I. Abstract Ii. Summary

Total Page:16

File Type:pdf, Size:1020Kb

I. Abstract Ii. Summary ËeaÖch fÓÖ ChaÖѸ ChaÖÑ¹ËØÖaÒge aÒd BÓØØÓÑ aÒd BÓØØÓÑ¹ËØÖaÒge ÈeÒØaÕÙaÖk BaÖÝÓÒ× aÒd 4¹ÉÙaÖk Åe×ÓÒ× iÒ È¹ÈbaÖ CÓÐÐi×iÓÒ× aØ CDF AÖie BÓ dek¸ YeÓÒ¹Ëei ChÙÒg¸ GeÙÑ BÓÒg YÙ DeÔaÖØÑeÒØ Óf ÈhÝ×ic× aÒd AרÖÓÒÓÑݸ ÍÒiÚeÖ×iØÝ Óf ÊÓcheרeÖ¸ ÊÓcheרeÖ¸ ÆY ½46¾7 ÍÒ¹Ãi YaÒg DeÔaÖØÑeÒØ Óf ÈhÝ×ic× aÒd EÒÖicÓFeÖÑi ÁÒרiØÙØe¸ ÍÒiÚeÖ×iØÝ Óf ChicagÓ¸ ChicagÓ¸ ÁÄ EÑaiÐ×: BÓ dek@Ôa׺ÖÓ cheרeÖºedÙ¸ Ý×chÙÒg@fÒaкgÓÚ¸ gbÝÙ@fÒaкgÓÚ¸ ÙkÝaÒg@fÒaкgÓÚ CDF CÓÐ ÐabÓÖaØiÓÒ ÆÓØe 687½ B¹GÖÓÙÔº ÈÊEÄÁÅÁÆAÊYdÖafØ ½º5 ´FebÖÙaÖÝ ¾¿¸ ¾¼¼4µ Áº ABËÌÊACÌ Ïe ×eaÖch fÓÖ eÜÓØic ÑÙÐØiÕÙaÖk רaØe× Ù×iÒg Øhe high רaØiרic× chaÖÑ ×aÑÔÐe× ØakeÒ ÛiØh Øhe CDF ÊÙÒÁ Á deØecØÓÖ Ù×iÒg Øhe ËiÐicÓÒ ÎeÖØeÜ ÌÖiggeÖ¸ aÒd ¬ÒaÐ ×ØaØe ÔaÖØicÐe ÁD iÒcÐÙdiÒg ´chaÖge ¼µ; ØiÑe Óf ­ighغ ÏeiÒÚeרigaØe Øhe fÓÐÐÓÛiÒg ¬ÒaÐ ×ØaØe×: ÈÖÓØÓÒ ´ÓÖ ÓÖ Ãµ ÔÐÙ× D × · È Ö ÓØÓÒ´ÓÖ ÓÖ Ãµ ÔÐÙ× D ´chaÖge ¾µ Ña×× ×Ô ecØÖa ´aÒd cÓÖÖe×Ô ÓÒdiÒg aÒØiÔaÖØicÐe×µ; ÈÖÓØÓÒ × · ´ÓÖ ÓÖ Ãµ ÔÐÙ× D ´chaÖge ¼µ; È Ö ÓØÓÒ´ÓÖ ÓÖ Ãµ ÔÐÙ× D ´chaÖge ¾µ Ña×× ×Ô ecØÖa ´aÒd cÓÖÖe×Ô ÓÒdiÒg aÒØiÔaÖØicÐe×µ Ïe ÐÓ Ók aØ ×ØaØe× iÒ b ÓØh Øhe ×hÓÖØ ÐiÚed ´ÄÜÝ Ðe×× ØhaÒ ½¼¼ ÓÖ 7¼¼ ÑicÖÓÒµ aÒd ÐÓÒg ÐiÚed caØegÓÖie× ´ÄÜÝ gÖeaØeÖ ØhaÒ 7¼¼ ÑicÖÓÒµº Á Áº ËÍÅÅAÊY ÁÒ ÓÖdeÖ ØÓ ×eaÖch fÓÖ eÜÓØic ÈeÒØaÕÙaÖk aÒd fÓÙÖ¹ÕÙaÖk רaØe× ÛiØh Ña××iÚe ÕÙaÖk׸ ÛeÒeed ØÓ di×cÓÚeÖ Øhe Ña×× ÖaÒge¸ ÐifeØiÑe aÒd decaÝ ÑÓ de׺ ÁÒ Øhi× ÒÓØe¸ Ûe ÓÙØÐiÒe Øhe ÑÓØiÚaØiÓÒ aÒd Øhe ÔÖÓ cedÙÖe fÓÖ a ×eaÖch fÓÖ ÈeÒØaÕÙaÖk× aÒd eÜÓØic Ñe×ÓÒ׺ Ïe ¬Öר ×eaÖch fÓÖ ×ØaØe× iÒ Øhe chaÖÑ ×ecØÓÖº Áf ×Ùch רaØe× aÖe fÓÙÒd¸ Øhe Ób×eÖÚed Ña××e× aÒd decaÝ ÑÓ de× caÒ b e Ù×ed ØÓ ÔÖedicØ Øhe Ña××e× iÒ Øhe b ×ecØÓÖº ´Ïe ØheÒ ÔÐaÒ ØÓ ×eaÖch fÓÖ ÈeÒØÕÙaÖk× iÒ Øhe b ×ecØÓÖµº ÁÒ Øhe chaÖÑ ×ecØÓÖ Ûe ¬Öר fÓ cÙ× ÓÒ Øhe fÓÐÐÓÛiÒg ¬ÒaÐ ×ØaØe× ´b ÓØh ÔÖÓÑÔØ ×hÓÖØ ÐiÚed aÒd aÐ×Ó ÐÓÒg ÐiÚedµ: · ¼ ¼ =c×ÙÙd ´if ×hÓÖØ ÐiÚedµ decaÝ× ØÓ ´ÈÖÓØÓÒ D µaÒd´AÒØi È Ö ÓØÓÒ D µº ´ÁÒ ´aµ ¦ = È × × c c× ÑÓ deÐ× Ûhich ÔÖedicØ ØhaØ ÈeÒØaÕÙaÖk× ÛiØh b ÓØh × aÒd c ÕÙaÖk× aÖe ÐÓÒg ÐiÚed¸ iØ i× caÐÐed Øhe ¼ Ì aÒd dÓ e× ÒÓØ decaÝ ØÓ ØhÓ×e chaÒÒeÐ×µ × ·· · = ´bµ È × cÙÙd ´if ×hÓÖØ ÐiÚedµ decaÝ× ØÓ ´ÈÖÓØÓÒD µaÒd´AÒØi È Ö ÓØÓÒ D µº ´ÁÒ ÑÓ deÐ× × × ×c ·· Ûhich ÔÖedicØ ØhaØ ÈeÒØaÕÙaÖk× ÛiØh b ÓØh × aÒd c ÕÙaÖk× aÖe ÐÓÒg ÐiÚed¸ iØ i× caÐÐed Øhe F µ · ¼ ¼ =cdÙÙd ´if ×hÓÖØ ÐiÚedµ decaÝ× ØÓ ´È Ö ÓØÓÒ D µaÒd´AÒØi È Ö ÓØÓÒ ÔÐÙ× D µº ´cµ ¢ = È c cd ´iÒ ÑÓ deÐ× Ûhich ÔÖedicØ ØhaØ ÈeÒØaÕÙaÖk× ÛiØh b ÓØh × aÒd c ÕÙaÖk× aÖe ÐÓÒg ÐiÚed¸ Øhi× ×ØaØe i× ÒÓØ רabÐe ×iÒce iØ dÓ e× ÒÓØ iÒcÐÙde רÖaÒge ÕÙaÖk× µ ·· · ´dµ È dcÙÙd ´if ×hÓÖØ ÐiÚedµ decaÝ× ØÓ ´È Ö ÓØÓÒ D µaÒd´AÒØi È Ö ÓØÓÒ ÔÐÙ× D µº ´iÒ = dc ÑÓ deÐ× Ûhich ÔÖedicØ ØhaØ ÈeÒØaÕÙaÖk× ÛiØh b ÓØh × aÒd c ÕÙaÖk× aÖe ÐÓÒg ÐiÚed¸ Øhi× ×ØaØe i× ÒÓØ רabÐe ×iÒce iØ dÓ e× ÒÓØ iÒcÐÙde רÖaÒge ÕÙaÖk× µ ´eµ Ïe aÐ×Ó ÔÐaÒ ØÓ ÐÓ Ók fÓÖ Øhe cÓÖÖe×Ô ÓÒdiÒg רaØe× iÒ Øhe b¹ÕÙaÖk ×ecØÓÖº A× a cÓÒØÖÓÐ ×aÑÔÐe¸ Ûe Ù×e Øhe ab ÓÚechaÒÒeÐ× ´ÛiØh a ÔÖÓØÓÒ ÖeÔÐaced ÛiØh a ÔiÓÒ ÓÖ a kaÓÒµº ¼£ Ìhi× aÐÐÓÛ× Ù× ØÓ check ÓÙÖ ÔÖÓ cedÙÖe ØÓ ØÓ Ñake×ÙÖeØhaØÛe Ób×eÖÚed Øhe kÒÓÛÒ ×ØaØe× D · · ¼ ¼ ´¾46¼µ ´ a ×hÓÖØ ÐiÚed רaØe decaÝiÒg ØÓ D aÒd D µa×ÛeÐÐ a× Øhe B aÒd B Ñe×ÓÒ× × ´ÐÓÒg ÐiÚed רaØe× decaÝiÒg ØÓ DÓÖ D µº ÁÒ addiØiÓÒ¸ Øhi× di¹Ñe×ÓÒ ×aÑÔÐe caÒ b e Ù×ed ØÓ × ÐÓ Ók fÓÖ eÜÓØic fÓÙÖ¹ÕÙaÖk רaØe׺ FÓÖ eÜaÑÔÐe eÜÓØic רaØe× ÛiØh chaÖÑ aÒd רÖaÒgeÒe×× iÒ Øhe · · · chaÒÒeÐ× ÓÖ Ã ÔÐÙ× D ´chaÖge ¼µ aÒd ÓÖ Ã ÔÐÙ× D ´chaÖge ¾µº × × A× ×hÓÛÒ iÒ ÌabÐe ½¸ eaÖÐÝ chiÖaÐ ÑÓ deÐ× ÔÖedicØed ØhaØ ÈeÒØaÕÙaÖk× aÖe ÚeÖÝ Ña××iÚeaÒd Ûide aÒd diÆcÙÐØ ØÓ ×ee [½5]º ËÓÑe ÑÓ deÐ× ÔÖedicØ ØhaØ ×ÓÑe aÖe ÙÒרabÐe¸ aÒd a feÛ aÖe ÒaÖÖÓÛ ½ ÐÓÒg¹ÐiÚed aÒd ÚeÖÝ ÑÙchbeÐÓÛ ØhÖe×hÓÐd [½¿]º ÇØheÖ ÑÓ deÐ× ÔÖedicØ ØhaØ Øhe aÖe ÒaÖÖÓÛ ×hÓÖØ¹ ¼ ¼ ÐiÚed ´¾¼ ÅeÎ ÛidØhµ aÒd ÛiØh Ña××e× jÙר ab ÓÚe ØhÖe×hÓÐd [½¾¸6¸7]º FÓÖ eÜaÑÔÐe Ìhe ¦ ==È c c× =c×Ùdd i× eרiÑaØed ØÓ b e ¿545 ÅeÎ iÒ ÓÐd ChiÖaÐ [½5] ÑÓ deÐ× aÒd ØheÖefÓÖe ÚeÖÝ Ûideº AÒÓØheÖ ¼ רaØe ÛiØh Øhe ×aÑe ÕÙaÖk cÓÑÔ Ó×iØiÓÒ i× caÐÐed Øhe Ì aÒd i× eרiÑaØed ØÓ b e ¾58¼ ÅeÎ aÒd × ×ØabÐe iÒ Øhe ÑÓ deÐ Óf ËØeÛaÖØ¸ Ïe××ÐiÒg aÒd Ïi×e [½¿]º ÁÒ Øhi× ÑÓ deи ×iÒce Øhe Ña×× Óf ¾58¼ ÅeÎ i× ÑÙch b eÐÓÛ ÔÖ ÓØÓÒ D ØhÖe×hÓÐd Óf ¾9¼7 Åeθ Øhi× ×ØaØe i× ÐÓÒg ÐiÚedº × ¼ ÏiØhiÒ Øhe diÕÙaÖk ÑÓ deÐ Óf ËhÙÖÝak [½¾] ¦ Ûa× eרiÑaØed ØÓ b e jÙר b eÐÓÛ ØhÖe×hÓÐd aØ c ¾88¼ ÅeÎ ´ÛheÖe iØ Ûa× ÐÓ Óked fÓÖ aÒd ÒÓØ fÓÙÒd [4] bÝ E79½µº Ìhi× ×aÑe רaØe i× eרiÑaØed bÝ iÒ ÄiÔkiÒ³× ÑÓ deÐ [½¾] ØÓ b e aÖÓÙÒd ¿½65 ÅeÎ aÒd ØheÖefÓÖe ¾¼ ÅeÎ Ûide aÒd ab ÓÚe ØhÖe×hÓÐdº EÚeÒ ÛiØhiÒ ØhÓ×e ×Ô eci¬c ÑÓ deÐ׸ Øhe ÙÒceÖØaiÒØÝ ÓÒ Øhe ÔÖedicØed Ña×× i× ab ÓÙØ ½¼¼ Åeκ ÁÒ addiØiÓÒ¸ ×ÓÑe ÑÓ deÐ× ÔÖedicØ Ô Ó×iØiÚe ÔaÖiØÝ¸ aÒd ×ÓÑe ÒegaØiÚe ÔaÖiØÝ¸ aÒd ×ÓÑe b ÓØh [½4]º Áf ÈeÒØaÕÙaÖk× eÜiר¸ ×ÓÑe ÑÓ deÐ× ÔÖedicØ ÚaÖiÓÙ× higheÖ Ña×× eÜciØaØiÓÒ× [½4] Óf di«eÖeÒØ aÒgÙÐaÖ ÑÓÑeÒØÙÑ ×ØaØe× ´×Ó eachÈeÒØaÕÙaÖk i× a ×eÖie× Óf רaØe×µº ËÓÑe ÑÓ deÐ× ÔÖedicØ ØhaØ ÓÒÐÝ a ceÖØaiÒ cÓÑbiÒaØiÓÒ Óf ÕÙaÖk× i× ×ØabÐe ´eºgº diÕÙaÖk× aÖe ÒÓØ b ÓÙÒd if ØheÖe aÖe ØÛÓ ÕÙaÖk× Óf Øhe ×aÑe kiÒdµº AÐÐ ÑÓ deÐ× ÔÖedicØ ØhaØ ØheÖe cÓÙÐd b e ÑÙÐØiÔÐe cÐÓ×eÐÝ ×Ôaced רaØe× ab ÓÚe ØhÖe×hÓÐdº BÐiÒd ×eaÖche× ´Ðike E79½µ aÖe ÚeÖÝ gÓ Ó d iÒ ×eØØiÒg gÓ Ó d ÐiÑiØ× ÓÒ ÔaÖØicÐe× ÛiØhiÒ a ×Ô eci¬c ÑÓ deÐ ´ÓÖ ÐÓ ÓkiÒg fÓÖ ÖaÖe decaÝ ÑÓ de ÛheÖe ÛekÒÓÛ ÛheÖe ØÓ ÐÓ Ókµº ÀÓÛeÚeÖ¸ ÒÓ ÒeÛ ÔaÖØicÐe ha× eÚeÖ b eeÒ di×cÓÚeÖed Ù×iÒg a bÐiÒd ×eaÖchº ÌheÖefÓÖe¸ Ûe ¬Öר dÓ a geÒeÖaÐ ×eaÖch Ù×iÒg cÙØ× Ûhich aÖe ba×ed ÓÒ geÒeÖaÐ ÔhÝ×ic× aÖgÙÑeÒØ× aÒd aÖe ÒÓØ deÔ eÒdeÒØ ÓÒ Øhe ÔaÖiØÝ¸ ×ÔiÒ aÒd Ña×× ÛiØhiÒ aÒÝ ×Ô eci¬c ÑÓ deк Ïe ÔÐaÒØÓÐÓÓkaØeach Óf Øhe ÖegiÓÒ× iÒ ×eÕÙeÒce ×iÒce each Ña×× ÖegiÓÒ iÑÔÐie× di«eÖeÒØ ÛidØh»ÐifeØiÑe aÒd di«eÖeÒØ ¬ÒaÐ ×ØaØe decaÝ ÑÓ de׺ Ïe רaÖØ ÛiØh a ×eaÖch fÓÖ ÒaÖÖÓÛ ×ØaØe× ´¾¼ ÅeÎ Ûide רaØe×µ jÙר ab ÓÚe ØhÖe×hÓÐd¸ a× ÛeÐÐ a× ÛideÖ ×ØaØe× aØ higheÖ Ña××e× ´ÛhichÛÓÙÐd Ó ccÙÖ a× higheÖ aÒgÙÐaÖ ÑÓÑeÒØÙÑ ×ÔiÒ ÓÖ ÖadiaÐ eÜciØaØiÓÒ×µº Ìhi× Ña× ÖegiÓÒ ÖegiÓÒ i× faÚÓÖed bÝ Øhe Øhe cÓÒרiØÙeÒØ diÕÙaÖk¹ØÖiÕÙaÖk ÑÓ deк ÏiØhiÒ Øhe ÄiÔkiÒ diÕÙaÖk¹ØÖiÕÙaÖk ÈeÒØaÕÙaÖk ÑÓ deÐ Ûe eרiÑaØe Øhe Ña×× ÖegiÓÒ ØhaØ i× Óf · iÒØeÖeר bÝ a××ÙÑiÒg ØhaØ Øhe ÒeÛÐÝ ÖeÔ ÓÖØed רaØe ¢ ´½54¼µ i× Øhe × ÙÙdd ÈeÒØaÕÙaÖk רaØeº × Í×iÒg Øhi× Ûe eרiÑaØe Øhe fÓÐÐÓÛiÒg Ña××e× fÓÖ ChaÖÑ ÈeÒØaÕÙaÖk×: ¼ ´aµ Ïe Ù×e ÀÙaÒg eרiÑaØe Ù×iÒg ÄikÔkiÒ³× ÑÓ deÐ Óf ¿½65 ÅeÎ fÓÖ ¦ º´Ïe ØheÒ cÓÖÖecØ iØ c ¼ ¼ ×iÒce iØ ÓÚeÖeרiÑaØe× Øhe ¢ ´½54¼µ ØÓ b e ½59¾ Åeεº ÌheÖefÓÖe¸ Ûe eרiÑaØe ØhaØ Øhe ¦ =È c c c× = c×Ùdd ×hÓÙÐd i× aÖÓÙÒd ¿½¾¼ ÅeÎ aÒd decaÝ ØÓ ÈÖÓØÓÒ ÔÐÙ× D ´aÒd Øhe cÓÖÖe×Ô ÓÒdiÒg × aÒØiÔaÖØicÐeµ; ·· =×cÙdd ÑaÝ b e aÖÓÙÒd ¿¾¼¼ ÅeÎ aÒd decaÝØÓ ´bµ Ïe eרiÑaØe ØhaØ ´if iØ eÜiר׵ Øhe È ×c · ÈÖÓØÓÒ ÔÐÙ× D ´aÒd Øhe cÓÖÖe×Ô ÓÒdiÒg aÒØiÔaÖØicÐeµ; × ¼ ¼ ´cµ Í×iÒg ÀÙaÒg aÒd CheÙÒg Ûe eרiÑaØe ØhaØ Øhe ¢ = È cdÙÙd ×hÓÙÐd b e aÖÓÙÒd ¾98¼ = c cd ÅeÎ aÒd decaÝ ØÓ ÈÖÓØÓÒ ÔÐÙ× D ´aÒd Øhe cÓÖÖe×Ô ÓÒdiÒg aÒØiÔaÖØicÐeµ; ·· = ´dµ Ïe eרiÑaØe ØhaØ if iØ eÜiר׏ ØhaØ Øhe È dcÙÙd ×hÓÙÐd b e aÖÓÙÒd ¿¼6¼ ÅeÎ aÒd decaÝ dc · ØÓ ÈÖÓØÓÒ ÔÐÙ× D ´aÒd Øhe cÓÖÖe×Ô ÓÒdiÒg