MMVN10 Fluid Mechanics — Questions on Theory (March 12, 2020)

Total Page:16

File Type:pdf, Size:1020Kb

MMVN10 Fluid Mechanics — Questions on Theory (March 12, 2020) MMVN10 Fluid Mechanics | questions on theory (March 12, 2020) Chapter 1 | Introduction 1.1 What is the fundamental difference between a solid and a fluid? 1.2 Give a practical definition of the density of a fluid. Illustrate with a figure. 1.3 (a) For newtonian fluids, shear stresses are proportional to corresponding shear strain rates. For a simple shear flow, V = u(y)^i, show that the shear stress τ is proportional to du=dy. (b) Discuss and illustrate with diagrams some possible characteristics of non-newtonian fluids (liquids). 1.4 State the SI-dimensions of dynamic and kinematic viscosity, respectively. Also provide approx- imate values (with two significant digits) for water and air at standard room conditions (20◦C, 1 atm). At around standard room conditions, what are the separate effects of changing the pressure and temperature, respectively? 1.5 Define or explain shortly: (a) incompressible flow, (b) cavitation, (c) streamline, (d) streakline. Chapter 2 | Pressure Distribution in a Fluid 2.1 Derive the hydrostatic balance equation rp = ρ g, valid for a fluid at rest. 2.2 Derive the manometer formula ∆p = (ρm −ρ)g h , where h is the manometer reading (height), ρm the density of the manometer liquid and ∆p the pressure difference across two horizontal points in the fluid of density ρ (U-tube manometer, see Example 2.3). Chapter 3 | Integral Analysis 3.1 (a) Provide general definitions of volume flow rate and mass flow rate through a surface. Illustrate with a figure. (b) Show that the mean (average) velocity for laminar fully developed flow in a pipe of circular cross section is equal to half the velocity at the centerline. The velocity profile is parabolic. 3.2 Let B be an arbitrary extensive property and b the same property but expressed per unit mass. For a fixed and non-deforming control volume with one inlet (1) and one outlet (2), both assumed one-dimensional, the Reynolds transport theorem, at steady flow conditions, reads: d B = (b ρ V A) − (b ρ V A) dt sys 2 1 State without proof the Reynolds transport theorem for an arbitrarily moving but still non- deforming control volume, at non-steady (time-dependent) conditions. Illustrate the convective part in a figure. 3.3 Assuming steady one-dimensional incompressible flow, state without proof the momentum inte- gral equation applicable to a control volume with one inlet and one outlet. Give a full account for different terms and properties. How can this equation be modified to include velocity variations across the inlet and outlet? Calculate the correction coefficient (β) for the case of fully developed laminar flow in a straight pipe (circular cross section). 3.4 Assuming steady one-dimensional incompressible flow, state without proof the energy integral equation applicable to a control volume with one inlet and one outlet (the extended Bernoulli equation). Give a full account of different terms and properties. How can this equation be modified to include velocity variations across the inlet and outlet? Calculate the correction coefficient (α) for the case of fully developed laminar flow in a straight pipe (circular cross section). 1 Chapter 4 | Differential Analysis 4.1 A velocity field is described in a cartesian coordinate system xyz. Use the rule of chains to express the material (substantial) acceleration in local and convective terms. Give a physical description of each term. 4.2 Derive the differential form of the continuity equation using a cartesian coordinate system. After this, specialize to incompressible flow conditions. 4.3 Show that Ma2 ≪ 1 is a necessary condition for incompressible flow. Provide an engineering estimate of Ma for which the flow has to be treated as compressible. Hint: Local mass balance, steady flow ! @(ρu)=@x + @(ρv)=@y + @(ρw)=@z = 0. 4.4 (a) Define the stress tensor σij in a flowing fluid, expressed in terms of the viscous stress tensor τij and the pressure p. What symmetry condition is normally valid for σij? (b) Illustrate the components σ11, σ22, σ12 and σ21 in a figure (σ12 = σxy, . ). (c) Define τxy for a newtonian fluid using cartesian coordinates. 4.5 Using cartesian coordinates, write out the continuity equation as well as the x-component of the momentum equation for incompressible flow of a newtonian fluid with constant fluid properties. 4.6 Write out the divergence and rotation (curl), respectively, applied to the velocity field V = (u; v; w) in cartesian coordinates. What do they represent physically? 4.7 Consider, at zero time, a cubical fluid element in a flow field. Kinematically, the instantaneous effects on this element from the flow field can be sub-divided into four elementary motions. Define and describe these elementary motions. Illustrate with a figure. 