The Electrical Properties of Bufo Marinus Na+, K+-Atpase A

Total Page:16

File Type:pdf, Size:1020Kb

The Electrical Properties of Bufo Marinus Na+, K+-Atpase A The Electrical Properties of Bufo marinus Na+, K+-ATPase A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Jingping Hao November 2009 © 2009 Jinging Hao. All Rights Reserved. 2 This dissertation titled The Electrical Properties of Bufo marinus Na+, K+-ATPase by JINGPING HAO has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Ralph A. DiCaprio Professor of Biological Sciences Benjamin M. Ogles Dean, College of Arts and Sciences 3 ABSTRACT HAO, JINGPING, Ph.D., November 2009, Biological Sciences The Electrical Properties of Bufo marinus Na+, K+-ATPase (145 pp.) Director of Dissertation: Ralph A. DiCaprio The Na+, K+-ATPase is a primary active transporter that transports three Na+ out of the cell and two K+ into the cell. The pump produces a net charge transfer, and is therefore electrogenic, so the generated current can serve as a measure of the pump activity. In order to test the current-voltage (I-V) relationship of the sodium pump, Bufo marinus Na+, K+-ATPase alpha and beta subunits were cloned and their functional properties were tested using a Xenopus laevis expression system and two-electrode voltage clamp techniques. The steady state pump current is known to be voltage dependent (Sagar and Rakowski, 1994), and can be activated by extracellular K+, and inhibited by ouabain, which is a specific inhibitor of the sodium pump. We determined the ouabain-sensitive current as a measure of the pump-mediated current with different concentrations of ouabain used to inhibit the exogenous K+ activated pump current. The voltage dependence of the ouabain-sensitive pump current was shown to be due to the voltage dependence of the sodium pump turnover rate, because the inhibition of pump current by ouabain did not depend on membrane potential. The Ki value for ouabain inhibition is 30 ± 3 µM. Pump current activated by addition of K+ was not equal to the current inhibited by ouabain, contrary to results previously obtained that measured the endogenous Xenopus pump current using the compound tetraethylammonium (TEA+). TEA+ has been widely used to block K+ channels and permit measurement of pump 4 current simply by addition of external K+. A series of experiments was perfomed in the absence of external K+ to test if TEA+ is itself capable of activating Bufo pump current. In both high (100 mM) and Na+-free external conditions, TEA+ elicited K+-like activation of the ouabain sensitive current. TEA+ activates an electrogenic pump current with a lower affinity than that of K+. The X-ray crystal structure of pig renal Na+, K+ -ATPase at 3.5 Å resolution has been determined with two occluded rubidium ions. These two sites are expected to be occupied by Na+ and K+ alternatively. The position of the third Na+ binding site is still hypothetical. Mutations were used to examine the effects of changing the candidate amino acids of the binding site. These mutations change the voltage dependence and apparent affinity of extracellular Na+ binding. These results suggest that the third Na+ binding site is located between the fifth, sixth, and ninth transmembrane helices of the Na+, K+ -ATPase alpha subunit. Approved: _____________________________________________________________ Ralph A. DiCaprio Professor of Biological Sciences 5 DEDICATION Dedicated to my late advisor Robert F. Rakowski 6 ACKNOWLEDGMENTS I would like to express my gratitude to all those who gave me the ability to complete this dissertation. My deepest gratitude is to my late advisor, Dr. Robert Rakowski. I have been amazingly fortunate to be one of his students. He gave me the freedom to explore on my own, and at the same time gave me guidance when I had difficulties. He taught me how to question thoughts and express ideas. His support and patience helped me overcome many obstacles. I would like to thank my current advisor, Dr. Ralph DiCaprio. Without his encouragement and advice, I would not have finished my dissertation. I would also like to thank my committee members, Dr. Janet Duerr, Dr. Michael Rowe, Dr. Soichi Tanda, and Dr. Jennifer Hines for their help in this project. I would like to thank my lab mate and friend, Yanli Ding. She gave me much help and support not only in my research but also in my life. Finally, I sincerely thank my parents, grandparents, and my husband, Jiong Hu. They always believed in me and directed their efforts to help me get through these years. 7 TABLE OF CONTENTS Page Abstract ............................................................................................................................... 3 Dedication ........................................................................................................................... 5 Acknowledgments............................................................................................................... 6 List of Tables .................................................................................................................... 10 List of Figures ................................................................................................................... 11 Chapter 1: Introduction ..................................................................................................... 14 I. Structure of the sodium pump .................................................................................. 14 II. Function of the sodium pump: Post-Albers Transport Cycle of Na+, K+-ATPase ... 18 III. Sodium binding sites ............................................................................................... 