aÒØiÔaÖØicÐeµº ÏeiÒÚeרigaØe רaØe× iÒ b ÓØh Øhe ×hÓÖØ ÐiÚed aÒd ÐÓÒg ÐiÚed caØegÓÖie׺ Áf Øhe ab ÓÚe iÒdicaØiÓÒ i× cÓÒ¬ÖÑed iÒ Øhe ChaÖÑ ×ecØÓÖ¸ ØheÒ ÓÒe cÓÙÐd eרiÑaØe Øhe fÓÐÐÓÛiÒg Ña××e× fÓÖ Øhe cÓÖÖe×Ô ÓÒdiÒg ÈeÒØaÕÙaÖk רaØe× iÒ Øhe b ×ecØÓÖ: · · ´aµ Ìhe ¢ =È =bÙÙdd ´aÒd Øhe cÓÖÖe×Ô ÓÒdiÒg aÒØiÔaÖØicÐeµ i× eרiÑaØed bÝ ÄiÔkiÒ ØÓ b e b b b e aÖÓÙÒd 64¼¼ ÅeÎ ; · · = b×Ùdd ´aÒd Øhe cÓÖÖe×Ô ÓÒdiÒg aÒØiÔaÖØicÐeµ i× eרiÑaØed bÝ ÄiÔkiÒ ØÓ b e ´bµ Ìhe ¦ = È b b× aØ 657¼ ÅeÎ ´Øhi× i× cÐÓ×e ØÓ ÓÙÖ eרiÑaØe iÒ Øhe aÔÔ eÒdiÜ ØhaØ iØ ×hÓÙÐd b e aÖÓÙÒd 65¿5 Åeεº ËiÒce Øhe×e ÔaÖØicÙÐaÖ ØÛÓ b Ó dÝ ¬ÒaÐ ×ØaØe decaÝchaÒÒeÐ× aÒd Ña×× ÖegiÓÒ× aÔÔ eaÖ ØÓ b e ÔÖÓÑi×iÒg¸ Ûe aÖe dÓiÒg deØaiÐed aÒaÐÝ×i× iÒcÐÙdiÒg b ÓØh a ×ide baÒd aÒaÐÝ×i׸ aÒd ×eÚeÖaÐ decaÝ ÑÓ de× Óf chaÖÑ Ñe×ÓÒ׺ ¾ cÓÑÔÓ×: Å a××½ Åa××¾ Åa×׿ Å a××4 Åa××5 Åa××6 Ña××7 ØhÖ e×h ÒaÑe× ½chiÖ aÐ 97 ¾cheÙÒg ¿ÄiÔk iÒ 4Âaffe 5Ë hÙÖ Ý ak 6רabÐ e 7Ð aØØice D ecaÝ chaÖ g e GeÒÓÚ e×e diÕ ÙaÖ k ¼4 À ÙaÒg ¼4 ÀÙaÒg¼4 ÀÙaÒg¼4 רeÛ aÖ d¼4 Ë a×a×i¼¿ ÑÓde ÙÙdd×´·µ ÆA ½56¾ ½59¾ ½54¼ ½76¼ ½4¿¿:¾ · · · ¢ ½54¼ È ½48½ 4¾ = ½54¼ ¾¼¼ = ½54¼ ÒÃ × ÙÙddc´¼µ ¿6¼7 ¾997 ¾99¼ ¾7½¼ ¾7¼¼ ÙÒרabÐ e ¿576 ¾8¼7 ¼ ¼ ¢ È ¾9¿8 4¾ = ¾95¼ ÄÓÓk > ¾¼¼ = ¿¿76 ÈD c c ÙÙddb´·µ 6889 64¾¾ 64¼¼ 6¼5¼ 6¼4¼ ÙÒרabÐ e 6¾½9 · · ¼ ¢ È 6¿7¼ ÄiÔk iÒ Âaffe Ë hÙÖ Ý ak Ë ØeÛ aÖ Ø Ë a×a×i ÈB b b ÙÙ×dc´¼µ ¿545 ¿½65 ¾87¼ ¾88¼ ¾58¼ ¾9¼7 ¼ ¼ ¦ È 4¾ = ¿½¾¿ Ì ÄÓÓk > ÈD × × c× ÙÙ×db´·µ 68¾7 657¼ 6¾½¼ 6¾¾¼ 59¾¼ 6¿49 · · ¼ ¦ È C heÙÒg ÄiÔk iÒ Âaffe Ë hÙÖ Ý ak Ë ØeÛ aÖ Ø Ë a×a×i ÈB × b b× Ùd×dc´¹µ ¿545 ¿½65 ¾87¼ ¾88¼ ¾58¼ ¿¼57 ¼ ¦ È 4¾ = ¿½¾¿ Ì ÆD c × × c× Ùd×db ´¼µ 68¾7 657¼ 6¾½¼ 6¾¾¼ 59¾¼ 6¿¼9 ¼ ¼ ¼ ¦ È C heÙÒg ÄiÔk iÒ Âaffe Ë hÙÖ Ý ak Ë ØeÛ aÖ Ø Ë a×a×i ÆB × b b× Ùd××c´¹µ ¿6¿¼ ¿¿4¼ ¿½¿5 ¿¼6¼ ¾77¼ ¿¼84 ¼ D ¤ È 4¾ = ¿¾98 Ì £ × c ×× × c×× Ùd××b ´¼µ 69½½ 674¼ 6475 64¼¼ 6½¼¼ 6485 · · ¼ ¼ ¼ ¤ È Ê £ B ×× × × b b× ÙÙ××c´¼µ ¿¿4¼ ÙÒרabÐ e ¼ ¼ ¤ È 4¾ = ¿¾98 c c×× ÙÙ××b ´¼µ 674¼ ÙÒרabÐ e · · ¤ È C heÙÒg ÄiÔk iÒ Âaffe Ë hÙÖ Ý ak Ë ØeÛ aÖ Ø Ë a×a×i b b×× dd××c´ßµ ¿¿4¼ ÙÒרabÐ e ¤ È 4¾ = ¿¾98 ¦ D c × × c×× dd××b ´¹µ 674¼ ÙÒרabÐ e 6559 · ¼ ¤ È ¦ B × × b b×× Ù×××c´¹µ ¿94¼ ÙÒרabÐ e È ¤ D × c×× Ù×××b´·µ 7¾¾¿ ÙÒרabÐ e · ¼ È C heÙÒg ÄiÔk iÒ Âaffe Ë hÙÖ Ý ak Ë ØeÛ aÖ Ø Ë a×a×i ¤ B × b××× d×cdÙ´¹µ רabÐ e? È F × Ùc× · · · ×ÙcÙd´··µ ¿46¼; ¿54½ Ú:ÒaÖÖÓÛ £ ÑaÝ be´ccÙµ רabÐ e? à