Autoimmune Neutropenia Associated With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neutropenia Fact Sheet
Neutropenia in Barth Syndrome i ii (Chronic, Cyclic or Intermittent) What problems can Neutropenia cause? Neutrophils are the main white blood cell for fighting or preventing bacterial or fungal infections. They may be referred to as polymorphonuclear cells (polys or PMNs), white cells with segmented nuclei (segs), or neutrophils in the complete blood cell count (CBC) report. Immature neutrophils are referred to as bands. When someone is neutropenic (an abnormally low level of neutrophils in the blood), the risk of infection increases. The absolute neutrophil count (ANC) is a measure of the total number of neutrophils present in the blood. When the ANC is less than 1,000, the risk of infection increases. Most infections occur in the ears, skin or throat and to a lesser extent, the chest. These infections can be very serious and may require antibiotics to clear infections. When someone with Barth syndrome is neutropenic his defenses are weakened, he is likely to become seriously ill more quickly than someone with a normal neutrophil count. Tips: • No rectal temperatures as any break in the skin can lead to an infection. • If the individual has a temperature > 100.4° F (38° C) or has infectious symptoms, the primary physician or hematologist should be notified. The individual may need to be seen. • If the individual has a temperature of 100.4° F (38° C) – 100.5° F (38.05° C)> 8 hours or a temperature > 101.5° F (38.61° C), an immediate examination by the physician is warranted. Some or all of the following studies may be ordered: CBC with differential and ANC Urinalysis Blood, urine, and other appropriate cultures C-Reactive Protein Echocardiogram if warranted • The physician may suggest antibiotics (and G-CSF if the ANC is low) for common infections such as otitis media, stomatitis. -
THE PATHOLOGY of BONE MARROW FAILURE Roos Leguit, Jan G Van Den Tweel
THE PATHOLOGY OF BONE MARROW FAILURE Roos Leguit, Jan G van den Tweel To cite this version: Roos Leguit, Jan G van den Tweel. THE PATHOLOGY OF BONE MARROW FAILURE. Histopathology, Wiley, 2010, 57 (5), pp.655. 10.1111/j.1365-2559.2010.03612.x. hal-00599534 HAL Id: hal-00599534 https://hal.archives-ouvertes.fr/hal-00599534 Submitted on 10 Jun 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Histopathology THE PATHOLOGY OF BONE MARROW FAILURE ForJournal: Histopathology Peer Review Manuscript ID: HISTOP-02-10-0090 Manuscript Type: Review Date Submitted by the 08-Feb-2010 Author: Complete List of Authors: Leguit, Roos; UMC utrecht, Pathology van den Tweel, Jan; UMC Utrecht, Pathology bone marrow, histopathology, myelodysplastic syndromes, Keywords: inherited bone marrow failure syndromes, trephine biopsy Published on behalf of the British Division of the International Academy of Pathology Page 1 of 40 Histopathology THE PATHOLOGY OF BONE MARROW FAILURE Roos J Leguit & Jan G van den Tweel University Medical Centre Utrecht Department of Pathology H4.312 Heidelberglaan 100 For Peer Review 3584 CX Utrecht The Netherlands Running title: Pathology of bone marrow failure Keywords: bone marrow, histopathology, myelodysplastic syndromes, inherited bone marrow failure syndromes, trephine biopsy. -
Pediatric Oral Pathology. Soft Tissue and Periodontal Conditions