21 IV. Specific pump inhibitor: Ouabain ........................................................................... 30 V. The external access channel model .......................................................................... 34 VI. Electrical properties of ion transport ...................................................................... 35 VII. K+ channel blocker: Tetraethylammonium ........................................................... 38 Chapter 2 Materials and methods ..................................................................................... 40 I. Experimental Solutions ............................................................................................. 40 II. Preparation of cRNA ................................................................................................ 40 III. Production of single-point mutations ...................................................................... 41 IV. Isolation and maintenance of Xenopus oocytes ...................................................... 41 V. Injection of oocytes .................................................................................................. 42 VI. Immunofluorescent staining ................................................................................... 42 8 VII. Electrophysiological measurements ...................................................................... 43 VIII. Measurement of the pump I-V relationship ......................................................... 45 A. Basic Mechanism .............................................................................................. 45 B. Experimental protocol for the measurement of steady state pump current ...... 49 C. Control experiment ........................................................................................... 50 D. Unsubtracted I-V curves ................................................................................... 51 E. Difference current ............................................................................................. 52 Chapter 3 Results .............................................................................................................. 54 I. Inhibition of pump current by ouabain does not depend on membrane potential ..... 54 II. Electrogenic transport of tetraethylammonium (TEA+) by Bufo marinus Na+, K+- ATPase .......................................................................................................................... 60 Part 1. TEA+ activated current with and without external K+ ................................... 60 Part 2. Ouabain inhibited current in TEA+-free condition ........................................ 72 Part 3. pH effect on the TEA+ activated pump current ............................................. 77 Part 4. Electrical properties of TEA+ activation ....................................................... 83 III. The third Na+ binding site ..................................................................................... 106 A. Mutation studies .............................................................................................. 106 B. Detecting the protein at the oocyte surface by using immunofluorescent staining .................................................................................................................... 115 Chapter 4 Discussion ...................................................................................................... 118 I. Ouabain binding to the Na+, K+-ATPase is voltage independent ............................ 118 II. pH effect on the TEA+ activated pump current ...................................................... 120 9 III. Voltage dependent TEA+ binding on the Na+, K+-ATPase ................................. 122 1. Access Channel Model ......................................................................................
Recommended publications
  • Plasma Membrane Ca2+–Atpase in Rat and Human Odontoblasts Mediates Dentin Mineralization
    biomolecules Article Plasma Membrane Ca2+–ATPase in Rat and Human Odontoblasts Mediates Dentin Mineralization Maki Kimura 1,†, Hiroyuki Mochizuki 1,†, Ryouichi Satou 2, Miyu Iwasaki 2, Eitoyo Kokubu 3, Kyosuke Kono 1, Sachie Nomura 1, Takeshi Sakurai 1, Hidetaka Kuroda 1,4,† and Yoshiyuki Shibukawa 1,*,† 1 Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; [email protected] (M.K.); [email protected] (H.M.); [email protected] (K.K.); [email protected] (S.N.); [email protected] (T.S.); [email protected] (H.K.) 2 Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; [email protected] (R.S.); [email protected] (M.I.) 3 Department of Microbiology, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; [email protected] 4 Department of Dental Anesthesiology, Kanagawa Dental University, 1-23, Ogawacho, Kanagawa, Yokosuka-shi 238-8570, Japan * Correspondence: [email protected] † These authors contributed equally to this study. Abstract: Intracellular Ca2+ signaling engendered by Ca2+ influx and mobilization in odontoblasts is critical for dentinogenesis induced by multiple stimuli at the dentin surface. Increased Ca2+ is exported by the Na+–Ca2+ exchanger (NCX) and plasma membrane Ca2+–ATPase (PMCA) to Citation: Kimura, M.; Mochizuki, H.; maintain Ca2+ homeostasis. We previously demonstrated a functional coupling between Ca2+ Satou, R.; Iwasaki, M.; Kokubu, E.; extrusion by NCX and its influx through transient receptor potential channels in odontoblasts. Kono, K.; Nomura, S.; Sakurai, T.; Although the presence of PMCA in odontoblasts has been previously described, steady-state levels of Kuroda, H.; Shibukawa, Y.
