Lutibacter Holmesii Sp. Nov., a Marine Bacterium of the Family
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[Article] JMLS
한국해양생명과학회지[Journal of Marine Life Science] June 2021; 6(1): 9-22 [Article] JMLS http://jmls.or.kr Bacterial Communities from the Water Column and the Surface Sediments along a Transect in the East Sea Jeong-Kyu Lee, Keun-Hyung Choi* Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Korea Corresponding Author We determined the composition of water and sediment bacterial assemblages from the Keun-Hyung Choi East Sea using 16S rRNA gene sequencing. Total bacterial reads were greater in surface waters (<100 m) than in deep seawaters (>500 m) and sediments. However, total OTUs, Department of Marine Environmental bacterial diversity, and evenness were greater in deep seawaters than in surface waters Science, Chungnam National University, with those in the sediment comparable to the deep sea waters. Proteobacteria was the Daejeon 34134, Korea most dominant bacterial phylum comprising 67.3% of the total sequence reads followed E-mail : [email protected] by Bacteriodetes (15.8%). Planctomycetes, Verrucomicrobia, and Actinobacteria followed all together consisting of only 8.1% of the total sequence. Candidatus Pelagibacter ubique considered oligotrophic bacteria, and Planctomycetes copiotrophic bacteria showed an Received : March 22, 2021 opposite distribution in the surface waters, suggesting a potentially direct competition for Revised : April 12, 2021 available resources by these bacteria with different traits. The bacterial community in the Accepted : April 26, 2021 warm surface waters were well separated from the other deep cold seawater and sediment samples. The bacteria exclusively associated with deep sea waters was Actinobacteriacea, known to be prevalent in the deep photic zone. The bacterial group Chromatiales and Lutibacter were those exclusively associated with the sediment samples. -
Complete Genome Sequence of Lutibacter Profundi LP1T Isolated
Wissuwa et al. Standards in Genomic Sciences (2017) 12:5 DOI 10.1186/s40793-016-0219-x SHORT GENOME REPORT Open Access Complete genome sequence of Lutibacter profundi LP1T isolated from an Arctic deep- sea hydrothermal vent system Juliane Wissuwa1,2, Sven Le Moine Bauer1,2, Ida Helene Steen1,2 and Runar Stokke1,2* Abstract Lutibacter profundi LP1T within the family Flavobacteriaceae was isolated from a biofilm growing on the surface of a black smoker chimney at the Loki’s Castle vent field, located on the Arctic Mid-Ocean Ridge. The complete genome of L. profundi LP1T is the first genome to be published within the genus Lutibacter. L. profundi LP1T consists of a single 2,966,978 bp circular chromosome with a GC content of 29.8%. The genome comprises 2,537 protein-coding genes, 40 tRNA species and 2 rRNA operons. The microaerophilic, organotrophic isolate contains genes for all central carbohydrate metabolic pathways. However, genes for the oxidative branch of the pentose-phosphate-pathway, the glyoxylate shunt of the tricarboxylic acid cycle and the ATP citrate lyase for reverse TCA are not present. L. profundi LP1T utilizes starch, sucrose and diverse proteinous carbon sources. In accordance, the genome harbours 130 proteases and 104 carbohydrate-active enzymes, indicating a specialization in degrading organic matter. Among a small arsenal of 24 glycosyl hydrolases, which offer the possibility to hydrolyse diverse poly- and oligosaccharides, a starch utilization cluster was identified. Furthermore, a variety of enzymes may be secreted via T9SS and contribute to the hydrolytic variety of the microorganism. Genes for gliding motility are present, which may enable the bacteria to move within the biofilm. -
Dissecting the Microbiome of a Polyketide-Producing Ascidian Across the Anvers Island
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.958975; this version posted February 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dissecting the microbiome of a polyketide-producing ascidian across the Anvers Island archipelago, Antarctica. Alison E. Murraya#, Nicole E. Avalonb, Lucas Bishopa, Patrick S.G. Chainc#, Karen W. Davenportc, Erwan Delage d, Armand E.K. Dichosac, Damien Eveillardd, Mary L. Highama, Sofia Kokkaliarib, Chien-Chi Loc, Christian S. Riesenfelda, Ryan M. Youngb+, Bill J. Bakerb# a Division of Earth and Ecosystem Science, Desert Research Institute, Reno, Nevada, USA. b Department of Chemistry, University of South Florida, Tampa, Florida, USA. c Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA. d LS2N, Université de Nantes, CNRS, Nantes, France. Running title: Core microbiome of palmerolide-producing ascidians # Address correspondence to: Alison E. Murray, [email protected], Bill J. Baker, [email protected], Patrick S.G. Chain, [email protected] +Present address: School of Chemistry, National University of Ireland Galway, Galway, Ireland. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.958975; this version posted February 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 ABSTRACT 2 3 The ascidian, S. adareanum, from the Antarctic Peninsula near Anvers Island, is known to 4 produce a bioactive compound, palmerolide A (PalA) that has specific activity to melanoma, a 5 particularly invasive and metastatic form of skin cancer.