PEDIATRIC ORAL HEALTH 0031-3955100 $15.00 + .OO PEDIATRIC ORAL PATHOLOGY Soft Tissue and Periodontal Conditions Jayne E. Delaney, DDS, MSD, and Martha Ann Keels, DDS, PhD Parents often are concerned with “lumps and bumps” that appear in the mouths of children. Pediatricians should be able to distinguish the normal clinical appearance of the intraoral tissues in children from gingivitis, periodontal abnormalities, and oral lesions. Recognizing early primary tooth mobility or early primary tooth loss is critical because these dental findings may be indicative of a severe underlying medical illness. Diagnostic criteria and .treatment recommendations are reviewed for many commonly encountered oral conditions. INTRAORAL SOFT-TISSUE ABNORMALITIES Congenital Lesions Ankyloglossia Ankyloglossia, or “tongue-tied,” is a common congenital condition characterized by an abnormally short lingual frenum and the inability to extend the tongue. The frenum may lengthen with growth to produce normal function. If the extent of the ankyloglossia is severe, speech may be affected, mandating speech therapy or surgical correction. If a child is able to extend his or her tongue sufficiently far to moisten the lower lip, then a frenectomy usually is not indicated (Fig. 1). From Private Practice, Waldorf, Maryland (JED); and Department of Pediatrics, Division of Pediatric Dentistry, Duke Children’s Hospital, Duke University Medical Center, Durham, North Carolina (MAK) ~~ ~ ~ ~ ~ ~ ~ PEDIATRIC CLINICS OF NORTH AMERICA VOLUME 47 * NUMBER 5 OCTOBER 2000 1125 1126 DELANEY & KEELS Figure 1. A, Short lingual frenum in a 4-year-old child. B, Child demonstrating the ability to lick his lower lip. Developmental Lesions Geographic Tongue Benign migratory glossitis, or geographic tongue, is a common finding during routine clinical examination of children. -
My Beloved Neutrophil Dr Boxer 2014 Neutropenia Family Conference
The Beloved Neutrophil: Its Function in Health and Disease Stem Cell Multipotent Progenitor Myeloid Lymphoid CMP IL-3, SCF, GM-CSF CLP Committed Progenitor MEP GMP GM-CSF, IL-3, SCF EPO TPO G-CSF M-CSF IL-5 IL-3 SCF RBC Platelet Neutrophil Monocyte/ Basophil B-cells Macrophage Eosinophil T-Cells Mast cell NK cells Mature Cell Dendritic cells PRODUCTION AND KINETICS OF NEUTROPHILS CELLS % CELLS TIME Bone Marrow: Myeloblast 1 7 - 9 Mitotic Promyelocyte 4 Days Myelocyte 16 Maturation/ Metamyelocyte 22 3 – 7 Storage Band 30 Days Seg 21 Vascular: Peripheral Blood Seg 2 6 – 12 hours 3 Marginating Pool Apoptosis and ? Tissue clearance by 0 – 3 macrophages days PHAGOCYTOSIS 1. Mobilization 2. Chemotaxis 3. Recognition (Opsonization) 4. Ingestion 5. Degranulation 6. Peroxidation 7. Killing and Digestion 8. Net formation Adhesion: β 2 Integrins ▪ Heterodimer of a and b chain ▪ Tight adhesion, migration, ingestion, co- stimulation of other PMN responses LFA-1 Mac-1 (CR3) p150,95 a2b2 a CD11a CD11b CD11c CD11d b CD18 CD18 CD18 CD18 Cells All PMN, Dendritic Mac, mono, leukocytes mono/mac, PMN, T cell LGL Ligands ICAMs ICAM-1 C3bi, ICAM-3, C3bi other other Fibrinogen other GRANULOCYTE CHEMOATTRACTANTS Chemoattractants Source Activators Lipids PAF Neutrophils C5a, LPS, FMLP Endothelium LTB4 Neutrophils FMLP, C5a, LPS Chemokines (a) IL-8 Monocytes, endothelium LPS, IL-1, TNF, IL-3 other cells Gro a, b, g Monocytes, endothelium IL-1, TNF other cells NAP-2 Activated platelets Platelet activation Others FMLP Bacteria C5a Activation of complement Other Important Receptors on PMNs ñ Pattern recognition receptors – Detect microbes - Toll receptor family - Mannose receptor - bGlucan receptor – fungal cell walls ñ Cytokine receptors – enhance PMN function - G-CSF, GM-CSF - TNF Receptor ñ Opsonin receptors – trigger phagocytosis - FcgRI, II, III - Complement receptors – ñ Mac1/CR3 (CD11b/CD18) – C3bi ñ CR-1 – C3b, C4b, C3bi, C1q, Mannose binding protein From JG Hirsch, J Exp Med 116:827, 1962, with permission. -
Dreaming in Patients with Temporal Lobe Epilepsy: a Focus on Bad Dreams and Nightmares Carmen Anderson Department of Psychology