c ·· ·· · · ËEÄEX ? È ¿78¼ ¾6Å eÎ Û ide ×eeÒ? ÑaÝ be´ccÙ£µ F ¦ D × × dc× d×c×Ù´¹µ רabÐ e? È F ×× Ùc×× Ù×c×Ù´·µ רabÐ e? · · È F ×× Ùc×× ÙdcÙ× ´··µ ¿¾¼¼ רabÐ e? ¾9¼6 ·· ·· · È B Ódek F ÄÓÓk > ÈD × ×c Ùdcd×´·µ רabÐ e? ¾9¼6 · · · È F ÆD × ×c ÙdcÙd´··µ ¿¼6¼ ÙÒרabÐ e ÒÓÒ eÜÓØic ¾8¼7 ·· · ÙcÙ´aÐ ×Óµ È B Ódek ÄÓÓk > ÈD dc · · ×Ùcdd´·µ ¿44¿; ¿5¾¼ Ú:ÒaÖÖÓÛ £ ÑaÝ be´ccdµ ÙÒרabÐ e? à c · · ¼ D ËEÄEX ? È ×eeÒ? ÑaÝ be´ccdµ £ × dc× ÌABÄE Áº ÈeÒØaÕÙaÖk רaØe× iÒ ÚaÖiÓÙ× ØheÓÖeØicaÐ ÑÓ deÐ׺ ¿ IY Iz q {4}s¯ 22 uuuus¯ 2+3 uuuds¯ 1+2 uudds¯ 2+1 uddds¯ −10 dddds¯
Recommended publications
  • The Particle Zoo
    219 8 The Particle Zoo 8.1 Introduction Around 1960 the situation in particle physics was very confusing. Elementary particlesa such as the photon, electron, muon and neutrino were known, but in addition many more particles were being discovered and almost any experiment added more to the list. The main property that these new particles had in common was that they were strongly interacting, meaning that they would interact strongly with protons and neutrons. In this they were different from photons, electrons, muons and neutrinos. A muon may actually traverse a nucleus without disturbing it, and a neutrino, being electrically neutral, may go through huge amounts of matter without any interaction. In other words, in some vague way these new particles seemed to belong to the same group of by Dr. Horst Wahl on 08/28/12. For personal use only. particles as the proton and neutron. In those days proton and neutron were mysterious as well, they seemed to be complicated compound states. At some point a classification scheme for all these particles including proton and neutron was introduced, and once that was done the situation clarified considerably. In that Facts And Mysteries In Elementary Particle Physics Downloaded from www.worldscientific.com era theoretical particle physics was dominated by Gell-Mann, who contributed enormously to that process of systematization and clarification. The result of this massive amount of experimental and theoretical work was the introduction of quarks, and the understanding that all those ‘new’ particles as well as the proton aWe call a particle elementary if we do not know of a further substructure.
