Magnetic Resonance Neurography for Evaluation of Peripheral Nerves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neurophysiologic Testing and Monitoring
UnitedHealthcare® Commercial Medical Policy Neurophysiologic Testing and Monitoring Policy Number: 2021T0493Z Effective Date: January 1, 2021 Instructions for Use Table of Contents Page Community Plan Policy Coverage Rationale ........................................................................... 1 • Neurophysiologic Testing and Monitoring Applicable Codes .............................................................................. 2 Description of Services ..................................................................... 4 Medicare Advantage Coverage Summary Clinical Evidence ............................................................................... 6 • Neurophysiological Studies U.S. Food and Drug Administration ..............................................16 References .......................................................................................18 Policy History/Revision Information..............................................21 Instructions for Use .........................................................................22 Coverage Rationale Nerve Conduction Studies The following are proven and medically necessary: • Nerve conduction studies with or without late responses (e.g., F-wave and H-reflex tests) and neuromuscular junction testing when performed in conjunction with needle electromyography for any of the following known or suspected disorders: o Peripheral neuropathy/polyneuropathy (e.g., inherited, metabolic, traumatic, entrapment syndromes) o Plexopathy o Neuromuscular junction disorders (e.g., -
ANMC Specialty Clinic Services
Cardiology Dermatology Diabetes Endocrinology Ear, Nose and Throat (ENT) Gastroenterology General Medicine General Surgery HIV/Early Intervention Services Infectious Disease Liver Clinic Neurology Neurosurgery/Comprehensive Pain Management Oncology Ophthalmology Orthopedics Orthopedics – Back and Spine Podiatry Pulmonology Rheumatology Urology Cardiology • Cardiology • Adult transthoracic echocardiography • Ambulatory electrocardiology monitor interpretation • Cardioversion, electrical, elective • Central line placement and venous angiography • ECG interpretation, including signal average ECG • Infusion and management of Gp IIb/IIIa agents and thrombolytic agents and antithrombotic agents • Insertion and management of central venous catheters, pulmonary artery catheters, and arterial lines • Insertion and management of automatic implantable cardiac defibrillators • Insertion of permanent pacemaker, including single/dual chamber and biventricular • Interpretation of results of noninvasive testing relevant to arrhythmia diagnoses and treatment • Hemodynamic monitoring with balloon flotation devices • Non-invasive hemodynamic monitoring • Perform history and physical exam • Pericardiocentesis • Placement of temporary transvenous pacemaker • Pacemaker programming/reprogramming and interrogation • Stress echocardiography (exercise and pharmacologic stress) • Tilt table testing • Transcutaneous external pacemaker placement • Transthoracic 2D echocardiography, Doppler, and color flow Dermatology • Chemical face peels • Cryosurgery • Diagnosis -
Cubital Tunnel Syndrome)
DISEASES & CONDITIONS Ulnar Nerve Entrapment at the Elbow (Cubital Tunnel Syndrome) Ulnar nerve entrapment occurs when the ulnar nerve in the arm becomes compressed or irritated. The ulnar nerve is one of the three main nerves in your arm. It travels from your neck down into your hand, and can be constricted in several places along the way, such as beneath the collarbone or at the wrist. The most common place for compression of the nerve is behind the inside part of the elbow. Ulnar nerve compression at the elbow is called "cubital tunnel syndrome." Numbness and tingling in the hand and fingers are common symptoms of cubital tunnel syndrome. In most cases, symptoms can be managed with conservative treatments like changes in activities and bracing. If conservative methods do not improve your symptoms, or if the nerve compression is causing muscle weakness or damage in your hand, your doctor may recommend surgery. This illustration of the bones in the shoulder, arm, and hand shows the path of the ulnar nerve. Reproduced from Mundanthanam GJ, Anderson RB, Day C: Ulnar nerve palsy. Orthopaedic Knowledge Online 2009. Accessed August 2011. Anatomy At the elbow, the ulnar nerve travels through a tunnel of tissue (the cubital tunnel) that runs under a bump of bone at the inside of your elbow. This bony bump is called the medial epicondyle. The spot where the nerve runs under the medial epicondyle is commonly referred to as the "funny bone." At the funny bone the nerve is close to your skin, and bumping it causes a shock-like feeling. -
What Is the Autonomic Nervous System?
