Lunar and Planetary Science XXXII (2001) 1509.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Lunar and Planetary Science XXXII (2001) 1509.Pdf Lunar and Planetary Science XXXII (2001) 1509.pdf TERRESTRIAL ANALOGS FOR MARTIAN VOLCANIC FEATURES SEEN IN MOC IMAGES. L. Keszthelyi and A. S. McEwen, Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721 Introduction: Many of the Mars Orbital Camera lavas. For example, if basaltic lavas are erupted after images include volcanic features whose initially inter- significant cooling and crystallization, their rheology pretation is best made by examining terrestrial analogs. will mimic more evolved lavas [3]. But relatively Channel-fed aa, rubbly pahoehoe sheets, inflated pa- evolved compositions should be expected to cap the hoehoe, and lava tubes have now been observed and Martian shield volcanoes, just as evolved, alkalic lavas evidence for voluminous and widespread mafic pyro- cap the Hawaiian shield volcanoes [4]. Such lavas are clastics continues to mount. After these initial qualita- the natural products of a cooling mantle magma source tive interpretations are made, more quantitative mod- region or a crystallizing basaltic magma chamber. The eling can be effectively applied in future studies. presence of such lavas is not evidence for arc-type vol- Shield volcanoes: The five major shield volcanoes canism. are the most prominent volcanic features on Mars. While highly speculative at this point, the observa- Examination of ~200 MOC images of the Tharsis vol- tions to date suggest that the Martian shield volcanoes canoes, Olympus Mons, and Elysium Mons showed a may be dominantly basaltic but are capped by a layer terrain largely mantled by various types of cover. This of more evolved lavas. Moderate explosive activity is makes interpretation of the volcanic features challeng- usually associated with the eruption of such evolved ing. In fact, slightly over half the images showed lavas, but neither cinder cones nor spatter vents have dunes, craters, impact-generated regolith, and thick been imaged to date. This may be because such fea- mantling deposits that effectively covered the primary tures have been (1) missed in the released MOC im- volcanic morphologic features. However, about 30% ages, (2) covered or destroyed by secondary processes, of the images showed identifiable channelized lava (3) never formed because the Martian lavas are rela- flows with morphologies similar to aa. The flows tively volatile-poor, or (4) never formed because branch and overlap to produce an overall “feathery” Strombolian-type eruptions in the Martian environment texture. When these flows hit the flatter slopes of the would lead to much more extensive fragmentations and surrounding plains, they often transition into sheet dispersion of pyroclasts than on the Earth. The best flows that retain an aa-like morphology. hope for resolving this issue would be to target the Mt. Etna on the island of Sicily provides an excel- source regions of the most recent flows on these volca- lent terrestrial example of aa covered slopes with a noes. Since the freshest looking lava correlates well similar “feathery” morphology. Recent flows on other with the most radar bright surfaces [5], a relatively strato-volcanoes such as Arenal in Costa Rica, also small area needs to be searched. exhibit a similar morphology. However, those flows While the feathery slopes covered by channelized on are much better preserved than the typical Martian aa dominate the shield volcanoes, there are several shield volcano flows. During 2000 a search was con- noteworthy oddities. A few collapsed lava tubes can ducted for a better analog. Despite its diminutive size, be found in the images from Olympus Mons. While Crater Mountain, just south of Big Pine, CA in the similar pits are found on the other shield volcanoes, Owens Valley was most accessible example found, those pits appear to be related to tectonic graben. We with extensive eolian mantling and some mechanical speculate that the reason lava tubes have only been erosion. At this level of degradation, it is difficult to identified on Olympus Mons is the sparse sampling distinguish the margins of flows from channel levees, provided by MOC to date. challenging attempts to measure the parameters needed We note that the presence of lava tubes does not for quantitative modeling of the flows. require more fluid lavas or pahoehoe flows since tube- However, the types of terrestrial analogs that have fed basaltic-andesitic aa flows are common on Mt. been found make some interesting suggestions about Etna. Sinuous rilles, which may have formed as lava the type of activity that formed the Martian shield vol- tubes or large open channel flows, are seen on canoes. First, the compositions of the terrestrial exam- Ascraeus and Pavonis Mons. ples are basaltic-andesites and trachybasalts. Thus the Flood lavas: Extensive flood lavas cover much of overall morphology of the flows suggests that the the more