1 Dreaming in Patients with Temporal Lobe Epilepsy: A Focus on Bad Dreams and Nightmares Carmen Anderson Department of Psychology University of Cape Town 29th October 2012 Supervisor: Prof. Mark Solms Co-supervisor: Warren King Word count: 7055 Abstract: 164 Main body: 6891 2 Abstract Nightmares and bad dreams occur more frequently in patients with temporal lobe epilepsy (TLE) than in normal individuals. This quantitative pilot study explored the relationship between seizure activity and dreaming in patients with TLE, compared to the dreams, bad dreams and nightmares of a control population. Groups were categorized by epilepsy variables (TLE and non-TLE) and gender. Patients with temporal lobe epilepsy completed self-report questionnaires concerning their epilepsy and dreaming, and this data was compared to dreaming data from the control group using ANCOVAs. The results showed that females have significantly higher scores than males on several variables, including dreams per week, bad dream distress and nightmare distress. However, no significant main effects or interactions were found for the variables bad dream frequency and nightmare frequency, which contradicts the study’s hypotheses. It is possible that this lack of differences was due to TLE patients being on antiepileptic drugs, which whilst controlling seizures, may have suppressed or eliminated the effects of bad dreams and nightmares. Keywords: temporal lobe epilepsy, dreaming, bad dreams, nightmares, gender differences. 3 Dreaming in Patients with Temporal Lobe Epilepsy: A Focus on Bad Dreams and Nightmares Nightmares and bad dreams occur more frequently in patients with temporal lobe epilepsy (TLE) than in normal individuals and in patients with generalized seizures (Silvestri & Bromfield, 2004). -
Anemias Supportive Module 4 "Essentials of Diagnosis, Treatment and Prevention of Major Hematologic Diseases"
2016/2017 Spring Semester Anemias Supportive module 4 "Essentials of diagnosis, treatment and prevention of major hematologic diseases" LECTURE IN INTERNAL MEDICINE FOR IV COURSE STUDENTS M. Yabluchansky, L. Bogun, L. Martymianova, O. Bychkova, N. Lysenko, N. Makienko V.N. Karazin National University Medical School’ Internal Medicine Dept. Plan of the lecture • Definition • Epidemiology • Etiology • Mechanisms • Adaptation to anemia • Classification • Clinical investigation • Diagnosis • Treatment • Prognosis • Prophylaxis • Abbreviations • Diagnostic guidelines http://anemiaofchronicdisease.com/wp-content/uploads/2012/08/anemia-of-chronic-disease1.jpg Definition Anemia is a disease and/or a clinical syndrome that consist in lowered ability of the blood to carry oxygen (hypoxia) due to decrease quantity and functional capacity and/or structural disturbances of red blood cells (RBCs) or decrease hemoglobin concentration or hematocrit in the blood A severe form of anemia, in which the hematocrit is below 10%, is called the hyperanemia WHO criteria is Hb < 13 g/dL in men and Hb < 12 g/dL in women (revised criteria for patient’s with malignancy Hb < 14 g/dL in men and Hb < 12g/dL in women) Epidemiology 1 https://www.k4health.org/sites/default/files/anemia-map_updated.png Epidemiology 2 http://img.medscape.com/fullsize/migrated/editorial/conferences/2006/4839/spivak.fig1.jpg Epidemiology 3 http://www.omicsonline.org/2161-1165/images/2161-1165-2-118-g001.gif Etiology 1 (basic forms) Basic forms • Blood loss • Deficient erythropoiesis • Excessive -
Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck. -
Oral Sequelae of Chronic Neutrophil Defects: Case Report of A
Case Report Oral sequelaeof chronic neutrophil defects: case report of a child with glycogenstorage diseasetype lb Nancy Dougherty, DMDMary Ann Gataletto, DMD complex group of enzymereactions is respon- tion presently are inconclusive. Various etiologies of sible for the breakdownof the large glycogen neutropenia include abnormal maturation of neutro- A moleculeinto glucose, whichis used by the body phil precursors and reduced release of neutrophils from to maintain blood sugar and provide energy. The glyco- the bone marrow.It is unclear whether either of these is gen storage diseases are a group of inherited disorders