Multi-Goal Path Planning for Cooperative Sensing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optimal Geometric Partitions, Covers and K-Centers
Optimal Geometric Partitions, Covers and K-Centers MUGUREL IONU Ţ ANDREICA, ELIANA-DINA TÎR ŞA Politehnica University of Bucharest Splaiul Independentei 313, sector 6, Bucharest ROMANIA {mugurel.andreica,eliana.tirsa}@cs.pub.ro https://mail.cs.pub.ro/~mugurel.andreica/ CRISTINA TEODORA ANDREICA, ROMULUS ANDREICA Commercial Academy Satu Mare Mihai Eminescu 5, Satu Mare ROMANIA [email protected] http://www.academiacomerciala.ro MIHAI ARISTOTEL UNGUREANU Romanian-American University Bd. Expozitiei 1B, sector 1, Bucharest ROMANIA [email protected] http://www.rau.ro Abstract: - In this paper we present some new, practical, geometric optimization techniques for computing polygon partitions, 1D and 2D point, interval, square and rectangle covers, as well as 1D and 2D interval and rectangle K-centers. All the techniques we present have immediate applications to several cost optimization and facility location problems which are quite common in practice. The main technique employed is dynamic programming, but we also make use of efficient data structures and fast greedy algorithms. Key-Words: - polygon partition, point cover, interval cover, rectangle cover, interval K-center, dynamic programming. 1 Introduction In this paper we present some geometric optimization techniques for computing polygon partitions, interval and rectangle K-centers and 1D and 2D point, interval, square and rectangle covers. The techniques have immediate applications to several cost optimization and facility location problems which appear quite often in practical settings. The main technique we use is dynamic programming, together with efficient data structures. For some problems, we also make use of binary search and greedy algorithms. For most of the problems we will only show how to compute the best value of the optimization function; the actual solution will be easy to compute using some auxiliary information. -
Conflict-Free Chromatic Art Gallery Coverage Andreas Bärtschi, Subhash Suri
Conflict-free Chromatic Art Gallery Coverage Andreas Bärtschi, Subhash Suri To cite this version: Andreas Bärtschi, Subhash Suri. Conflict-free Chromatic Art Gallery Coverage. STACS’12 (29th Symposium on Theoretical Aspects of Computer Science), Feb 2012, Paris, France. pp.160-171. hal- 00678165 HAL Id: hal-00678165 https://hal.archives-ouvertes.fr/hal-00678165 Submitted on 3 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Conflict-free Chromatic Art Gallery Coverage∗ Andreas Bärtschi1 and Subhash Suri2 1 Institute of Theoretical Computer Science, ETH Zürich 8092 Zürich, Switzerland ([email protected]) 2 Department of Computer Science, University of California Santa Barbara, CA 93106, USA ([email protected]) Abstract We consider a chromatic variant of the art gallery problem, where each guard is assigned one of k distinct colors. A placement of such colored guards is conflict-free if each point of the polygon is seen by some guard whose color appears exactly once among the guards visible to that point. What is the smallest number k(n) of colors that ensure a conflict-free covering of all n-vertex polygons? We call this the conflict-free chromatic art gallery problem. -
Locating Guards for Visibility Coverage of Polygons∗
Locating Guards for Visibility Coverage of Polygons∗ Yoav Amity Joseph S. B. Mitchellz Eli Packerx n Abstract trivial b 3 c-approximation that comes from the classical We propose heuristics for visibility coverage of a polygon combinatorial bound. with the fewest point guards. This optimal coverage prob- Our Contribution. We propose heuristics for lem, often called the \art gallery problem", is known to be computing a small set of point guards to cover a given NP-hard, so most recent research has focused on heuristics polygon. While we are not able to prove good worst- and approximation methods. We evaluate our heuristics case approximation bounds for our methods (indeed, through experimentation, comparing the upper bounds on each can be made \bad" in certain cases), we conduct the optimal guard number given by our methods with com- an experimental analysis of their performance. We give puted lower bounds based on heuristics for placing a large methods also to compute lower bounds on the optimal number of visibility-independent \witness points". We give number of guards for each instance in our experiments, experimental evidence that our heuristics perform well in using another set of implemented heuristics for deter- practice, on a large suite of input data; often the heuristics mining a set of visibility-independent witness points. give a provably optimal result, while in other cases there (The cardinality of such a set is a lower bound on the op- is only a small gap between the computed upper and lower timal number of guards.) We show that on a wide range bounds on the optimal guard number. -