recent surface of Mars. The best preserved shield volcanoes are likely to be composed of some- flood lavas are found in the Elysium and Amazonis what evolved rocks. This has been suggested much basins [6]. The age of some of these lavas might be earlier from Viking images [1,2]. There are ways in less than 10 Ma [7], but they have a wide range of which basaltic lavas can behave like more evolved ages. Erosional remnants of fine-layered sedimentary Lunar and Planetary Science XXXII (2001) 1509.pdf MOC IMAGES AND TERRESTRIAL ANALOGS FOR MARTIAN VOLCANOES: L. P. Keszthelyi and A. S. McEwen deposits associated with Medusae Fossae Formation on darker layers can be seen in the ash deposits from the top of the lavas in the southern Cerberus plains suggest 1790 Keanakakoi eruption of Kilauea Volcano. The that some of the lavas may be older than they appear. layers are the result of (a) different phases in the erup- These flood lavas are dominated by a platy-ridged tion, (b) secondary eolian sorting, and (c) variable in- texture suggesting both compressional folding of the duration by acidic syn- and post-eruptive precipitation. surface and rifting of plates. Flow modeling suggested This terrestrial example emphasizes the point that the that the lava compositions should be roughly basaltic, presence of extensive ash deposits is not an indicator of though compositions between komatiitic basalt and andesitic or more evolved compositions. basaltic andesite are possible [8]. The most explosive mafic eruptions on the Earth Rubbly Pahoehoe. Part of the 1783-1784 Laki flow are phreatomagmatic. However, on Mars, purely field in Iceland exhibits platy-ridged surface morphol- magmatic eruptions could plausibly disperse ash far ogy. Field examination of the Laki flow field in the enough to produce the extensive layers seen in the summer of 2000 showed that this lava was composed MOC images. This is because the lower atmospheric of “rubbly” pahoehoe. Rubbly pahoehoe is a lava type pressure enhances exsolution of dissolved magmatic transitional between pahoehoe and aa and is character- gasses and increases gas-driven fragmentation while ized by a brecciated flow top composed of broken the lower gravity and atmospheric drag allow particles pieces of pahoehoe rather than the spinose clinker of aa to fly farther. The volume of pyroclastic materials ex- flows [9,10]. Rubbly pahoehoe is thought to be em- pected from the eruption of the recent flood lavas placed in a manner different than either aa or pahoe- themselves should be sufficient to produce the Medu- hoe. Rubbly pahoehoe seems to involve the transport of sae Fossae Formation [8]. Using the gasses released by lava underneath a thick, insulating, but mobile and dis- the 1783-1784 Laki eruption as an analog, we compute rupted crust. This mode of emplacement is similar to that typical Martian flood lava is expected to release the "thick crust" open sheet flow model presented in the equivalent of several hundred cubic kilometers of [8] and bolsters the calculations suggesting that many extremely acidic aqueous fluid over a period of years. of the Martian flood lavas were emplaced with average This is a more conservative calculation than earlier effusion rates of ~104 m3/s with surges ~105 m3/s. estimates of volatile release associated with Martian Inflated Pahoehoe. One of the puzzles posed by flood basalt eruptions [13]. Combined with eolian the early MOC images was why we could find no evi- reworking, these volcanic products can readily explain dence for inflated pahoehoe flows on Mars, despite the the observed layered terrains. fact that the environment was conducive to the forma- Conclusions: Basaltic lavas are likely to dominate tion of inflated pahoehoe and the distinctive morphol- the plains of Mars and probably the deeper parts of the ogy of the flows even in 10 m/pixel images [8]. More major shield volcanoes. However, more evolved, recent MOC images do show several excellent exam- probably alkalic, compositions appear to cap the shield ples of inflated pahoehoe flows, particularly in western volcanoes. Circumstantial evidence also points to large Cerberus Planitia. volumes of mafic pyroclastic materials being reworked Layered terrain: Several different types of lay- to produce many of the "sedimentary" layered terrains. ered terrains have been found in the MOC images. References: [1] Hulme G (1976) Icarus, 27, 207- Some of these, particularly in the walls of the large 213. [2] Zimbelman J. R. (1985) JGR, 90, D157-D162. canyons, show largely continuous layers a few tens of [3] Gregg T. K. P. and Sakimoto S. E. H. (1996) LPS meters thick that can easily be interpreted as stacks of XXVII, 459-460. [4] Peterson D. W. and Moore R. B. sheet-like flood lavas [11]. Excellent terrestrial ana- (1987) USGS Prof. Pap. 1350, 149-189. [5] Harmon logs can be found in most terrestrial flood basalt prov- J. K. et al. (1999) JGR, 104, 14065-14089. [6] inces, but the Columbia River Basalts provide the most McEwen A.