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_3.iii31 on 21 August 2003. Downloaded from AUTONOMIC DISEASES: CLINICAL FEATURES AND LABORATORY EVALUATION *iii31 Christopher J Mathias J Neurol Neurosurg Psychiatry 2003;74(Suppl III):iii31–iii41 he autonomic nervous system has a craniosacral parasympathetic and a thoracolumbar sym- pathetic pathway (fig 1) and supplies every organ in the body. It influences localised organ Tfunction and also integrated processes that control vital functions such as arterial blood pres- sure and body temperature. There are specific neurotransmitters in each system that influence ganglionic and post-ganglionic function (fig 2). The symptoms and signs of autonomic disease cover a wide spectrum (table 1) that vary depending upon the aetiology (tables 2 and 3). In some they are localised (table 4). Autonomic dis- ease can result in underactivity or overactivity. Sympathetic adrenergic failure causes orthostatic (postural) hypotension and in the male ejaculatory failure, while sympathetic cholinergic failure results in anhidrosis; parasympathetic failure causes dilated pupils, a fixed heart rate, a sluggish urinary bladder, an atonic large bowel and, in the male, erectile failure. With autonomic hyperac- tivity, the reverse occurs. In some disorders, particularly in neurally mediated syncope, there may be a combination of effects, with bradycardia caused by parasympathetic activity and hypotension resulting from withdrawal of sympathetic activity. The history is of particular importance in the consideration and recognition of autonomic disease, and in separating dysfunction that may result from non-autonomic disorders. CLINICAL FEATURES c copyright. General aspects Autonomic disease may present at any age group; at birth in familial dysautonomia (Riley-Day syndrome), in teenage years in vasovagal syncope, and between the ages of 30–50 years in familial amyloid polyneuropathy (FAP). -
New Insights in Lumbosacral Plexopathy
New Insights in Lumbosacral Plexopathy Kerry H. Levin, MD Gérard Said, MD, FRCP P. James B. Dyck, MD Suraj A. Muley, MD Kurt A. Jaeckle, MD 2006 COURSE C AANEM 53rd Annual Meeting Washington, DC Copyright © October 2006 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 PRINTED BY JOHNSON PRINTING COMPANY, INC. C-ii New Insights in Lumbosacral Plexopathy Faculty Kerry H. Levin, MD P. James. B. Dyck, MD Vice-Chairman Associate Professor Department of Neurology Department of Neurology Head Mayo Clinic Section of Neuromuscular Disease/Electromyography Rochester, Minnesota Cleveland Clinic Dr. Dyck received his medical degree from the University of Minnesota Cleveland, Ohio School of Medicine, performed an internship at Virginia Mason Hospital Dr. Levin received his bachelor of arts degree and his medical degree from in Seattle, Washington, and a residency at Barnes Hospital and Washington Johns Hopkins University in Baltimore, Maryland. He then performed University in Saint Louis, Missouri. He then performed fellowships at a residency in internal medicine at the University of Chicago Hospitals, the Mayo Clinic in peripheral nerve and electromyography. He is cur- where he later became the chief resident in neurology. He is currently Vice- rently Associate Professor of Neurology at the Mayo Clinic. Dr. Dyck is chairman of the Department of Neurology and Head of the Section of a member of several professional societies, including the AANEM, the Neuromuscular Disease/Electromyography at Cleveland Clinic. Dr. Levin American Academy of Neurology, the Peripheral Nerve Society, and the is also a professor of medicine at the Cleveland Clinic College of Medicine American Neurological Association. -
A Clinical Study on the Utility of Nerve Biopsy in Peripheral Neuropathy