Parallel Techniques for Paths, Visibility, and Related Problems (Thesis)
Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1992 Parallel Techniques for Paths, Visibility, and Related Problems (Thesis) Ziyi Danny Chen Report Number: 92-051 Chen, Ziyi Danny, "Parallel Techniques for Paths, Visibility, and Related Problems (Thesis)" (1992). Department of Computer Science Technical Reports. Paper 972. https://docs.lib.purdue.edu/cstech/972 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. PARALLEL TECHNIQUES FOR PATHS, VISIBILITY, AND RELATED PROBLEMS Ziyi Danny Chen CSD·TR-92·0S1 August 1992 PARALLEL TECHNIQUES FOR PATHS, VISIBILITY, AND RELATED PROBLEMS A Thesis Submitted to the Faculty of Purdue University by Ziyi Danny Chen In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 1992 11 To the memory of my father III ACKNOWLEDGMENTS There are many people that I would like to thank. First, I would like to express my greatest appreciation to my major professor Mikhail J. Atallah. He has always given me the freedom to develop my own research interest and at the same time provided all the support, guidance, and encouragement I needed. Learning how to do research from him and discussing problems with him have become some of my most joyful experience at Purdue. Furthermore, I am greatly indebted to Professor Greg N. Frederickson and Professor Susanne E. Hambrusch, for serving as my committee members and for giving me many needed suggestions and helps during my study at Purdue. I also like to thank Professor Christoph M. -
30 POLYGONS Joseph O’Rourke, Subhash Suri, and Csaba D
30 POLYGONS Joseph O'Rourke, Subhash Suri, and Csaba D. T´oth INTRODUCTION Polygons are one of the fundamental building blocks in geometric modeling, and they are used to represent a wide variety of shapes and figures in computer graph- ics, vision, pattern recognition, robotics, and other computational fields. By a polygon we mean a region of the plane enclosed by a simple cycle of straight line segments; a simple cycle means that nonadjacent segments do not intersect and two adjacent segments intersect only at their common endpoint. This chapter de- scribes a collection of results on polygons with both combinatorial and algorithmic flavors. After classifying polygons in the opening section, Section 30.2 looks at sim- ple polygonizations, Section 30.3 covers polygon decomposition, and Section 30.4 polygon intersection. Sections 30.5 addresses polygon containment problems and Section 30.6 touches upon a few miscellaneous problems and results. 30.1 POLYGON CLASSIFICATION Polygons can be classified in several different ways depending on their domain of application. In chip-masking applications, for instance, the most commonly used polygons have their sides parallel to the coordinate axes. GLOSSARY Simple polygon: A closed region of the plane enclosed by a simple cycle of straight line segments. Convex polygon: The line segment joining any two points of the polygon lies within the polygon. Monotone polygon: Any line orthogonal to the direction of monotonicity inter- sects the polygon in a single connected piece. Star-shaped polygon: The entire polygon is visible from some point inside the polygon. Orthogonal polygon: A polygon with sides parallel to the (orthogonal) coordi- nate axes. -
Minimum Rectilinear Polygons for Given Angle Sequences ∗
Minimum Rectilinear Polygons for Given Angle Sequences ∗ William S. Evansyz Krzysztof Fleszarx Philipp Kindermann{k Noushin Saeediy∗∗ Chan-Su Shinyy Alexander Wolff {zz Abstract A rectilinear polygon is a polygon whose edges are axis-aligned. Walking counterclock- wise on the boundary of such a polygon yields a sequence of left turns and right turns. The number of left turns always equals the number of right turns plus 4. It is known that any such sequence can be realized by a rectilinear polygon. In this paper, we consider the problem of finding realizations that minimize the perimeter or the area of the polygon or the area of the bounding box of the polygon. We show that all three problems are NP-hard in general. This answers an open question of Patrignani [CGTA 2001], who showed that it is NP-hard to minimize the area of the bounding box of an orthogonal drawing of a given planar graph. We also show that realizing polylines with minimum bounding box area is NP-hard. Then we consider the special cases of x-monotone and xy-monotone rectilinear polygons. For these, we can optimize the three objectives efficiently. 1 Introduction In this paper, we consider the problem of computing, for a given rectilinear angle sequence, a \small" rectilinear polygon that realizes the sequence. A rectilinear angle sequence S is a sequence of left (+90◦) turns, denoted by L, and right (−90◦) turns, denoted by R. We n write S = (s1; : : : ; sn) 2 fL; Rg , where n is the length of S. As we consider only rectilinear angle sequences, we usually drop the term \rectilinear." A polygon P realizes an angle sequence S if there is a counterclockwise (ccw) walk along the boundary of P such that the turns at the vertices of P , encountered during the walk, form the sequence S. -