    [Show full text]
  • The SERCA Residue Glu340 Mediates Interdomain Communication That Guides Ca2+ Transport
    The SERCA residue Glu340 mediates interdomain communication that guides Ca2+ transport Maxwell M. G. Geurtsa,1, Johannes D. Clausenb,c,1, Bertrand Arnoub,d,1, Cédric Montignyd, Guillaume Lenoird, Robin A. Coreya, Christine Jaxeld, Jesper V. Møllerb, Poul Nissenc,e, Jens Peter Andersenb, Marc le Maired, and Maike Bublitza,2 aDepartment of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom; bDepartment of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; cDepartment of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark; dInstitute for Integrative Biology of the Cell (I2BC), Commissariat à l’Energie Atomique et aux Energies Alternatives, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; and eDanish Research Institute of Translational Neuroscience-DANDRITE, Nordic European Molecular Biology Laboratory Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Denmark Edited by Ivet Bahar, University of Pittsburgh School of Medicine, Pittsburgh, PA, and approved October 21, 2020 (received for review July 15, 2020) The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a P-type A number of SERCA1a crystal structures have shed light on ATPase that transports Ca2+ from the cytosol into the sarco(endo) the nature of the conformational changes associated with Ca2+ plasmic reticulum (SR/ER) lumen, driven by ATP. This primary transport (reviewed in refs. 3–5). There are two Ca2+-binding transport activity depends on tight coupling between movements sites within the TM domain of SERCA, denoted sites I and II of the transmembrane helices forming the two Ca2+-binding sites based on a proven sequential order of Ca2+ binding (6). The and the cytosolic headpiece mediating ATP hydrolysis.
    [Show full text]
  • Targeting Oncogenic Notch Signaling with SERCA Inhibitors Luca Pagliaro, Matteo Marchesini and Giovanni Roti*
    Pagliaro et al. J Hematol Oncol (2021) 14:8 https://doi.org/10.1186/s13045-020-01015-9 REVIEW Open Access Targeting oncogenic Notch signaling with SERCA inhibitors Luca Pagliaro, Matteo Marchesini and Giovanni Roti* Abstract P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacol- ogy. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase 2 inhibitors like digoxin. However, this is more challenging for Ca +-ATPase modulators due to the physiological role of 2 2 Ca + in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca +-ATPase (SERCA) modula- 2 tors have been studied as potential chemotherapy agents because of their Ca +-mediated pan-cancer lethal efects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side efects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia proper- 2 ties of these molecules can be achieved without causing overt Ca + cellular overload. Keywords: SERCA , T cell acute lymphoblastic leukemia, Thapsigargin, Notch signaling, NOTCH1, CAD204520, T-ALL Background metalloprotease (ADAM-10 or TACE/ADAM-17). Te NOTCH receptors are transmembrane cell-surface pro- resulting short-lived protein fragments are substrates teins that control cell to cell communication, embryo-
    [Show full text]
  • SERCA in Genesis of Arrhythmias: What We Already Know and What Is New?
    Review 43 SERCA in genesis of arrhythmias: what we already know and what is new? Nilüfer Erkasap Department of Physiology, Medical Faculty, Eskiflehir Osmangazi University, Eskiflehir, Turkey ABSTRACT This review mainly focuses on the structure, function of the sarco(endo)plasmic reticulum calcium pump (SERCA) and its role in genesis of arrhythmias. SERCA is a membrane protein that belongs to the family of P-type ion translocating ATPases and pumps free cytosolic calcium into intracellular stores. Active transport of Ca2+ is achieved, according to the E1-E2 model, changing of SERCA structure by Ca2+. The affinity of Ca2+ -binding sites varies from high (E1) to low (E2). Three different SERCA genes were identified-SERCA1, SERCA2, and SERCA3. SERCA is mainly represented by the SERCA2a isoform in the heart. In heart muscle, during systole, depolarization triggers the release of Ca2+ from the sarcoplasmic reticulum (SR) and starts contraction. During diastole, muscle relaxation occurs as Ca2+ is again removed from cytosol, predominantly by accumulation into SR via the action of SERCA2a. The main regulator of SERCA2a is phospholamban and another regulator proteolipid of SERCA is sarcolipin. There are a lot of studies on the effect of decreased and/or increased SERCA activity in genesis of arrhythmia. Actually both decrease and increase of SERCA activity in the heart result in some pathological mechanisms such as heart failure and arrhythmia. (Anadolu Kardiyol Derg 2007: 7 Suppl 1; 43-6) Key words: sarco(endo)plasmic reticulum, SERCA, arrhythmia, calcium channels Introduction from cytosol, predominantly by accumulation into sarcoplasmic reticulum via the action of sarco(endo)plasmic reticulum Cardiac physiology is a major area of research in basic and Ca ATPase (SERCA).
