Neural Natural Language Processing for Unstructured Data in Electronic
Neural Natural Language Processing for Unstructured Data in Electronic Health Records: a Review Irene Li, Jessica Pan, Jeremy Goldwasser, Neha Verma, Wai Pan Wong Muhammed Yavuz Nuzumlalı, Benjamin Rosand, Yixin Li, Matthew Zhang, David Chang R. Andrew Taylor, Harlan M. Krumholz and Dragomir Radev {irene.li,jessica.pan,jeremy.goldwasser,neha.verma,waipan.wong}@yale.edu {yavuz.nuzumlali,benjamin.rosand,yixin.li,matthew.zhang,david.chang}@yale.edu {richard.taylor,harlan.krumholz,dragomir.radev}@yale.edu. Yale University, New Haven CT 06511 Abstract diagnoses, medications, and laboratory values in fixed nu- Electronic health records (EHRs), digital collections of pa- merical or categorical fields. Unstructured data, in contrast, tient healthcare events and observations, are ubiquitous in refer to free-form text written by healthcare providers, such medicine and critical to healthcare delivery, operations, and as clinical notes and discharge summaries. Unstructured data research. Despite this central role, EHRs are notoriously dif- represent about 80% of total EHR data, but unfortunately re- ficult to process automatically. Well over half of the informa- main very difficult to process for secondary use[255]. In this tion stored within EHRs is in the form of unstructured text survey paper, we focus our discussion mainly on unstruc- (e.g. provider notes, operation reports) and remains largely tured text data in EHRs and newer neural, deep-learning untapped for secondary use. Recently, however, newer neural based methods used to leverage this type of data. network and deep learning approaches to Natural Language In recent years, artificial neural networks have dramati- Processing (NLP) have made considerable advances, outper- cally impacted fields such as speech recognition, computer forming traditional statistical and rule-based systems on a vision (CV), and natural language processing (NLP) within variety of tasks.
[Show full text]