A CLINICAL STUDY ON THE UTILITY OF NERVE BIOPSY IN PERIPHERAL NEUROPATHY Thesis submitted for the partial fulfilment for the requirement of the degree of DM Neurology DR. JITESH GOEL DM NEUROLOGY RESIDENT 2014–2016 DEPARTMENT OF NEUROLOGY SREE CHITRA TIRUNAL INSTITUTE FOR MEDICAL SCIENCES AND TECHNOLOGY, TRIVANDRUM, KERALA 695011 i DECLARATION I, Dr Jitesh hereby declare that the thesis “A CLINICAL STUDY ON THE UTILITY OF NERVE BIOPSY IN PERIPHERAL NEUROPATHY” was undertaken by me under the guidance and supervision of Dr MD Nair, Senior Professor and Head of Department, Department of Neurology at the Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram. Dr.Jitesh Goel Thiruvananthapuram Senior Resident Date: Dept. of Neurology SCTIMST Thiruvananthapuram ii CERTIFICATE This is to certify that the thesis titled “A CLINICAL STUDY ON THE UTILITY OF NERVE BIOPSY IN PERIPHERAL NEUROPATHY”, is the bonafide work of Dr Jitesh Goel, Senior Resident, DM Neurology and has been done under my direct guidance and supervision at the Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram. He has shown keen interest in the research project and actively participated in all its phases. Thiruvananthapuram Dr MD Nair (Guide) Date: Senior Professor and Head of Department Department of Neurology, SCTIMST. Thiruvananthapuram iii CONTENTS Sl. No. Title Page No. 1 Introduction 1 2 Review of Literature 3 3 Aim of The Study 32 4 Materials And Methods 32 5 Results 34 6 Discussion 62 7 Conclusion 72 8 References 75 9 Annexures 84 IEC Approval Proforma iv INTRODUCTION Peripheral neuropathy is among the common disorders in patients attending neuromuscular clinic. -
Peripheral Nerve Endoscopy: a Cadaveric Study
THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: MOBBS First name: RALPH Other name/s: JASPER Abbreviation for degree: MASTER OF SURGERY School: ANATOMY Faculty: SURGERY Title: Peripheral Nerve Endoscopy: a cadaveric study. Peripheral nerve problems are common and encompass a wide ~pectrum of diseases, traumatic injuries and mass lesions. There have been few major technical advances in peripheral nerve surgery over the last three decades with exception of endoscopic carpal tunnel release, intraoperative nerve action potential recording and nerve grafting. Certain nerves in the upper and lower extremities are vulnerable to entrapment at specific anatomic locations by virtue of th ere being superficial, fixed in position, or coursing across a joint. Peripheral nerve surgeons often encounter patients who suffer fr :>m these entrapment syndromes, the most common being carpal tunnel syndrome, for which endoscopic techniques have been d;scussed in the Iiterature since the early 1980' s. Otherwise there have been few reports in the literature that discuss the utility of endoscopic surgery for the treatment of peripheral nerve problems. Endoscopy has however been alluded to as a possible future less invasive technique for the exploration and treatment of nerve pathologies. The aim of this cadaveric study is to illustrate that using standard equipment available in most hospitals, and using principles of subcutaneous fascial dissection and expansion, that a select range of peripheral nerve problems can be dealt with using endoscopy. A study using both embalmed cadaveric specimens and fresh cadavers v.as used to evaluate potential endoscopic techniques. A set of rules was developed to decide if a nerve exposure was possible. -
Csph0114 V1 Nov19 Ulnar Nerve A4.Pmd
What is an Ulnar Nerve Entrapment? Ulnar nerve entrapment occurs when the ulnar nerve in the arm becomes compressed or irritated. The ulnar nerve is one of the three main nerves in your arm. It travels from your neck down into your hand and can be constricted in several places along the way, such as underneath the collarbone or at the wrist. The most common place for compression of the nerve is the inside of the elbow. Ulnar nerve compression at the elbow is called “cubital tunnel syndrome.” In many cases of cubital tunnel syndrome, the exact cause is not known. The ulnar nerve is especially vulnerable to compression at the elbow because it must travel through a narrow space with very little soft tissue to protect it. Diagram with the permission of American Academy of Orthopaedic