4.8 (a) State the general definition of the vorticity vector at a point in a flow field. What does it describe physically? (b) For two-dimensional flow in a plane, show that the vorticity vector only has one component. (c) Show that the only component of the vorticity vector in plane two-dimensional flow can be interpreted as twice the instantaneous anti-clockwise rotational rate of the diagonal in a infinitesimal fluid element, initially being quadratic. (d) How is it possible for an initially irrotational flow to become locally rotational, i.e., to possess vorticity? State at least three mechanisms. 4.9 Consider two-dimensional incompressible flow in a plane, V = (u; v; 0), where u(x; y), v(x; y). (a) Define the stream function through implicit expressions using u(x; y) and v(x; y). Also show that satisfies the Laplace equation r2 = 0 when the flow is irrotational. (b) Show that = const: represents streamlines and that the difference in between two streamlines is equal to the volume rate per unit width. Chapter 5 | Dimensional Analysis and Similarity 5.1 (a) What is the principle of dimensional homogeneity, PDH? (b) What are the MLT Θ-dimensions for dynamic (absolute) viscosity µ, heat conductivity k and power P (work per unit time)? (c) State the Π-theorem, in words. 5.2 Define the Strouhal number (St) for periodic vortex shedding downstream of a circular cylinder of diameter d, exposed to a constant flow velocity V perpendicular to the cylinder axis. Assuming incompressible flow, state an approximate value of the Strouhal number over the interval Re = V d/ν = 300 − 105. 2 5.3 Explain briefly (a) homologous points and homologous times (b) geometric, kinematic and dynamic similarity 5.4 In practical cases concerning free-surface flows, most model tests have to renounce on the principle of dynamic similarity. Explain why. 5.5 For incompressible steady flow conditions, the drag D on a smooth spherical object depends only on the diameter d, fluid viscosity µ, fluid density ρ and flow velocity U. (a) Define the conventional drag coefficient CD, and show, using dimensional analysis, that CD only depends on the Reynolds number. (b) Suggest an alternative drag coefficient that does not include the flow velocity. Explain why this coefficient could be more appropriate to use, in some cases. 5.6 Show that the Reynolds, Froude and Weber number, respectively, each is a rough measure of a ratio between certain fluid forces in a flow field (mass times acceleration = inertia force; [Υ] = N=m). 5.7 Ekman (Ek) and Rossby (Ro) numbers are of importance in rotating flows.1 Ekman number is a rough measure of the ratio between frictional (viscous) and Coriolis (fictional) forces; Rossby number correspondingly between inertial and Coriolis forces. Define these two numbers if Ω is a characteristic angular rate of rotation (characteristic velocity U; characteristic length L). Coriolis acceleration: 2 Ω × V . Chapter 6 | Viscous Flows in Ducts 6.1 Make a sketch on the variation of pressure and the velocity profile development for laminar flow in a horizontal pipe connected to a large reservoir. The submerged inlet is rounded. State an approximate expression for the entrance length. 6.2 Define the hydraulic diameter Dh in duct flows. Find the hydraulic diameter for a circular and a square cross-section. In engineering calculations, state the commonly accepted Reynolds number above which the flow can be regarded as fully turbulent. 6.3 Define the Darcy-Weisbach friction factor f for pipe flow. How is the (major) pressure loss calculated? What can be stated generally for f in fully developed laminar duct flow, regardless of the cross section? 6.4 Consider steady, fully developed laminar flow in a horizontal and straight pipe of circular cross section. How does the pressure drop per unit length ∆p=L vary with the volume flow rate Q, the diameter D, and the fluid density ρ and viscosity µ, respectively? The answer can be given through exponents a − d in the expression ∆p=L / QaDbρcµd. How does the influence of the respective quantity change if the flow is instead turbulent at sufficiently high Reynolds number? Used relationships should be justified. 6.5 Make an account for the recommended scheme of obtaining the pressure loss over a certain length in a duct of constant but non-circular cross section, assuming fully developed turbulent flow. The expression for the corresponding pressure loss in fully developed laminar flow is known. 6.6 (a) Make a sketch of mean velocity profiles in fully developed laminar and turbulent flow in a pipe (circular cross section). For turbulent flow, what is the influence of Reynolds number? (b) State an approximate power-law expression for the mean velocity profile in fully developed turbulent pipe flow. Use this expression to determine the ratio between the average velocity and the mean velocity at the center of the pipe.