responsible for the neutropenia seen in GSDtype lb. involving deficiencies of one or more of the enzymes The importance of transport of glucose into neutrophils necessary to store and metabolize glycogen. Glycogen for chemotaxis has been demonstrated, and this might storage disease (GSD)exists in a variety of forms, each well2 be the etiology for the neutrophil dysfunction. involving different enzyme systems of the glycogen The purpose of this paper is to present, via a report metabolic pathway. of a patient with GSDtype lb, the short- and long-term GSDtype lb is caused by a lack of glucose-6-phos- effects of a chronic neutrophil defect on the phatase (G6P) translocase. This prevents the transport periodontium and oral mucosa. of G6Pacross the endoplasmic reticulum.1 As a result, glycogen cannot be metabolized into glucose and is Casereport deposited in the liver. The modeof genetic transmis- Medicalhistory sion of GSDtype lb is autosomal recessive. It is ex- The patient was an African-American male diag- tremely rare, with an estimated incidence of less than 1 nosed with GSDtype lb at 3 months of age. -
:.. ;}.·:···.·;·1 Congenital Neutropenia
C HAP T E R 13 >;:.. ;}.·:···.·;·1 CONGENITAL NEUTROPENIA Jill M. Watanabe, MD, MPH, and David C. Dale, MD defined by a neutrophil count less than 1500 cellS/ilL; KEY POINTS beyond 10 years of age, neutropenia is defined by a neu trophil count less' than 1800 cells//1L in persons of white Congenital Neutropenia and Asian descent. 1 In persons of African descent, neu tropenia is defined by a count of 800--1000 cells//1L. 1 (& Congenital neutropenia encompasses a heterogeneous group of The severity and duration of neutropenia are also clin iuheri ted diseases. ically important. Mild neutropenia is usually defined by • The genetic mutations causing congenital neutropenia may neutrophil counts of 1000-1500 cells//1L, moderate neu have an isolated effect on the bone marrow but can also affect tropenia is 500-1000 cells//1L, and severe neutropenia one or more other organ systems. is less than 500 cells//1L. Acute neutropenia usually is present for only 5-10 days; neutropenia is chronic if its (& The genetic defects underlying the diseases that cause con duration is at least several weeks. Almost all congenital genital neutropenia have been rapidly identified over the past neutropenias are chronic neutropenia. decade. The characteristics and causes of congenital neu (& Granulocyte colony-stimulating factor has dramatically tropenia are shown in Tables 13-1 and 13-2, and an algo improved the prognosis for children with congenital rithm for their diagnosis is presented in Figure 13-1. neutropenia. SEVERE CONGENITAL NEUTROPENIA Patient'; with severe congenital neutropenia (SCN) typi cally present with recurrent bacterial infections and neutrophil count'> persistently less than 200 cells//1L. -
Predicting Chemotherapy-Induced Febrile Neutropenia Outcomes in Adult Cancer Patients: an Evidence-Based Prognostic Model
Predicting Chemotherapy-Induced Febrile Neutropenia Outcomes in Adult Cancer Patients: An Evidence-Based Prognostic Model Yee Mei, Lee Cert Nursing (S’pore), RN, Adv. Dip. (Oncology) in Nursing (S’pore), Bsc of Nursing (Monash), Master of Nursing (S’pore) Thesis submitted for the Doctor of Philosophy School of Translational Health Science The University of Adelaide Adelaide, South Australia Australia November 2013 Table of Contents TABLE OF CONTENTS -------------------------------------------------------------------- II LIST OF TABLES ------------------------------------------------------------------------ VII LIST OF FIGURES ---------------------------------------------------------------------- VIII LIST OF ABBREVIATIONS --------------------------------------------------------------- XI ABSTRACT ----------------------------------------------------------------------------- XII