Surgeons (AAOS) What are the symptoms? • Aching pain on the inside of the elbow. Most of the symptoms, however, occur in your hand. • Numbness and tingling in the ring finger and little finger are common. Often, these symptoms come and go. They happen more often when the elbow is bent, such as when driving or holding the phone. Some people wake up at night because their fingers are numb. • Weakening of the grip and difficulty with finger coordination (such as typing or playing an instrument) may occur. • In later stages, the numbness is constant and the hand becomes weaker. There may be a visible loss of muscle bulk in severe cases, particularly noticeable on the back of the hand between the thumb and first finger, with loss of strength and dexterity Who gets it? People that have: • Prior fracture or dislocations of the elbow • Bone spurs/ arthritis of the elbow • Swelling of the elbow joint • Cysts near the elbow joint • An occupation or activities that require the elbow to be bent or flexed Leaflet No: csph0114 v1 Review Date 11/19 Page 1 of 2 Things that can help relieve the symptoms Rest and activity modification - Overuse of the affected hand and elbow can often result in an increase in your symptoms. -
Use of Magnetic Resonance Neurography for Evaluating The
Original Article | Neuroimaging and Head & Neck eISSN 2005-8330 https://doi.org/10.3348/kjr.2019.0739 Korean J Radiol 2020;21(4):483-493 Use of Magnetic Resonance Neurography for Evaluating the Distribution and Patterns of Chronic Inflammatory Demyelinating Polyneuropathy Xiaoyun Su, PhD1, 2, Xiangquan Kong, PhD1, 2, Zuneng Lu, PhD3, Min Zhou, PhD1, 2, Jing Wang, PhD1, 2, Xiaoming Liu, MD1, 2, Xiangchuang Kong, MD1, 2, Huiting Zhang, PhD4, Chuansheng Zheng, PhD1, 2 1Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; 2Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China; 3Department of Neurology, Renming Hospital of Wuhan University, Wuhan, China; 4MR Scientific Marketing, Siemens Healthineers, Shanghai, China Objective: To evaluate the distribution and characteristics of peripheral nerve abnormalities in chronic inflammatory demyelinating polyneuropathy (CIDP) using magnetic resonance neurography (MRN) and to examine the diagnostic efficiency. Materials and Methods: Thirty-one CIDP patients and 21 controls underwent MR scans. Three-dimensional sampling perfections with application-optimized contrasts using different flip-angle evolutions and T1-/T2- weighted turbo spin- echo sequences were performed for neurography of the brachial and lumbosacral (LS) plexus and cauda equina, respectively. Clinical data and scores of the inflammatory Rasch-built overall disability scale (I-RODS) in CIDP were obtained. Results: The bilateral extracranial vagus (n = 11), trigeminal (n = 12), and intercostal nerves (n = 10) were hypertrophic. Plexus hypertrophies were observed in the brachial plexus of 19 patients (61.3%) and in the LS plexus of 25 patients (80.6%). Patterns of hypertrophy included uniform hypertrophy (17 [54.8%] brachial plexuses and 21 [67.7%] LS plexuses), and multifocal fusiform hypertrophy (2 [6.5%] brachial plexuses and 4 [12.9%] LS plexuses) was present. -
Neurolymphomatosis Presenting As Brachial Plexopathy with Involvement of Cranial Nerves
CASE REPORT Ann Clin Neurophysiol 2018;20(1):44-48 https://doi.org/10.14253/acn.2018.20.1.44 ANNALS OF CLINICAL NEUROPHYSIOLOGY Neurolymphomatosis presenting as brachial plexopathy with involvement of cranial nerves Hye Jung Lee1, Keun Soo Kim1, Pamela Song1, Jae-Jung Lee1, Jung-Joon Sung2, Kyomin Choi3, Bohyun Kim4, and Joong-Yang Cho1 1Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea 2Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea 3Department of Neurology, Konkuk University Medical Center, Seoul, Korea 4Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Received: June 23, 2017 Seoul, Korea Revised: September 5, 2017 Accepted: September 25, 2017 Neurolymphomatosis (NL) is a rare disease characterized by lymphomatous invasion of the cranial or peripheral nerves by lymphoma. A high suspicion is important due to the various presenting symptoms mandating consideration of many differential diagnoses. We report a case of NL of the cranial nerves and plexus presenting as diplopia, facial palsy, and weakness of the upper and lower limbs in sequence. Key words: Neurolymphomatosis; Cranial nerves; Plexus Correspondence to Joong-Yang Cho Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, 170 Juhwa-ro, Ilsanseo-gu, Neurolymphomatosis (NL) is defined as the infiltration of the peripheral nervous system Goyang 10380, Korea including cranial -