Recommended publications
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]
  • Geology of Volcanic Rocks in the South Half of the Ishpeming Greenstone Belt, Michigan
    Geology of Volcanic Rocks in the South Half of the Ishpeming Greenstone Belt, Michigan U.S. GEOLOGICAL SURVEY BULLETIN 1904-P AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey" Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated monthly, which is for sale in microfiche from the USGS ESIC-Open-File Report Sales, Box 25286, Building 810, Denver Federal Center, Denver, CO 80225 Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books of the U.S. Geological Survey are available over the niques of Water-Resources Investigations, Circulars, publications counter at the following U.S. Geological Survey offices, all of of general interest (such as leaflets, pamphlets, booklets), single which are authorized agents of the Superintendent of Documents. copies of periodicals (Earthquakes & Volcanoes, Preliminary De­ termination of Epicenters), and some miscellaneous reports, includ­ ANCHORAGE, Alaska-^230 University Dr., Rm.
    [Show full text]
  • The Boring Volcanic Field of the Portland-Vancouver Area, Oregon and Washington: Tectonically Anomalous Forearc Volcanism in an Urban Setting
    Downloaded from fieldguides.gsapubs.org on April 29, 2010 The Geological Society of America Field Guide 15 2009 The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: Tectonically anomalous forearc volcanism in an urban setting Russell C. Evarts U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA Richard M. Conrey GeoAnalytical Laboratory, School of Earth and Environmental Sciences, Washington State University, Pullman, Washington 99164, USA Robert J. Fleck Jonathan T. Hagstrum U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These vol- canoes constitute the Boring Volcanic Field, which is centered in the Neogene Port- land Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many mono- genetic volcanic fi elds, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic fi eld have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag- netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr.
    [Show full text]
  • Lecture 12: Volcanoes Read: Chapter 6 Homework #10 Due Thursday 12Pm
    Learning Objectives (LO) Lecture 12: Volcanoes Read: Chapter 6 Homework #10 due Thursday 12pm What we’ll learn today:! 1. Define the term volcano and explain why geologists study volcanoes! 2. Compare and contrast 3 common types of magma! 3. Describe volcanic gases and the role they play in explosive vs effusive eruptions! 4. Identify what gives a shield volcano its distinctive shape! What is causing this eruption? What factors influence its character? “A volcano is any landform from which lava, gas, or ashes, escape from underground or have done so in the past.” From Chapter 5: magma (and lava) can be felsic, intermediate, or mafic. How does magma chemistry influence the nature of volcanic eruptions? Hawaiian Volcanism http://www.youtube.com/watch?v=6J6X9PsAR5w Indonesian Volcanism http://www.youtube.com/watch?v=5LzHpeVJQuE Viscosity Viscous: thick and sticky Low viscosity High viscosity Viscosity Magma Composition (Igneous Rocks) How does magma chemistry determine lava and eruption characteristics? Felsic Intermediate Mafic less Mg/Fe content more more Si/O content less The Major 7 Types of Igneous Rocks Seven major types of igneous rocks Rhyolite Andesite Basalt Extrusive Granite Diorite Gabbro Peridotite Texture Texture Intrusive Felsic Intermediate Mafic Ultramafic Composition The Rocks of Volcanoes Seven major types of igneous rocks Rhyolite Andesite Basalt Extrusive melt at melt at low temperature high temperature Felsic Intermediate Mafic Ultramafic Composition Three Common Types of Magma: BASALTIC ANDESITIC RHYOLITIC Three Common Types of Magma: BASALTIC Basaltic lava flows easily because of its low viscosity and low gas content. Aa - rough, fragmented lava blocks called “clinker” The low viscosity is due to low silica content.