DECLARATION ----------------------------------------------------------------------- XIIII ACKNOWLEDGEMENTS-- ------------------------------------------------------------ IXV PUBLICATIONS ------------------------------------------------------------------------ XV 1 INTRODUCTION TO THE THESIS ---------------------------------------------------- 15 1.1 CLINICAL CONTEXT -------------------------------------------------------------------------------- 15 1.2 CLINICAL IMPACT OF CHEMOTHERAPY-INDUCED FEBRILE NEUTROPENIA -------------------- 16 1.3 ECONOMIC IMPLICATIONS OF CHEMOTHERAPY-INDUCED FEBRILE NEUTROPENIA ---------- 18 1.4 EVOLVING PRACTICE IN THE MANAGEMENT OF FEBRILE -
Neutropenia : an Analysis of the Risk Factors for Infection Steven Ira Rosenfeld Yale University
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1980 Neutropenia : an analysis of the risk factors for infection Steven Ira Rosenfeld Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Rosenfeld, Steven Ira, "Neutropenia : an analysis of the risk factors for infection" (1980). Yale Medicine Thesis Digital Library. 3087. http://elischolar.library.yale.edu/ymtdl/3087 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. NEUTROPENIA: AN ANALYSIS OF THE RISK FACTORS FOR INFECTION by Steven Ira Rosenfeld B.A. Johns Hopkins University 1976 A Thesis Submitted to The Yale University School of Medicine In Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine 1980 Med Li^> Ya ABSTRACT The risk factors for infection were evaluated retrospectively in 107 neutropenic patients without underlying malignancy or cyto¬ toxic drug therapy. Neutrophil count was an independent risk factor for infection, with the incidence of infection increasing as the neutrophil count decreased. The critical neutrophil count, below which the incidence of infection was significantly increased was 250/mnr*, (p<.001). Eighty five percent of the <250 group entered with, or developed infection. Additional risk factors for infection included increased duration of neutropenia, age less than 1 year old, male sex, hypogammaglobulinemia, and recent antibiotic therapy. -
Download Dr. Qureshi's CV
Brief Synopsis Nazer H. Qureshi, M.D, D.Stat, M.Sc, DABNS, FAANS. Graduated from Medical School with top honors and first position in Anatomy and Histology in board examinations. Pursued surgical training in Europe including neurosurgery at the National Center for Neurosurgery affiliated with The Royal College of Surgeons of Ireland. In 1994 started as a junior faculty member at University of Dublin teaching medical students while pursuing his own research on “Interleukin-1 binding and expression in brain” towards Masters in Science. During that year also attained a Diploma in Statistics from University of Dublin. In summer of 1995 was a visiting fellow at University of Toronto working on use- dependent inhibitory depression in epilepsy models. In 1996 migrated to US and completed a research fellowship in gene therapy for brain tumors at Harvard Medical School/Massachusetts General Hospital. The work on gene therapy that included testing efficacy and toxicity of different viral vectors and & designing a novel method of gene delivery to human brain tumors culminated into a clinical trial. In 1999 completed a neurosurgery fellowship at University of Arizona. Completed 2 years of accredited General Surgery residency at Tuft’s University and Thomas Jefferson University followed by Neurosurgery Residency in June 2008 from University of Arkansas for Medical Sciences with “Prof. Iftikhar A. Raja Humanity in Medicine Award.” Diplomate American Board of Neurological Surgeons and Fellow of the American Board of Neurological Surgeons. Worked as an attending neurosurgeon at Baptist Hospital Medical Center in Little Rock the chief of brain and spine tumor service at Baptist Health Medical Center, North Little Rock.