    [Show full text]
  • Planck Mass Rotons As Cold Dark Matter and Quintessence* F
    Planck Mass Rotons as Cold Dark Matter and Quintessence* F. Winterberg Department of Physics, University of Nevada, Reno, USA Reprint requests to Prof. F. W.; Fax: (775) 784-1398 Z. Naturforsch. 57a, 202–204 (2002); received January 3, 2002 According to the Planck aether hypothesis, the vacuum of space is a superfluid made up of Planck mass particles, with the particles of the standard model explained as quasiparticle – excitations of this superfluid. Astrophysical data suggests that ≈70% of the vacuum energy, called quintessence, is a neg- ative pressure medium, with ≈26% cold dark matter and the remaining ≈4% baryonic matter and radi- ation. This division in parts is about the same as for rotons in superfluid helium, in terms of the Debye energy with a ≈70% energy gap and ≈25% kinetic energy. Having the structure of small vortices, the rotons act like a caviton fluid with a negative pressure. Replacing the Debye energy with the Planck en- ergy, it is conjectured that cold dark matter and quintessence are Planck mass rotons with an energy be- low the Planck energy. Key words: Analog Models of General Relativity. 1. Introduction The analogies between Yang Mills theories and vor- tex dynamics [3], and the analogies between general With greatly improved observational techniques a relativity and condensed matter physics [4 –10] sug- number of important facts about the physical content gest that string theory should perhaps be replaced by and large scale structure of our universe have emerged. some kind of vortex dynamics at the Planck scale. The They are: successful replacement of the bosonic string theory in 1.
    [Show full text]
  • Absence of Landau Damping in Driven Three-Component Bose–Einstein
    www.nature.com/scientificreports OPEN Absence of Landau damping in driven three-component Bose– Einstein condensate in optical Received: 19 June 2017 Accepted: 10 July 2018 lattices Published: xx xx xxxx Gavriil Shchedrin, Daniel Jaschke & Lincoln D. Carr We explore the quantum many-body physics of a three-component Bose-Einstein condensate in an optical lattice driven by laser felds in V and Λ confgurations. We obtain exact analytical expressions for the energy spectrum and amplitudes of elementary excitations, and discover symmetries among them. We demonstrate that the applied laser felds induce a gap in the otherwise gapless Bogoliubov spectrum. We fnd that Landau damping of the collective modes above the energy of the gap is carried by laser-induced roton modes and is considerably suppressed compared to the phonon-mediated damping endemic to undriven scalar condensates Multicomponent Bose-Einstein condensates (BECs) are a unique form of matter that allow one to explore coherent many-body phenomena in a macroscopic quantum system by manipulating its internal degrees of freedom1–3. Te ground state of alkali-based BECs, which includes 7Li, 23Na, and 87Rb, is characterized by the hyperfne spin F, that can be best probed in optical lattices, which liberate its 2F + 1 internal components and thus provides a direct access to its internal structure4–11. Driven three-component F = 1 BECs in V and Λ confgurations (see Fig. 1(b) and (c)) are totally distinct from two-component BECs3 due to the light interaction with three-level systems that results in the laser-induced coherence between excited states and ultimately leads to a number of fascinating physical phenomena, such as lasing without inversion (LWI)12,13, ultraslow light14,15, and quantum memory16.
    [Show full text]
  • Physical Vacuum Is a Special Superfluid Medium
    Physical vacuum is a special superfluid medium Valeriy I. Sbitnev∗ St. Petersburg B. P. Konstantinov Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Leningrad district, 188350, Russia; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA (Dated: August 9, 2016) The Navier-Stokes equation contains two terms which have been subjected to slight modification: (a) the viscosity term depends of time (the viscosity in average on time is zero, but its variance is non-zero); (b) the pressure gradient contains an added term describing the quantum entropy gradient multiplied by the pressure. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schr¨odingerequation describing behavior of a particle into the vacuum being as a superfluid medium. Vortex structures arising in this medium show infinitely long life owing to zeroth average viscosity. The non-zero variance describes exchange of the vortex energy with zero-point energy of the vacuum. Radius of the vortex trembles around some average value. This observation sheds the light to the Zitterbewegung phenomenon. The long-lived vortex has a non-zero core where the vortex velocity vanishes. Keywords: Navier-Stokes; Schr¨odinger; zero-point fluctuations; superfluid vacuum; vortex; Bohmian trajectory; interference I. INTRODUCTION registered. Instead, the wave function represents it existence within an experimental scene [13]. A dramatic situation in physical understand- Another interpretation was proposed by Louis ing of the nature emerged in the late of 19th cen- de Broglie [18], which permits to explain such an tury. Observed phenomena on micro scales came experiment. In de Broglie's wave mechanics and into contradiction with the general positions of the double solution theory there are two waves.