    [Show full text]
  • Types of Volcanoes Educational Series #9
    South Carolina Geological Survey Types of Volcanoes Educational Series #9 Most people have never seen a real volcano but have learned about them through movies or books. So when most people think of a volcano, they usually conjure up the Hollywood version: a huge, menacing conical mountain that explodes and spews out masses of lava which falls on rampaging dinosaurs, screaming cave people, or fleeing mobs of betogaed Romans - depending on their favorite volcano disaster movie. While those types of volcanoes do indeed exist, they represent only one "species" in a veritable zoo of volcano shapes and sizes. Composite Volcanoes The most majestic of the volcanoes are composite Fissure Volcano volcanoes, also known as strato-volcanoes. Composite volcanoes are tall, symetrically Fissure volcanoes have no central crater at all. Instead, shaped, with steep sides, sometimes rising 10,000 giant cracks open in the ground and expel vast quantities feet high. They are built of alternating layers of of lava. This lava spreads far and wide to form huge pools lava flows, volcanic ash, and cinders. that can cover almost everything around. When these pools of lava cool and solidify, the surface Famous composite volcanoes include Mount Fuji remains mostly flat. Since the source cracks in Japan, Mount Shasta and Mount Lassen in are usually buried, there is often nothing California, Mount St. Helens and Mount Rainier in "volcano-like" to see - only a flat plain. Washington State, Mount Hood in Oregon, and Mount Etna in Italy. A fissure eruption occured at the Los Pilas volcano in Nicaragua in 1952. Shield Volcanoes Shield volcanoes can grow to be very big.
    [Show full text]
  • Volcanoes and Lava Flows
    What Are The Types of What Did Native Volcanoes? Americans See? Craters of the Moon has three kinds of volcanoes to “The area now known as Craters of the Moon see. Laidlaw Volcano and Pillar Butte are Shield is important to the Shoshone-Bannock because Volcanoes that form when liquid rock oozes and it represents both a place of sacred power and flows out of a central vent. Pilot Butte and Lava Butte an ancestral ground crossed during seasonal are Cinder Cone Volcanoes that formed when migrations. The lava rock was heated in our liquid rocks spatters and spits up from of a central sweat lodges and it was the rock that sent our vent. Big Southern Butte, like Oregon's Mount St. prayers up to the creator. In the landscape of Helens, is a Volcanic Dome which forms when liquid the lava flows, harmony was found.” rock is at hotter temperatures and can be expolsive. -Laverne Broncho, Shoshone-Bannock Tribal Member How Old Are The Lava Flows? Southern Idaho has 12 volcanic fields that range from 0.5 million years old near its eastern border with Yellowstone National Park to 15 million years old near its western border with Oregon. Craters of the Moon is part of a volcanic field in south-central Idaho that formed 11 million years ago. At Craters of the Moon, the most recent series of lava flowed from volcanoes as recent as 2,100 years ago. Learn more. Shoshone legend speaks of a serpent on a mountain who, angered by lightning, coiled around it and squeezed until liquid rock flowed, fire shot from cracks, and the mountain exploded.