Recommended publications
  • The Influence of Magnetic Fields in Planetary Dynamo Models
    Earth and Planetary Science Letters 333–334 (2012) 9–20 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl The influence of magnetic fields in planetary dynamo models Krista M. Soderlund a,n, Eric M. King b, Jonathan M. Aurnou a a Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA b Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA article info abstract Article history: The magnetic fields of planets and stars are thought to play an important role in the fluid motions Received 7 November 2011 responsible for their field generation, as magnetic energy is ultimately derived from kinetic energy. We Received in revised form investigate the influence of magnetic fields on convective dynamo models by contrasting them with 27 March 2012 non-magnetic, but otherwise identical, simulations. This survey considers models with Prandtl number Accepted 29 March 2012 Pr¼1; magnetic Prandtl numbers up to Pm¼5; Ekman numbers in the range 10À3 ZEZ10À5; and Editor: T. Spohn Rayleigh numbers from near onset to more than 1000 times critical. Two major points are addressed in this letter. First, we find that the characteristics of convection, Keywords: including convective flow structures and speeds as well as heat transfer efficiency, are not strongly core convection affected by the presence of magnetic fields in most of our models. While Lorentz forces must alter the geodynamo flow to limit the amplitude of magnetic field growth, we find that dynamo action does not necessitate a planetary dynamos dynamo models significant change to the overall flow field.
    [Show full text]
  • Rotating Fluids
    26 Rotating fluids The conductor of a carousel knows about fictitious forces. Moving from horse to horse while collecting tickets, he not only has to fight the centrifugal force trying to kick him off, but also has to deal with the dizzying sideways Coriolis force. On a typical carousel with a five meter radius and turning once every six seconds, the centrifugal force is strongest at the rim where it amounts to about 50% of gravity. Walking across the carousel at a normal speed of one meter per second, the conductor experiences a Coriolis force of about 20% of gravity. Provided the carousel turns anticlockwise seen from above, as most carousels seem to do, the Coriolis force always pulls the conductor off his course to the right. The conductor seems to prefer to move from horse to horse against the rotation, and this is quite understandable, since the Coriolis force then counteracts the centrifugal force. The whole world is a carousel, and not only in the metaphorical sense. The centrifugal force on Earth acts like a cylindrical antigravity field, reducing gravity at the equator by 0.3%. This is hardly a worry, unless you have to adjust Olympic records for geographic latitude. The Coriolis force is even less noticeable at Olympic speeds. You have to move as fast as a jet aircraft for it to amount to 0.3% of a percent of gravity. Weather systems and sea currents are so huge and move so slowly compared to Earth’s local rotation speed that the weak Coriolis force can become a major player in their dynamics.
    [Show full text]
  • Chapter 5 Frictional Boundary Layers
    Chapter 5 Frictional boundary layers 5.1 The Ekman layer problem over a solid surface In this chapter we will take up the important question of the role of friction, especially in the case when the friction is relatively small (and we will have to find an objective measure of what we mean by small). As we noted in the last chapter, the no-slip boundary condition has to be satisfied no matter how small friction is but ignoring friction lowers the spatial order of the Navier Stokes equations and makes the satisfaction of the boundary condition impossible. What is the resolution of this fundamental perplexity? At the same time, the examination of this basic fluid mechanical question allows us to investigate a physical phenomenon of great importance to both meteorology and oceanography, the frictional boundary layer in a rotating fluid, called the Ekman Layer. The historical background of this development is very interesting, partly because of the fascinating people involved. Ekman (1874-1954) was a student of the great Norwegian meteorologist, Vilhelm Bjerknes, (himself the father of Jacques Bjerknes who did so much to understand the nature of the Southern Oscillation). Vilhelm Bjerknes, who was the first to seriously attempt to formulate meteorology as a problem in fluid mechanics, was a student of his own father Christian Bjerknes, the physicist who in turn worked with Hertz who was the first to demonstrate the correctness of Maxwell’s formulation of electrodynamics. So, we are part of a joined sequence of scientists going back to the great days of classical physics.
