Dissecting the Microbiome of a Polyketide-Producing Ascidian Across the Anvers Island
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[Article] JMLS
한국해양생명과학회지[Journal of Marine Life Science] June 2021; 6(1): 9-22 [Article] JMLS http://jmls.or.kr Bacterial Communities from the Water Column and the Surface Sediments along a Transect in the East Sea Jeong-Kyu Lee, Keun-Hyung Choi* Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Korea Corresponding Author We determined the composition of water and sediment bacterial assemblages from the Keun-Hyung Choi East Sea using 16S rRNA gene sequencing. Total bacterial reads were greater in surface waters (<100 m) than in deep seawaters (>500 m) and sediments. However, total OTUs, Department of Marine Environmental bacterial diversity, and evenness were greater in deep seawaters than in surface waters Science, Chungnam National University, with those in the sediment comparable to the deep sea waters. Proteobacteria was the Daejeon 34134, Korea most dominant bacterial phylum comprising 67.3% of the total sequence reads followed E-mail : [email protected] by Bacteriodetes (15.8%). Planctomycetes, Verrucomicrobia, and Actinobacteria followed all together consisting of only 8.1% of the total sequence. Candidatus Pelagibacter ubique considered oligotrophic bacteria, and Planctomycetes copiotrophic bacteria showed an Received : March 22, 2021 opposite distribution in the surface waters, suggesting a potentially direct competition for Revised : April 12, 2021 available resources by these bacteria with different traits. The bacterial community in the Accepted : April 26, 2021 warm surface waters were well separated from the other deep cold seawater and sediment samples. The bacteria exclusively associated with deep sea waters was Actinobacteriacea, known to be prevalent in the deep photic zone. The bacterial group Chromatiales and Lutibacter were those exclusively associated with the sediment samples. -
Complete Genome Sequence of Lutibacter Profundi LP1T Isolated
Wissuwa et al. Standards in Genomic Sciences (2017) 12:5 DOI 10.1186/s40793-016-0219-x SHORT GENOME REPORT Open Access Complete genome sequence of Lutibacter profundi LP1T isolated from an Arctic deep- sea hydrothermal vent system Juliane Wissuwa1,2, Sven Le Moine Bauer1,2, Ida Helene Steen1,2 and Runar Stokke1,2* Abstract Lutibacter profundi LP1T within the family Flavobacteriaceae was isolated from a biofilm growing on the surface of a black smoker chimney at the Loki’s Castle vent field, located on the Arctic Mid-Ocean Ridge. The complete genome of L. profundi LP1T is the first genome to be published within the genus Lutibacter. L. profundi LP1T consists of a single 2,966,978 bp circular chromosome with a GC content of 29.8%. The genome comprises 2,537 protein-coding genes, 40 tRNA species and 2 rRNA operons. The microaerophilic, organotrophic isolate contains genes for all central carbohydrate metabolic pathways. However, genes for the oxidative branch of the pentose-phosphate-pathway, the glyoxylate shunt of the tricarboxylic acid cycle and the ATP citrate lyase for reverse TCA are not present. L. profundi LP1T utilizes starch, sucrose and diverse proteinous carbon sources. In accordance, the genome harbours 130 proteases and 104 carbohydrate-active enzymes, indicating a specialization in degrading organic matter. Among a small arsenal of 24 glycosyl hydrolases, which offer the possibility to hydrolyse diverse poly- and oligosaccharides, a starch utilization cluster was identified. Furthermore, a variety of enzymes may be secreted via T9SS and contribute to the hydrolytic variety of the microorganism. Genes for gliding motility are present, which may enable the bacteria to move within the biofilm. -
Lutibacter Holmesii Sp. Nov., a Marine Bacterium of the Family
International Journal of Systematic and Evolutionary Microbiology (2015), 65, 3991–3996 DOI 10.1099/ijsem.0.000525 Lutibacter holmesii sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius, and emended description of the genus Lutibacter Olga I. Nedashkovskaya,1,2 Stefanie Van Trappen,3 Natalia V. Zhukova2,4 and Paul De Vos3 Correspondence 1G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Olga I. Nedashkovskaya Academy of Sciences, Prospekt 100 Let Vladivostoku 159, 690022 Vladivostok, Russia [email protected] 2Far Easten Federal University, Sukhanova St. 8, 690091 Vladivostok, Russia or 3BCCM/LMG Bacteria Collection, and Laboratory of Microbiology, Ghent University, Ledeganck- [email protected] straat 35, B-9000 Ghent, Belgium 4A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Science, Pal’chevskogo St. 17, 690032 Vladivostok, Russia Seven Gram-staining-negative, strictly aerobic, pale-yellow-pigmented, rod-shaped and non- motile strains were isolated from the sea urchin Strongylocentrotus intermedius collected from Troitsa Bay, Sea of Japan. Phylogenetic analyses based on 16S rRNA gene sequences showed that these isolates were affiliated with the family Flavobacteriaceae. The novel isolates showed 99.9–100 % 16S rRNA gene sequence similarity to each other and were closely related to the type strains of the recognized members of the genus Lutibacter with sequence similarities of 95.8–98.4 %. The G+C content of the genomic DNA was 35–36 mol%. DNA–DNA relatedness among the sea urchin isolates was 95–99 % and between strain KMM 6277T and its most closely related type strains, Lutibacter agarilyticus KCTC 23842T and Lutibacter litoralis JCM T 13034 , was 38 and 27 %, respectively.