    [Show full text]
  • Volcano ­ Accessscience from Mcgraw­Hill Education
    10/3/2016 Volcano ­ AccessScience from McGraw­Hill Education (http://www.accessscience.com/) Volcano Article by: Tilling, Robert I. Branch of Igneous and Geothermal Processes, U.S. Geological Survey, Menlo Park, California. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097­8542.735200 (http://dx.doi.org/10.1036/1097­8542.735200) Content Volcanic vents Volcanic products Volcanic landforms Submarine volcanism Fumaroles and hot springs Distribution of volcanoes Bibliography Additional Readings A mountain or hill, generally steep­sided, formed by accumulation of magma (molten rock with associated gas and crystals) erupted through openings or volcanic vents in the Earth's crust; the term volcano also refers to the vent itself. During the evolution of a long­lived volcano, a permanent shift in the locus of principal vent activity can produce a satellitic volcanic accumulation as large as or larger than the parent volcano, in effect forming a new volcano on the flanks of the old. Planetary exploration has revealed dramatic evidence of volcanoes and their products on extra­terrestrial bodies, such as the Earth's Moon, Mars, Mercury, Venus, and the moons of Jupiter (Fig. 1), Neptune, and Uranus on a scale much more vast than on Earth. For example, Olympus Mons, a gigantic shield volcano on Mars about 600 km (375 mi) in diameter, is larger across than the length of the Hawaiian Islands. However, only the products and landforms of terrestrial volcanic activity are described here. See also: Mars (/content/mars/407700); Mercury (planet) (/content/mercury­ planet/415700); Moon (/content/moon/434600); Neptune (/content/neptune/449000); Uranus (/content/uranus/722800); Venus (/content/venus/730100); Volcanology (/content/volcanology/735300) http://www.accessscience.com/content/volcano/735200 1/17 10/3/2016 Volcano ­ AccessScience from McGraw­Hill Education Fig.
    [Show full text]
  • Canada and Western U.S.A
    Appendix B – Region 12 Country and regional profiles of volcanic hazard and risk: Canada and Western U.S.A. S.K. Brown1, R.S.J. Sparks1, K. Mee2, C. Vye-Brown2, E.Ilyinskaya2, S.F. Jenkins1, S.C. Loughlin2* 1University of Bristol, UK; 2British Geological Survey, UK, * Full contributor list available in Appendix B Full Download This download comprises the profiles for Region 12: Canada and Western U.S.A. only. For the full report and all regions see Appendix B Full Download. Page numbers reflect position in the full report. The following countries are profiled here: Region 12 Canada and Western USA Pg.491 Canada 499 USA – Contiguous States 507 Brown, S.K., Sparks, R.S.J., Mee, K., Vye-Brown, C., Ilyinskaya, E., Jenkins, S.F., and Loughlin, S.C. (2015) Country and regional profiles of volcanic hazard and risk. In: S.C. Loughlin, R.S.J. Sparks, S.K. Brown, S.F. Jenkins & C. Vye-Brown (eds) Global Volcanic Hazards and Risk, Cambridge: Cambridge University Press. This profile and the data therein should not be used in place of focussed assessments and information provided by local monitoring and research institutions. Region 12: Canada and Western USA Description Region 12: Canada and Western USA comprises volcanoes throughout Canada and the contiguous states of the USA. Country Number of volcanoes Canada 22 USA 48 Table 12.1 The countries represented in this region and the number of volcanoes. Volcanoes located on the borders between countries are included in the profiles of all countries involved. Note that countries may be represented in more than one region, as overseas territories may be widespread.
    [Show full text]
  • Subaerial Terrestrial Volcanism
    Subaerial Terrestrial Volcanism Eruptions in Our Own Backyard James R. Zimbelman, Sarah A. Fagents, Tracy K. P. Gregg, Curtis R. Manley, and Scott K. Rowland 2.1. INTRODUCTION Current understanding of volcanic eruptions is the result of millennia of written observations refined by decades of scientific research. There is still much to learn about the details of how individual volcanoes work, but the existing body of literature about subaerial volcanism on Earth represents the basis against which all other volcanic eruptions are compared. Excellent books summarize the processes and products of subaerial volcanism (e.g., Macdonald, 1972; Williams and McBirney, 1979; Cas and Wright, 1987; Cattermole, 1989; Francis, 1994), and it would be impossible to condense all of this information into one chapter. However, it is important to provide a concise compilation of the most salient aspects of subaerial volcanism to which all other examples of volcanism can be compared. The purpose of this chapter is to review the basic eruptive styles, landforms, and products that result from volcanism on Earth's surface, where observations and samples are both readily obtainable. At present, documented samples of extraterrestrial lavas have been collected and returned only from the Moon, and these materials are all basaltic in composition (Heiken et al., 1991). However, to these Apollo and Luna samples can be added a suite of basaltic meteorites now thought to come from Mars (McSween, 1994; see Chapter 4), plus various remote sensing data sets that indicate a preponderance of basaltic materials on rocky surfaces throughout the solar system (Basaltic Volcanism Study Project, 1981).