    [Show full text]
  • Endoplasmic Reticulum Potassium–Hydrogen Exchanger and Small
    Research Article 625 Endoplasmic reticulum potassium–hydrogen exchanger and small conductance calcium-activated potassium channel activities are essential for ER calcium uptake in neurons and cardiomyocytes Malle Kuum1,2,3, Vladimir Veksler2,3, Joanna Liiv1, Renee Ventura-Clapier2,3 and Allen Kaasik1,* 1Department of Pharmacology, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 19, Tartu EE-51014, Estonia 2INSERM, U-769, 5, rue Jean-Baptiste Clement, Chaˆtenay-Malabry F-92296, France 3Universite´ Paris-Sud, 5, rue Jean-Baptiste Clement, Chaˆtenay-Malabry F-92296, France *Author for correspondence ([email protected]) Accepted 12 September 2011 Journal of Cell Science 125, 625–633 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.090126 Summary Calcium pumping into the endoplasmic reticulum (ER) lumen is thought to be coupled to a countertransport of protons through sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) and the members of the ClC family of chloride channels. However, pH in the ER lumen remains neutral, which suggests a mechanism responsible for proton re-entry. We studied whether cation–proton exchangers could act as routes for such a re-entry. ER Ca2+ uptake was measured in permeabilized immortalized hypothalamic neurons, primary rat cortical neurons and mouse cardiac fibers. Replacement of K+ in the uptake solution with Na+ or tetraethylammonium led to a strong inhibition of Ca2+ uptake in neurons and cardiomyocytes. Furthermore, inhibitors of the potassium–proton exchanger (quinine or propranolol) but not of the sodium–proton exchanger reduced ER Ca2+ uptake by 56–82%. Externally added nigericin, a potassium– + proton exchanger, attenuated the inhibitory effect of propranolol.
    [Show full text]
  • Allosteric Regulation of SERCA by Phosphorylation- Mediated Conformational Shift of Phospholamban
    Allosteric regulation of SERCA by phosphorylation- mediated conformational shift of phospholamban Martin Gustavssona, Raffaello Verardia, Daniel G. Mullena, Kaustubh R. Moteb, Nathaniel J. Traasetha,1, T. Gopinatha, and Gianluigi Vegliaa,b,2 aDepartment of Biochemistry, Molecular Biology, and Biophysics and bDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455 Edited by Chikashi Toyoshima, University of Tokyo, Tokyo, Japan, and approved September 13, 2013 (received for review May 26, 2013) The membrane protein complex between the sarcoplasmic re- cytoplasmic domain binds SERCA’s N domain in an α-helical + ticulum Ca2 -ATPase (SERCA) and phospholamban (PLN) controls conformation, suggesting that the inhibitory effect may be eli- + Ca2 transport in cardiomyocytes, thereby modulating cardiac con- cited via an induced fit mechanism. tractility. β-Adrenergic-stimulated phosphorylation of PLN at Ser- Interestingly, PLN’s cytoplasmic domain in the recent X-ray 16 enhances SERCA activity via an unknown mechanism. Using structure of the complex is completely unresolved (8), leaving solid-state nuclear magnetic resonance spectroscopy, we mapped many questions regarding its regulatory function unanswered. the physical interactions between SERCA and both unphosphory- Moreover, there have been few structural data on the complex lated and phosphorylated PLN in membrane bilayers. We found between SERCA and phosphorylated PLN. On the basis of cross- that the allosteric regulation of SERCA depends on the conforma- linking and sparse
    [Show full text]
  • A Dissertation Entitled Regulation of Na/K-Atpase and Its Role In
    A Dissertation entitled Regulation of Na/K-ATPase and its Role in Cardiac Disease by Xiaoming Fan Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ________________________________________ Dr. Jiang Tian, Committee Chair ________________________________________ Dr. Andrew D. Beavis, Committee Member ________________________________________ Dr. Kevin Z. Pan, Committee Member ________________________________________ Dr. David Giovannucci, Committee Member ________________________________________ Dr. Lijun Liu, Committee Member ________________________________________ Dr. Christopher J. Cooper, Committee Member ________________________________________ Dr. Cyndee Gruden, Dean