloroform acid, petroleum ether and 80% methanol soluble fractions and the aqueous extract exhibited strong activity against Trypanosoma b.
    [Show full text]
  • Anthelmintic Drugs-Used Against Invasion of Parasitic Worms (Helminthiasis) --Roundworms, Pinworms, Whipworms, Hookworms and Tapeworms Malaria
    Chapter 52 Introduction to Antiparasitic Drugs Targets of antiparasitic chemotherapy Unique essential enzymes found only in the parasite; Similar enzymes found in both host and parasite but indispensable only for the parasite; Common biochemical functions found in both parasite and host but with different pharmacologic properties. Classification of antiparasitic drugs • Antiprotozoal Drugs-used against invasion of single celled parasites --- used for treatment of malaria, amebiasis, giardiasis, toxoplasmosis and trichomoniasis • Anthelmintic Drugs-used against invasion of parasitic worms (Helminthiasis) --Roundworms, pinworms, whipworms, hookworms and tapeworms Malaria • Four species of plasmodium cause human malaria: – Plasmodium falciparum → responsible for nearly all serious complications and deaths. – P vivax – P malariae – P ovale •Transmitted by the Anopholes mosquito •Antimalarials act at different stages in life cycle Parasite life cycle Drug classification Tissue schizonticides: eliminate developing or dormant liver forms; Blood schizonticides : act on erythrocytic parasites; Gametocides : kill sexual stages and prevent transmission to mosquitoes. Radical cure: eliminate both hepatic and erythrocytic stages. Not available. Antimalarial drug---Chloroquine Antimalarial Action Highly effective blood schizonticide. Moderately effective against gametocytes of P vivax, P ovale, and P malariae but not against those of P falciparum. Not active against liver stage parasites. Mechanism of Action Remains controversial, probably acts
    [Show full text]