    [Show full text]
  • Rotating Convection-Driven Dynamos at Low Ekman Number
    PHYSICAL REVIEW E 66, 056308 ͑2002͒ Rotating convection-driven dynamos at low Ekman number Jon Rotvig* and Chris A. Jones School of Mathematical Sciences, University of Exeter, Exeter EX4 4QE, England ͑Received 10 October 2001; revised manuscript received 18 July 2002; published 22 November 2002͒ We present a fully 3D self-consistent convection-driven dynamo model with reference to the geodynamo. A relatively low Ekman number regime is reached, with the aim of investigating the dynamical behavior at low viscosity. This regime is computationally very demanding, which has prompted us to adopt a plane layer model with an inclined rotation vector, and to make use of efficiently parallelized code. No hyperdiffusion is used, all diffusive operators are in the classical form. Our model has infinite Prandtl number, a Rayleigh number that scales as EϪ1/3 (E being the Ekman number͒, and a constant Roberts number. The optimized model allows us to study dynamos with Ekman numbers in the range ͓10Ϫ5,10Ϫ4͔. In this regime we find strong-field dynamos where the induced magnetic fields satisfy Taylor’s constraint to good accuracy. The solutions are characterized by ͑i͒ a MAC balance within the bulk, i.e., Coriolis, pressure, Lorentz, and buoyancy forces are of comparable magnitude, while viscous forces are only significant in thin boundary layers, ͑ii͒ the Elsasser number is O(10), ͑iii͒ the strong magnetic fields cannot prevent small-scale structures from becoming dominant over the large- scale components, ͑iv͒ the Taylor-Proudman effect is detectable, ͑v͒ the Taylorization decreases as the Ekman number is lowered, and ͑vi͒ the ageostrophic velocity component makes up 80% of the flow.
    [Show full text]
  • Dynamic Similarity, the Dimensionless Science
    Dynamic similarity, the dimensionless feature science Diogo Bolster, Robert E. Hershberger, and Russell J. Donnelly Dimensional analysis, a framework for drawing physical parallels between systems of disparate scale, affords key insights into natural phenomena too expansive and too energetic to replicate in the lab. Diogo Bolster is an assistant professor of civil engineering and geological sciences at the University of Notre Dame in Notre Dame, Indiana. Robert Hershberger is a research assistant in the department of physics at the University of Oregon in Eugene. Russell Donnelly is a professor of physics at the University of Oregon. Many experiments seem daunting at first glance, in accordance with general relativity, is deflected as it passes owing to the sheer number of physical variables they involve. through the gravitational field of the Sun. Assuming the Sun To design an apparatus that circulates fluid, for instance, one can be treated as a point of mass m and that the ray of light must know how the flow is affected by pressure, by the ap- passes the mass with a distance of closest approach r, dimen- paratus’s dimensions, and by the fluid’s density and viscosity. sional reasoning can help predict the deflection angle θ.1 Complicating matters, those parameters may be temperature Expressed in terms of mass M, length L, and time T, the and pressure dependent. Understanding the role of each variables’ dimensions—denoted with square brackets—are parameter in such a high-dimensional space can be elusive or prohibitively time consuming. Dimensional analysis, a concept historically rooted in Box 1. A brief history of dimensional analysis the field of fluid mechanics, can help to simplify such prob- Going back more than 300 years, discussions of dimensional lems by reducing the number of system parameters.