College of Graduate Studies The University of Toledo December 2018 Copyright 2018, Xiaoming Fan This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Regulation of Na/K-ATPase and its Role in Cardiac Disease by Xiaoming Fan Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo December 2018 Heart failure is an important public health issue and a leading cause of mortality in the United States. Previous publications have shown that both protein amount and enzyme activity of cardiac Na/K-ATPase were reduced in heart failure patients. Analysis of gene expression database also demonstrated that expression of Na/K-ATPase α1 subunit in heart tissue from heart failure patients is lower compared to non-heart failure patients. However, it is not clear whether Na/K-ATPase reduction is causatively related with heart failure, and if so, how Na/K-ATPase expression is regulated. During the past twenty years tremendous work have been done to show that Na/K-ATPase, especially its signaling function, is associated with cardiac hypertrophy and cardiac fibrosis.
    [Show full text]
  • Gastric H,K-Atpase As a Drug Target
    UCLA UCLA Previously Published Works Title Gastric H,K-ATPase as a drug target Permalink https://escholarship.org/uc/item/1g5606x9 Journal Digestive Diseases and Sciences, 51(5) ISSN 0163-2116 Authors Shin, Jai M Sachs, G Publication Date 2006-05-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Gastric H,K-ATPase as a Drug Target Jai Moo Shin and George Sachs* Department of Physiology and Medicine, University of California at Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, CA90073, USA * To whom correspondence should be addressed: at Membrane Biology Laboratory, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Bldg. 113, Rm. 324, Los Angeles, CA 90073 Tel: (310) 268-4672 Fax: (310) 312-9478 e-mail: [email protected] 1 Introduction Gastric acid is secreted by parietal cells in the stomach. These have two known acid stimulatory receptors the H2-receptor and the muscarinic M3 receptor. Gastrin, the major endocrine activator of acid secretion, exerts its action via release of histamine from the ECL cell as does pituitary adenylate cyclase activating peptide (PACAP), a neural mediator of activation of acid secretion. Antagonists of the former two stimulants inhibit gastric acid secretion. Cholinergic receptor antagonists have many side effects and are relatively weak inhibitors at therapeutic doses as compared toH2-receptor antagonists. These drugs were widely developed in the 1970’s and 1980’s and became the first really useful medications for healing of peptic ulcers. However, although good for healing peptic ulcers, they were less effective in treatment of erosive esophagitis.
    [Show full text]
  • 1 Novel Functions of the Flippase Drs2 and the Coat Protein COPI In
    Novel Functions of the Flippase Drs2 and the Coat Protein COPI in Protein Trafficking By Hannah Marcille Hankins Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences May, 2016 Nashville, Tennessee Approved: Todd R. Graham, Ph.D Katherine L. Friedman, Ph.D. Kendal S. Broadie, Ph.D. Anne K. Kenworthy, Ph.D. Charles R. Sanders, Ph.D. 1 ACKNOWLEDGEMENTS It takes a village to raise a graduate student, and I have many villagers to thank for getting me to this point. I would never have considered doing research if it were not for my professors at Henderson State University, particularly Martin Campbell and Troy Bray, who were very supportive and encouraging throughout my undergraduate studies. I was also fortunate to be able to do full time research during the summers of my sophomore and junior years in the lab of Kevin Raney at the University of Arkansas for Medical Sciences. If it were not for the support system and these wonderful research experiences I had as an undergraduate, I never would have pursued graduate school at Vanderbilt and would not be the scientist I am today. I would like to thank my graduate school mentor, Todd Graham, for giving me the opportunity to join his lab and for introducing me to the wonderful world of yeast. Todd is an amazing and enthusiastic scientist; his guidance and support throughout my graduate career has been invaluable and I am truly grateful to have such a wonderful mentor.