Form 8-K AXOGEN, INC
UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 Form 8-K Current Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of Report (Date of earliest event reported): February 22, 2021 AXOGEN, INC. (Exact Name of Registrant as Specified in Charter) Minnesota 001-36046 41-1301878 (State or Other Jurisdiction of (Commission File Number) (I.R.S. Employer Identification No.) Incorporation or Organization) 13631 Progress Boulevard, Suite 400 Alachua, Florida 32615 (Address of principal executive offices) (Zip Code) (386) 462-6800 (Registrant's telephone number, including area code) N/A (Former Name or Former Address, if Changed Since Last Report) Check the appropriate box if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions (see General Instruction A.2. below): Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425) Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12) Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b)) Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e- 4(c)) Securities registered pursuant to Section 12(b) of the Act: Title of each class Trading Symbol(s) Name of exchange on which registered Common Stock, $0.01 par value AXGN The Nasdaq Stock Market Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§240.12b-2 of this chapter). -
Peripheral Nerve Entrapments—Rare Causes of a Common Condition: Case Series
Article / Clinical Case Report Peripheral nerve entrapments—rare causes of a common condition: case series Laura Mendes de Barrosa , Adilson Jose Manuel de Oliveirab,c , Alan de Souza Santosa , Flávio Leão Limaa , Rodolfo Silva Valented How to cite: Barros LM, de Oliveira AJM, Santos AS, Lima FL, Valente RS. Peripheral nerve entrapments—rare causes of a common condition: case series. Autops Case Rep [Internet]. 2020 Apr-Jun;10(2):e2020153. https://doi.org/ 10.4322/acr.2020.153 ABSTRACT Compressive syndromes of peripheral nerves both in the upper and lower limbs are part of daily clinical practice; however, the etiological diagnosis can be challenging and impact on the outcome of the patient. We report five cases with rare etiologies of nerve entrapments: one in the lower limb and four in the upper limbs with the final diagnosis made only during the operation. The patients evolved without post-operative complications and had good outcomes. This series includes the first report of sciatic compression by a lipoma in the popliteal fossa, two lipomas one with compression of infraclavicular brachial plexus and another with compressing the posterior interosseous nerve, and two reports of vascular lesions due to blunt traumas, which are also uncommon. This series adds to the literature more hypotheses of differential diagnoses in nerve entrapments, which is fundamental to surgical decisions and pre-operative planning—and perhaps most importantly prevents wrong diagnosis of idiopathic compressions, which would lead to a completely wrong approach and unfavorable outcomes. Keywords Sciatic Neuropathy; Nerve Compression Syndromes, Ulnar Nerve; Radial Nerve; Aneurysm; Lipoma. INTRODUCTION Nerve entrapment syndrome describes the identification of a secondary lesion the approach is mechanical irritation by which a specific peripheral directed towards elimination of the causal agent.1 nerve becomes locally injured in a vulnerable anatomic The usual progression of symptoms is initially only site, and it may be idiopathic or secondary.