    [Show full text]
  • Scottish Fluid Mechanics Meeting Wednesday 30 Th May 2012
    25 th Scottish Fluid Mechanics Meeting Wednesday 30 th May 2012 Book of Abstracts Hosted by School of Engineering and Physical Sciences & School of the Built Environment Sponsored by Dantec Dynamics Ltd. 25 th Scottish Fluid Mechanics Meeting, Heriot-Watt University, 30 th May 2012 Programme of Event: 09:00 – 09:30 Coffee and registration* 09:30 – 09:45 Welcome (Wolf-Gerrit Früh)** 09:45 – 11:00 Session 1 (5 papers) (Chair: Wolf-Gerrit Früh)** 11:00 – 11:30 Coffee break & Posters*** 11:30 – 12:45 Session 2 (5 papers) (Chair: Stephen Wilson) 12:45 – 13:45 Lunch & Posters 13:45 – 15:00 Session 3 (5 papers) (Chair: Yakun Guo) 15:00 – 15:30 Coffee break & Posters 15:30 – 17:00 Session 4 (6 papers) (Chair: Peter Davies) 17:00 – 17:10 Closing remarks (Wolf-Gerrit Früh) 17:10 – 18:00 Drinks reception * Coffee and registration will be outside Lecture Theatre 3, Hugh Nisbet Building. ** Welcome and all sessions will be held in Lecture Theatre 3, Hugh Nisbet Building. *** All other refreshments (morning and afternoon coffee breaks, lunch and the drinks reception) and posters will be held in NS1.37 (the Nasmyth Common room and Crush Area), James Nasmyth Building. 25 th Scottish Fluid Mechanics Meeting, Heriot-Watt University, 30 th May 2012 Programme of Oral Presentations (* denotes presenting author) Session 1 (09:40 – 11:00): 09:45 – 10:00 Flow control for VATT by fixed and oscillating flap Qing Xiao, Wendi Liu* & Atilla Incecik, University of Strathclyde 10:00 – 10:15 Shear stress on the surface of a mono-filament woven fabric Yuan Li* & Jonathan
    [Show full text]
  • Lecture 3/4: Dynamics of the Earth's Core
    Lecture 3/4: Dynamics of the Earth’s core Celine´ Guervilly School of Mathematics, Statistics and Physics, Newcastle University, UK Navier-Stokes equation @u 1 + u · ru + 2Ω × u = - rP + νr2u + F @t ρ r · u = 0 F is a forcing term (e.g. buoyancy force, Lorentz force). Ω = Ωez with Ω the rotation rate. ρ is the density, ν the viscosity. Like in the oceans and atmosphere, the rotation is very important for the dynamics of the Earth’s core. Golf Stream in the Atlantic Ocean (NASA) Taking the curl, @r2u = -2Ω · r! @t Differentiating wrt time, @2r2u @! = -2Ω · r @t2 @t we obtain the inertial wave equation @2r2u = -4(Ω · r)2u @t2 We seek solutions in the modal form u = Refuˆ ei(k·x-!t)g, where uˆ is the (complex) amplitude, k is the (real) wavevector and ! is the (possibly complex) frequency. Inertial waves We linearise the invisid NS equation about a background state of uniform rotation, i.e. ub = 0. The equation for the vorticity, ! = r × u, is @! = 2Ω · ru @t Differentiating wrt time, @2r2u @! = -2Ω · r @t2 @t we obtain the inertial wave equation @2r2u = -4(Ω · r)2u @t2 We seek solutions in the modal form u = Refuˆ ei(k·x-!t)g, where uˆ is the (complex) amplitude, k is the (real) wavevector and ! is the (possibly complex) frequency. Inertial waves We linearise the invisid NS equation about a background state of uniform rotation, i.e. ub = 0. The equation for the vorticity, ! = r × u, is @! = 2Ω · ru @t Taking the curl, @r2u = -2Ω · r! @t we obtain the inertial wave equation @2r2u = -4(Ω · r)2u @t2 We seek solutions in the modal form u = Refuˆ ei(k·x-!t)g, where uˆ is the (complex) amplitude, k is the (real) wavevector and ! is the (possibly complex) frequency.