    [Show full text]
  • Biophysical Characterization of the First Four Metal-Binding Domains of Human Wilson Disease Protein
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 6-2014 Biophysical Characterization of the First Four Metal-Binding Domains of Human Wilson Disease Protein Alia V.H. Hinz Western Michigan University, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Chemistry Commons, and the Medicinal and Pharmaceutical Chemistry Commons Recommended Citation Hinz, Alia V.H., "Biophysical Characterization of the First Four Metal-Binding Domains of Human Wilson Disease Protein" (2014). Dissertations. 280. https://scholarworks.wmich.edu/dissertations/280 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. BIOPHYSICAL CHARACTERIZATION OF THE FIRST FOUR METAL-BINDING DOMAINS OF HUMAN WILSON DISEASE PROTEIN by Alia V.H. Hinz A dissertation submitted to the Graduate College in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry Western Michigan University June 2014 Doctoral Committee: David Huffman, Ph.D., Chair Blair Szymczyna, Ph.D Gellert Mezei, Ph.D Douglas Coulter, Ph.D BIOPHYSICAL CHARACTERIZATION OF THE FIRST FOUR METAL-BINDING DOMAINS OF HUMAN WILSON DISEASE PROTEIN Alia V. H. Hinz, Ph.D. Western Michigan University, 2014 Wilson disease protein (WLNP) is a P1b-type ATPase crucial for maintaining copper homeostasis in humans. Mutations in this protein result in the autosomal recessive disorder Wilson disease, a condition characterized by copper accumulation in the liver and brain.
    [Show full text]
  • Hofmeister Effect of Anions on Calcium Translocation by Sarcoplasmic
    www.nature.com/scientificreports OPEN Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Received: 20 April 2015 2+ Accepted: 24 July 2015 Ca -ATPase Published: 05 October 2015 Francesco Tadini-Buoninsegni1, Maria Rosa Moncelli1, Niccolò Peruzzi1,2, Barry W. Ninham3, Luigi Dei1,2 & Pierandrea Lo Nostro1,2 The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme. Hofmeister, or specific ion effects are ubiquitous. They occur in simple bulk solutions and at interfaces, in water and in non-aqueous solutions, and consist in the different effect that salts exert in a particular system1,2.
    [Show full text]
  • Inhibin, Activin, Follistatin and FSH Serum Levels and Testicular
    REPRODUCTIONRESEARCH Expression of Atp8b3 in murine testis and its characterization as a testis specific P-type ATPase Eun-Yeung Gong, Eunsook Park, Hyun Joo Lee and Keesook Lee School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence should be addressed to K Lee; Email: [email protected] Abstract Spermatogenesis is a complex process that produces haploid motile sperms from diploid spermatogonia through dramatic morphological and biochemical changes. P-type ATPases, which support a variety of cellular processes, have been shown to play a role in the functioning of sperm. In this study, we isolated one putative androgen-regulated gene, which is the previously reported sperm-specific aminophospholipid transporter (Atp8b3, previously known as Saplt), and explored its expression pattern in murine testis and its biochemical characteristics as a P-type ATPase. Atp8b3 is exclusively expressed in the testis and its expression is developmentally regulated during testicular development. Immunohistochemistry of the testis reveals that Atp8b3 is expressed only in germ cells, especially haploid spermatids, and the protein is localized in developing acrosomes. As expected, from its primary amino acid sequence, ATP8B3 has an ATPase activity and is phosphorylated by an ATP-producing acylphosphate intermediate, which is a signature property of the P-Type ATPases. Together, ATP8B3 may play a role in acrosome development and/or in sperm function during fertilization. Reproduction (2009) 137 345–351 Introduction the removal of testosterone by hypophysectomy or ethane dimethanesulfonate (EDS) treatment in rats leads to the Spermatogenesis is one of most complex processes of cell failure of spermatogenesis (Russell & Clermont 1977, differentiation in animals, in which diploid spermatogo- Bartlett et al.
    [Show full text]