    [Show full text]
  • Exploring the Stability and Dynamics of Dipolar Matter-Wave Dark Solitons
    PHYSICAL REVIEW A 93, 063617 (2016) Exploring the stability and dynamics of dipolar matter-wave dark solitons M. J. Edmonds,1 T. Bland,1 D. H. J. O’Dell,2 and N. G. Parker1 1Joint Quantum Centre Durham–Newcastle, School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom 2Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada (Received 4 March 2016; published 15 June 2016) We study the stability, form, and interaction of single and multiple dark solitons in quasi-one-dimensional dipolar Bose-Einstein condensates. The solitons are found numerically as stationary solutions in the moving frame of a nonlocal Gross Pitaevskii equation and characterized as a function of the key experimental parameters, namely the ratio of the dipolar atomic interactions to the van der Waals interactions, the polarization angle, and the condensate width. The solutions and their integrals of motion are strongly affected by the phonon and roton instabilities of the system. Dipolar matter-wave dark solitons propagate without dispersion and collide elastically away from these instabilities, with the dipolar interactions contributing an additional repulsion or attraction to the soliton-soliton interaction. However, close to the instabilities, the collisions are weakly dissipative. DOI: 10.1103/PhysRevA.93.063617 I. INTRODUCTION the atoms and their interactions using lasers as well as magnetic and electric fields. This, for example, has led to proposals to Solitary waves, or solitons, are excitations of nonlinear access exotic solitons such as in spin-orbit coupled conden- systems that possess both wavelike and particle-like qual- sates [21–23], chiral solitons in “interacting” gauge theories ities.
    [Show full text]
  • Sounds of a Supersolid A
    NEWS & VIEWS RESEARCH hypothesis came from extensive population humans, implying possible mosquito exposure long-distance spread of insecticide-resistant time-series analysis from that earlier study5, to malaria parasites and the potential to spread mosquitoes, worsening an already dire situ- which showed beyond reasonable doubt that infection over great distances. ation, given the current spread of insecticide a mosquito vector species called Anopheles However, the authors failed to detect resistance in mosquito populations. This would coluzzii persists locally in the dry season in parasite infections in their aerially sampled be a matter of great concern because insecticides as-yet-undiscovered places. However, the malaria vectors, a result that they assert is to be are the best means of malaria control currently data were not consistent with this outcome for expected given the small sample size and the low available8. However, long-distance migration other malaria vectors in the study area — the parasite-infection rates typical of populations of could facilitate the desirable spread of mosqui- species Anopheles gambiae and Anopheles ara- malaria vectors. A problem with this argument toes for gene-based methods of malaria-vector biensis — leaving wind-powered long-distance is that the typical infection rates they mention control. One thing is certain, Huestis and col- migration as the only remaining possibility to are based on one specific mosquito body part leagues have permanently transformed our explain the data5. (salivary glands), rather than the unknown but understanding of African malaria vectors and Both modelling6 and genetic studies7 undoubtedly much higher infection rates that what it will take to conquer malaria.
    [Show full text]
  • Strongly Interacting Bose-Einstein Condensates: Probes and Techniques
    Strongly Interacting Bose-Einstein Condensates: Probes and Techniques by Juan Manuel Pino II B.S. Physics, University of Florida, 2002 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2010 This thesis entitled: Strongly Interacting Bose-Einstein Condensates: Probes and Techniques written by Juan Manuel Pino II has been approved for the Department of Physics Dr. Deborah S. Jin Dr. Eric A. Cornell Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Pino II, Juan Manuel (Ph.D., Physics) Strongly Interacting Bose-Einstein Condensates: Probes and Techniques Thesis directed by Dr. Deborah S. Jin A dilute gas Bose-Einstein condensate (BEC) near a Feshbach resonance offers a system that can be tuned from the well-understood regime of weak interactions to the complex regime of strong interactions. Strong interactions play a central role in the phenomena of superfluidity in liquid He, and theoretical treatments for this regime have existed since the 1950's. However, these theories have not been experimentally tested as superfluid He offers no similar mechanism with which to tune the interactions. In dilute gas condensates near a Feshbach resonance, where interactions can be tuned, strong interactions have proven difficult to study due to the condensate's metastable nature with respect to the formation of weakly bound molecules. In this thesis, I introduce an experimental system and novel probes of the gas that have been specifically designed to study strongly interacting BECs.
    [Show full text]
  • Dynamical Excitation of Maxon and Roton Modes in a Rydberg-Dressed Bose-Einstein Condensate
    Dynamical excitation of maxon and roton modes in a Rydberg-Dressed Bose-Einstein Condensate Gary McCormack1, Rejish Nath2 and Weibin Li1 1School of Physics and Astronomy, and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, NG7 2RD, UK 2Indian Institute of Science Education and Research, Pune, 411008, India We investigate the dynamics of a three-dimensional Bose-Einstein condensate of ultracold atomic gases with a soft-core shape long-range interaction, which is induced by laser dressing the atoms to a highly excited Rydberg state. For a homogeneous condensate, the long-range interaction drastically alters the dispersion relation of the excitation, supporting both roton and maxon modes. Rotons are typically responsible for the creation of supersolids, while maxons are normally dynamically unstable in BECs with dipolar interactions. We show that maxon modes in the Rydberg-dressed condensate, on the contrary, are dynamically stable. We find that the maxon modes can be excited through an interaction quench, i.e. turning on the soft-core interaction instantaneously. The emergence of the maxon modes is accompanied by oscillations at high frequencies in the quantum depletion, while rotons lead to much slower oscillations. The dynamically stable excitation of the roton and maxon modes leads to persistent oscillations in the quantum depletion. Through a self-consistent Bogoliubov approach, we identify the dependence of the maxon mode on the soft-core interaction. Our study shows that maxon and roton modes can be excited dynamically and simultaneously by quenching Rydberg-dressed long-range interactions. This is relevant to current studies in creating and probing exotic states of matter with ultracold atomic gases.