    [Show full text]
  • Presentation
    Scaling laws for dynamos in rotating spherical shells and applications to planetary magnetic fields Ulrich Christensen Max-Planck-Institute for Solar System Research, Katlenburg-Lindau, Germany In collaboration with Julien Aubert, Carsten Kutzner, Peter Olson, Andreas Tilgner, Johannes Wicht Outline of geodynamo models Solve equations of thermal / compositional con- vection and magnetic induction in a rotating and electrically conducting spherical shell • Fundamental MHD equations • Some parameters not Earth-like Fluid outer core • Differences between models: - parameter values Solid inner core - boundary conditions - mode of driving convection Tangent cylinder Successes of geodynamo modeling Earth’s radial magnetic field at CMB Dipole tilt | 1 million years | Dynamo model field at full resolution and filtered to ℓ < 13 Tilt of dipole axis vs. time in dynamo model Control parameters Name Force Earth Model balance value values Rayleigh Buoyancy 5000 x < 50 x Ra* number Retarding forces critical critical Ekman Viscosity E 10-14 ≥ 3x10-6 number Coriolis force Prandtl Viscosity Pr 0.1 - 1 0.1 - 10 number Thermal diffusion Magnetic Viscosity Pm 10-6 0.06 - 10 Prandtl # Magnetic diffusion Models all wrong ? • Geodynamo models successfully reproduced the properties of the geomagnetic field • This is surprising, because several control parameters are far from Earth values (viscosity and thermal diffusivity too large) • Pessimistic view: Models give right answer for wrong reasons • Optimistic assumption: Models are already in regime where diffusion
    [Show full text]
  • On Dimensionless Numbers
    chemical engineering research and design 8 6 (2008) 835–868 Contents lists available at ScienceDirect Chemical Engineering Research and Design journal homepage: www.elsevier.com/locate/cherd Review On dimensionless numbers M.C. Ruzicka ∗ Department of Multiphase Reactors, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojova 135, 16502 Prague, Czech Republic This contribution is dedicated to Kamil Admiral´ Wichterle, a professor of chemical engineering, who admitted to feel a bit lost in the jungle of the dimensionless numbers, in our seminar at “Za Plıhalovic´ ohradou” abstract The goal is to provide a little review on dimensionless numbers, commonly encountered in chemical engineering. Both their sources are considered: dimensional analysis and scaling of governing equations with boundary con- ditions. The numbers produced by scaling of equation are presented for transport of momentum, heat and mass. Momentum transport is considered in both single-phase and multi-phase flows. The numbers obtained are assigned the physical meaning, and their mutual relations are highlighted. Certain drawbacks of building correlations based on dimensionless numbers are pointed out. © 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. Keywords: Dimensionless numbers; Dimensional analysis; Scaling of equations; Scaling of boundary conditions; Single-phase flow; Multi-phase flow; Correlations Contents 1. Introduction .................................................................................................................
    [Show full text]
  • Bibliography
    Bibliography L. Prandtl: Selected Bibliography A. Sommerfeld. Zu L. Prandtls 60. Geburtstag am 4. Februar 1935. ZAMM, 15, 1–2, 1935. W. Tollmien. Zu L. Prandtls 70. Geburtstag. ZAMM, 24, 185–188, 1944. W. Tollmien. Seventy-Fifth Anniversary of Ludwig Prandtl. J. Aeronautical Sci., 17, 121–122, 1950. I. Fl¨ugge-Lotz, W. Fl¨ugge. Ludwig Prandtl in the Nineteen-Thirties. Ann. Rev. Fluid Mech., 5, 1–8, 1973. I. Fl¨ugge-Lotz, W. Fl¨ugge. Ged¨achtnisveranstaltung f¨ur Ludwig Prandtl aus Anlass seines 100. Geburtstags. Braunschweig, 1975. H. G¨ortler. Ludwig Prandtl - Pers¨onlichkeit und Wirken. ZFW, 23, 5, 153–162, 1975. H. Schlichting. Ludwig Prandtl und die Aerodynamische Versuchsanstalt (AVA). ZFW, 23, 5, 162–167, 1975. K. Oswatitsch, K. Wieghardt. Ludwig Prandtl and his Kaiser-Wilhelm-Institut. Ann. Rev. Fluid Mech., 19, 1–25, 1987. J. Vogel-Prandtl. Ludwig Prandtl: Ein Lebensbild, Erinnerungen, Dokumente. Uni- versit¨atsverlag G¨ottingen, 2005. L. Prandtl. Uber¨ Fl¨ussigkeitsbewegung bei sehr kleiner Reibung. Verhandlg. III. Intern. Math. Kongr. Heidelberg, 574–584. Teubner, Leipzig, 1905. Neue Untersuchungen ¨uber die str¨omende Bewegung der Gase und D¨ampfe. Physikalische Zeitschrift, 8, 23, 1907. Der Luftwiderstand von Kugeln. Nachrichten von der Gesellschaft der Wis- senschaften zu G¨ottingen, Mathematisch-Physikalische Klasse, 177–190, 1914. Tragfl¨ugeltheorie. Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen, Mathematisch-Physikalische Klasse, 451–477, 1918. Experimentelle Pr¨ufung der Umrechnungsformeln. Ergebnisse der AVA zu G¨ottingen, 1, 50–53, 1921. Ergebnisse der Aerodynamischen Versuchsanstalt zu G¨ottingen. R. Oldenbourg, M¨unchen, Berlin, 1923. The Generation of Vortices in Fluids of Small Viscosity.