Optimal Uniformly Monotone Partitioning of Polygons with Holes
Computer-Aided Design 44 (2012) 1235–1252 Contents lists available at SciVerse ScienceDirect Computer-Aided Design journal homepage: www.elsevier.com/locate/cad Optimal uniformly monotone partitioning of polygons with holes Xiangzhi Wei a, Ajay Joneja a,∗, David M. Mount b a Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong b Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA article info a b s t r a c t Article history: Polygon partitioning is an important problem in computational geometry with a long history. In this Received 15 November 2011 paper we consider the problem of partitioning a polygon with holes into a minimum number of uniformly Accepted 11 June 2012 monotone components allowing arbitrary Steiner points. We call this the MUMC problem. We show that, given a polygon with n vertices and h holes and a scan direction, the MUMC problem relative to this Keywords: direction can be solved in time O.n log nCh log3 h/. Our algorithm produces a compressed representation Polygon subdivision of the subdivision of size O.n/, from which it is possible to extract either the entire decomposition or just Uniformly monotone subdivision the boundary of any desired component, in time proportional to the output size. When the scan direction Simple polygons 3 Network flow is not given, the problem can be solved in time O.K.n log n C h log h//, where K is the number of edges Planar graphs in the polygon's visibility graph. -
Fat Polygonal Partitions with Applications to Visualization and Embeddings∗
Fat Polygonal Partitions with Applications to Visualization and Embeddings∗ Mark de Bergy Krzysztof Onakz Anastasios Sidiropoulosx December 13, 2013 Abstract Let be a rooted and weighted tree, where the weight of any node is equal to the sum of the weightsT of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partitionT necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular par- titions in Rd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a polylog(∆)-approximation algorithm for embedding n-point ultra- metrics into Rd with minimum distortion, where ∆ denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. -
Human Metaphase Chromosome Analysis Using Image Processing
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-14-2014 12:00 AM Human Metaphase Chromosome Analysis using Image Processing Akila M.S Subasinghe Arachchige The University of Western Ontario Supervisor Dr. Jagath Samarabandu The University of Western Ontario Graduate Program in Electrical and Computer Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Akila M.S Subasinghe Arachchige 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biomedical Commons, Genetics Commons, Other Biomedical Engineering and Bioengineering Commons, and the Signal Processing Commons Recommended Citation Subasinghe Arachchige, Akila M.S, "Human Metaphase Chromosome Analysis using Image Processing" (2014). Electronic Thesis and Dissertation Repository. 2178. https://ir.lib.uwo.ca/etd/2178 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Human Metaphase Chromosome Analysis using Image Processing (Thesis format: Monograph) by Akila Subasinghe Arachchige Graduate Program in Engineering Science Electrical and Computer Engineering A thesis submitted in partial fulfillment of the requirements for the degree of Doctorate of Philosophy School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada c Akila Subasinghe Arachchige 2014 Abstract Development of an effective human metaphase chromosome analysis algorithm can optimize expert time usage by increasing the efficiency of many clinical diagnosis processes. Although many methods exist in the literature, they are only applicable for limited morphological variations and are specific to the staining method used during cell preparation. -
VAD360: Viewport Aware Dynamic 360-Degree Video Frame Tiling