    [Show full text]
  • Dynamic Correlations in a Charged Bose Gas
    XA9745097 IC/97/95 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS DYNAMIC CORRELATIONS IN A CHARGED BOSE GAS K. Tankeshwar B. Tanatar and M.P. Tosi MIRAMARE-TRIESTE IC/97/95 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS DYNAMIC CORRELATIONS IN A CHARGED BOSE GAS K. Tankeshwar Center for Advanced Study in Physics, Department of Physics, Panjab University, 160 014 Chandigarh, India and International Centre for Theoretical Physics, Trieste, Italy, B. Tanatar1 Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey and International Centre for Theoretical Physics, Trieste, Italy and M.P. Tosi2 Scuola Normale Superiore, 1-56126 Pisa, Italy and International Centre for Theoretical Physics, Trieste, Italy. MIRAMARE - TRIESTE August 1997 1 Regular Associate of the ICTP. 2 On leave of absence. ABSTRACT We evaluate the ground state properties of a charged Bose gas at T = 0 within the quan­ tum version of the self-consistent field approximation of Singwi, Tosi, Land and Sjolander (STLS). The dynamical nature of the local field correction is retained to include dynamic correlation effects. The resulting static structure factor S(q) and the local field factor Ci(q) exhibit properties not described by other mean-field theories. 1 I. INTRODUCTION The homogeneous gas of electrons interacting via the Coulomb potential is a useful model1 to understand a vast range of physical phenomena. The continuing interest in this model stems partly from the realization of physical systems in the laboratory which lend themselves to such a description, and partly from theoretical reasons to understand the basic properties of a many body system.
    [Show full text]
  • Nucleon Electromagnetic Form Factors in the Timelike Region
    Nucleon Electromagnetic Form Factors in the Timelike Region Achim Denig1 and Giovanni Salm`e2 1 Institute of Nuclear Physics of Johannes Gutenberg University Mainz, Helmholtz Institute Mainz, and Cluster of Excellence PRISMA, Johann-Joachim-Becher-Weg 45, 55099 Mainz, Germany 2 Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy October 8, 2018 Abstract The electromagnetic form factors of the proton and the neutron in the timelike region are re- viewed. In view of the forthcoming experimental projects devoted to investigate these observables, we present the current status of the field and we emphasize the relevant role, that accurate mea- surements, refined phenomenological analyses, as well as microscopic models will play with the goal of achieving deeper insights into the structure of the nucleon and its inner dynamics. Keywords: Timelike form factors, Nucleon Targets, Experimental extraction, Dispersion Relations, Constituent Quark Models 1 Introduction The investigation of the nucleon structure through electromagnetic (em) probes has played a central role in our present understanding of strong interactions. In particular, the measurements of em nucleon form factors (FF's) in the spacelike (SL) region, which started with the pioneering work of Hofstadter arXiv:1210.4689v1 [hep-ex] 17 Oct 2012 [1], have given the indisputable evidence of the non-elementary nature of the proton. The possibility, offered by SL photons, of achieving an accurate description of the three-dimensional structure of the nucleon has motivated many and successful experimental efforts, which resulted in an accurate data base of the SL nucleon FF's (see Ref. [2] for a list of recent reviews).
    [Show full text]
  • Phase Transitions Driven by Quasi-Particle Interactions – II
    ` Phase Transitions Driven by Quasi-Particle Interactions – II ξ Norman H. March*, RichardU H. SquireU , * Department of Physics, University of Antwerp (RUCA), Groenborgerlaan 171, B-2020 Antwerp, Belgium and Oxford University, Oxford, England ξ Department of Chemistry, West Virginia University Institute of Technology Montgomery, WV 25303, USA ABSTRACT Quasi-particles and collective effects may have seemed exotic when first proposed in the 1930’s, but their status has blossomed with their confirmation by today’s sophisticated experiment techniques. Evidence has accumulated about the interactions of, say, magnons and rotons and with each other and also other quasi-particles. We briefly review the conjectures of their existence necessary to provide quantitative agreement with experiment which in the early period was their only raison d'etre.ˆ Phase transitions in the Anderson model, the Kondo effect, roton-roton interactions, and highly correlated systems such as helium-4, the Quantum Hall Effect, and BEC condensates are discussed. Some insulator and superconductor theories seem to suggest collective interactions of several quasi-particles may be necessary to explain the behavior. We conclude with brief discussions of the possibility of using the Gruneisen parameter to detect quantum critical points and some background on bound states emerging from the continuum. Finally, we present a summary and conclusions and also discuss possible future directions. 1. Introduction and Context. The literature on collective effects and quasi-particles can be quite difficult to explore as some early studies in condensed matter may not have explicitly use the term(s) and/or they may be in a different field. On the other hand one only needs to look at the “multi-discipline” impact of BCS theory on both condensed matter and nuclear theory [1].
    [Show full text]
  • An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory
    universe Article An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory Konstantin G. Zloshchastiev Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa; [email protected] Received: 29 August 2020; Accepted: 10 October 2020; Published: 15 October 2020 Abstract: We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, to such an extent that one can distinguish sub-Newtonian, Newtonian, galactic, extragalactic and cosmological terms. The last of these dominates at the largest length scale of the model, where superfluid vacuum induces an asymptotically Friedmann–Lemaître–Robertson–Walker-type spacetime, which provides an explanation for the accelerating expansion of the Universe. The model describes different types of expansion mechanisms, which could explain the discrepancy between measurements of the Hubble constant using different methods. On a galactic scale, our model explains the non-Keplerian behaviour of galactic rotation curves, and also why their profiles can vary depending on the galaxy. It also makes a number of predictions about the behaviour of gravity at larger galactic and extragalactic scales. We demonstrate how the behaviour of rotation curves varies with distance from a gravitating center, growing from an inner galactic scale towards a metagalactic scale: A squared orbital velocity’s profile crosses over from Keplerian to flat, and then to non-flat. The asymptotic non-flat regime is thus expected to be seen in the outer regions of large spiral galaxies.
    [Show full text]