    [Show full text]
  • The Dimnum Package
    The dimnum package Miguel R. Clemente [email protected] v1.0.1 from 2021/04/05 Note: Prandtl number is redefined from the amsmath package. 1 Introduction This package simplifies the calling of Dimensionless Numbers in math or text mode. In Table 1 you can find all available Dimensionless Numbers. 2 Usage A Dimensionless number is composed of four items: the command, the symbol, the name, its identifier. You can call a Dimensionless Number in three distinct ways: by its symbol { using the command (i.e. \Ar { Ar). by its name (short version) { appending [s] to the command (i.e. \Bi[s] { Biot). by its name and identifier (long version) { appending [l] to the command (i.e. \Kn[l] { Knudsen number). Symbol, short and long versions, all work in math or text mode without the need of further commands. 1 Besides the comprehensive list of included Dimensionless Numbers, this pack- age also introduces a command to create new Dimensionless Numbers. Creating a Dimensionless Number is achieved by using \newdimnum{\command}{symbol}{name}{identifier} for example, to add the Morton number we write \newdimnum{\Mo}{Mo}{Morton}{number} The identifier can be left empty, such as in the case of Drag Coefficient \newdimnum{Cd}{\ensuremath{C_d}}{Drag Coefficient}{} in this example we also introduce an important command. When the Dimension- less Number symbol is always expressed in math mode { either by definition or the use of subscripts or superscripts { we add \ensuremath{} to encompass the symbol, ensuring a proper representation of the Dimensionless Number. You can add your own Dimensionless Numbers to your projects.
    [Show full text]
  • 2.011 Motion of the Upper Ocean
    2.011 Motion of the Upper Ocean Prof. A. Techet April 20, 2006 Equations of Motion • Impart an impulsive force on the surface of the fluid to set it in motion (no other forces act on the fluid, except Coriolis). • Then, for a parcel of water moving with zero friction: Simplify the equations: • Assuming only Coriolis force is acting on the fluid then there will be no horizontal pressure gradients: • Assuming then the flow is only horizontal (w=0): • Coriolis Parameter: Solve these equations • Combine to solve for u: • Standard Diff. Eq. • Inertial Current Solution: (Inertial Oscillations) Inertial Current • Note this solution are equations for a circle Drifter buoys in the N. Atlantic • Circle Diameter: • Inertial Period: • Anti-cyclonic (clockwise) in N. Hemisphere; cyclonic (counterclockwise) in S. Hemi • Most common currents in the ocean! Courtesy of Prof. Robert Stewart. Used with permission. Source: Introduction to Physical Oceanography, http://oceanworld.tamu.edu/home/course_book.htm Ekman Layer • Steady winds on the surface generate a thin, horizontal boundary layer (i.e. Ekman Layer) • Thin = O (100 meters) thick • First noticed by Nansen that wind tended to blow ice at 20-40° angles to the right of the wind in the Arctic. Courtesy of Prof. Robert Stewart. Used with permission. Source: Introduction to Physical Oceanography, http://oceanworld.tamu.edu/home/course_book.htm Ekman’s Solution • Steady, homogeneous, horizontal flow with friction on a rotating earth • All horizontal and temporal derivatives are zero • Wind Stress in horizontal
    [Show full text]