VAD360: Viewport Aware Dynamic 360-Degree Video Frame Tiling Chamara Kattadige Kanchana Thilakarathna [email protected] [email protected] The University of Sydney The University of Sydney Sidney, Australia Sydney, Australia ABSTRACT within the motion-to-photon delay1 (just above 25ms), otherwise 360° videos a.k.a. spherical videos are getting popular among users the user may suffer from severe motion or cyber-sickness [13]. nevertheless, omnidirectional view of these videos demands high Recently proposed viewport (VP) –current visbile area, typically bandwidth and processing power at the end devices. Recently encompass 100°×100° Field of View (FoV)– adaptive streaming [27], proposed viewport aware streaming mechanisms can reduce the which streams only a selected portion of the 360° video frame, has amount of data transmitted by streaming a limited portion of the shown a great promise in addressing the above issues. Especially, frame covering the current user viewport (VP). However, they still the tiling mechanism, which divides the entire frame into tiles and suffer from sending a high amount of redundant data, as thefixed send only the tiles within the user VP can reduce the amount of tile mechanisms can not provide a finer granularity to the user VP. data transferred to the client and increases the user perceived video Though, making the tiles smaller can provide a finer granularity quality compared to streaming entire video frame [10, 19, 28, 29]. for user viewport, high encoding overhead incurred. To overcome However, due to the fix number of tiles (typically ranges between this trade-off, in this paper, we present a computational geometric (24–36)) [10, 19] and their fixed sizes, optimum gain of bandwidth approach based adaptive tiling mechanism named VAD360, which saving is not achieved by these mechanisms. -
Triangulating Polygons
TRIANGULATING POLYGONS Vera Sacrist´an Computational Geometry Facultat d'Inform`aticade Barcelona Universitat Politcnica de Catalunya TRIANGULATING POLYGONS Computational Geometry, Facultat d'Inform`aticade Barcelona, UPC TRIANGULATING POLYGONS A polygon triangulation is the decomposition of a polygon into triangles. This is done by inserting internal diagonals. An internal diagonal is any segment... • connecting two vertices of the polygon and • completely enclosed in the polygon. Computational Geometry, Facultat d'Inform`aticade Barcelona, UPC TRIANGULATING POLYGONS A polygon triangulation is the decomposition of a polygon into triangles. This is done by inserting internal diagonals. An internal diagonal is any segment... • connecting two vertices of the polygon and • completely enclosed in the polygon. Computational Geometry, Facultat d'Inform`aticade Barcelona, UPC TRIANGULATING POLYGONS A polygon triangulation is the decomposition of a polygon into triangles. This is done by inserting internal diagonals. An internal diagonal is any segment... • connecting two vertices of the polygon and • completely enclosed in the polygon. Computational Geometry, Facultat d'Inform`aticade Barcelona, UPC TRIANGULATING POLYGONS A polygon triangulation is the decomposition of a polygon into triangles. This is done by inserting internal diagonals. An internal diagonal is any segment... • connecting two vertices of the polygon and • completely enclosed in the polygon. Computational Geometry, Facultat d'Inform`aticade Barcelona, UPC TRIANGULATING POLYGONS A polygon triangulation is the decomposition of a polygon into triangles. This is done by inserting internal diagonals. An internal diagonal is any segment... • connecting two vertices of the polygon and • completely enclosed in the polygon. Computational Geometry, Facultat d'Inform`aticade Barcelona, UPC TRIANGULATING POLYGONS A polygon triangulation is the decomposition of a polygon into triangles. -
Roof Damage Assessment from Automated 3D Building Models
Roof Damage Assessment from Automated 3D Building Models Kenichi Sugihara1, Martin Wallace2*, Kongwen (Frank) Zhang3, Youry Khmelevsky4 1. Doctor of Engineering, Professor, Gifu-Keizai University, 5-50 Kitagata-chou Ogaki-city Gifu-Pref. 503-8550, Japan, +81 584-77- 3511, [email protected] 2. Undergraduate Student, Okanagan College, 1000 KLO Rd., Kelowna, BC V1Y 4X8, Canada, +1 250-801-7976, [email protected] 3. Lecturer, Selkirk College, 301 Frank Beinder Way, Castlegar, BC V1N 4L3, Canada, +1 250-304-6527, [email protected] 4. Professor, Okanagan College, 1000 KLO Rd., Kelowna, BC V1Y 4X8, Canada, +1 250-762-5445, [email protected] * Martin Wallace: Undergraduate Student, Okanagan College, [email protected] ABSTRACT The 3D building modeling is important in urban planning and related domains that draw upon the content of 3D models of urban scenes. Such 3D models can be used to visualize city images at multiple scales from individual buildings to entire cities prior to and after a change has occurred. This ability is of great importance in day-to- day work and special projects undertaken by planners, geo-designers, and architects. In this research, we implemented a novel approach to 3D building models for such matter, which included the integration of geographic information systems (GIS) and 3D Computer Graphics (3DCG) components that generates 3D house models from building footprints (polygons), and the automated generation of simple and complex roof geometries for rapid roof area damage reporting. These polygons (footprints) are usually orthogonal. A complicated orthogonal polygon can be partitioned into a set of rectangles.