RESEARCH ARTICLE SETD3 protein is the actin-specific histidine N-methyltransferase Sebastian Kwiatkowski1†, Agnieszka K Seliga1†, Didier Vertommen2, Marianna Terreri1, Takao Ishikawa3, Iwona Grabowska4, Marcel Tiebe5,6, Aurelio A Teleman5,6, Adam K Jagielski1, Maria Veiga-da-Cunha7*, Jakub Drozak1* 1Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland; 2Protein Phosphorylation Unit, de Duve Institute, Universite´ Catholique de Louvain, Brussels, Belgium; 3Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland; 4Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland; 5German Cancer Research Center (DKFZ), Heidelberg, Germany; 6Heidelberg University, Heidelberg, Germany; 7Metabolic Research Unit, de Duve Institute, Universite´ Catholique de Louvain, Brussels, Belgium Abstract Protein histidine methylation is a rare post-translational modification of unknown biochemical importance. In vertebrates, only a few methylhistidine-containing proteins have been reported, including b-actin as an essential example. The evolutionary conserved methylation of b- actin H73 is catalyzed by an as yet unknown histidine N-methyltransferase. We report here that the protein SETD3 is the actin-specific histidine N-methyltransferase. In vitro, recombinant rat and human SETD3 methylated b-actin at H73. Knocking-out SETD3 in both human HAP1 cells and in Drosophila melanogaster resulted in the absence of methylation at b-actin H73 in vivo, whereas b- actin from wildtype cells or flies was > 90% methylated. As a consequence, we show that Setd3- *For correspondence: deficient HAP1 cells have less cellular F-actin and an increased glycolytic phenotype. In conclusion,
[email protected] (MV–C); by identifying SETD3 as the actin-specific histidine N-methyltransferase, our work pioneers new
[email protected] (JD) research into the possible role of this modification in health and disease and questions the †These authors contributed substrate specificity of SET-domain-containing enzymes.