    [Show full text]
  • Get Their Name from Their Broad Rounded Shape, Are the Largest
    Physical Geology, First University of Saskatchewan Edition is used under a CC BY-NC-SA 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 11. Volcanism Adapted by Karla Panchuk from Physical Geology by Steven Earle Figure 11.1 Mt. Garibaldi (in the background), near Squamish BC, is one of Canada’s most recently active volcanoes, last erupted approximately 10,000 years ago. It is also one of the tallest, at 2,678 m in height. Source: Karla Panchuk (2017) CC BY-SA 4.0. Photograph: Michael Scheltgen (2006) CC BY 2.0. See Appendix C for more attributions. Learning Objectives After reading this chapter and answering the Review Questions at the end, you should be able to: • Explain what a volcano is. • Describe the different kinds of materials produced by volcanoes. • Describe the structures of shield volcanoes, composite volcanoes, and cinder cones. • Explain how the style of a volcanic eruption is related to magma composition. • Describe the role of plate tectonics in volcanism and magma formation. • Summarize the hazards that volcanic eruptions pose to people and infrastructure. • Describe how volcanoes are monitored, and the signals that indicate a volcano could be ready to erupt. • Provide an overview of Canadian volcanic activity. Why Study Volcanoes? Chapter 11. Volcanism 1 Volcanoes are awe-inspiring natural events. They have instilled fear and fascination with their red-hot lava flows, and cataclysmic explosions. In his painting The Eruption of Vesuvius (Figure 11.2), Pierre-Jacques Volaire captured the stunning spectacle of the eruption on Mt. Vesuvius on 14 May 1771.
    [Show full text]
  • Tecolote Volcano, Pinacate Volcanic Field (Sonora, Mexico): a Case of Highly Explosive Basaltic Volcanism and Shifting Eruptive
    Journal of Volcanology and Geothermal Research 379 (2019) 23–44 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Tecolote volcano, Pinacate volcanic field (Sonora, Mexico): A case of highly explosive basaltic volcanism and shifting eruptive styles Emily E. Zawacki a,⁎, Amanda B. Clarke a,b, J. Ramón Arrowsmith a, Costanza Bonadonna c,DanielJ.Lynchd,1 a School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA b Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Italy c Département des sciences de la Terre, Université de Genève, Geneva, Switzerland d Department of Geosciences, University of Arizona, Tucson, AZ, USA article info abstract Article history: Explosive basaltic eruptions have been documented in monogenetic volcanic fields, and recognizing the scales of Received 7 December 2018 their explosivity is important for understanding the full range of basaltic volcanism. Here we reconstruct one of Received in revised form 13 April 2019 the youngest eruptions in the Pinacate volcanic field (Sonora, Mexico) and estimate the volumes of the lava Accepted 21 April 2019 flows, scoria cone, and tephra units. The source vent of the eruption is Tecolote volcano (27 ± 6 ka, 40Ar/39Ar). Available online 29 April 2019 There were two distinct episodes of tephra production, Tephra Unit 1 (T1) followed by Tephra Unit 2 (T2). T1 and T2 show different dispersal patterns, with T1 dispersed in an approximately circular pattern and T2 dispersed Keywords: Tephra deposit oblately trending SE and NW of the vent. Based on column height reconstructions and deposit characteristics, the Pinacate volcanic field T1-producing eruption was subplinian (15–18 km plume), with a calculated mass eruption rate ranging between Eruptive source parameters 1.0 ± 0.6 × 107 kg/s and 2.2 ± 1.2 × 107 kg/s and corresponding durations between 79 ± 54 min and 38 ± Explosive basaltic eruption 26 min, respectively.
    [Show full text]