On the Complexity of the Independent Set Problem in Triangle Graphs

Total Page:16

File Type:pdf, Size:1020Kb

On the Complexity of the Independent Set Problem in Triangle Graphs View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 311 (2011) 1670–1680 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc On the complexity of the independent set problem in triangle graphs Yury Orlovich a,∗, Jacek Blazewicz b, Alexandre Dolgui c, Gerd Finke d, Valery Gordon e a Department of Discrete Mathematics and Algorithmics, Faculty of Applied Mathematics and Computer Science, Belarusian State University, Nezavisimosti Ave. 4, 220030 Minsk, Belarus b Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 3a, Poznan, Poland c Ecole Nationale Supérieure des Mines de Saint-Etienne, Centre for Industrial Engineering and Computer Science, 158 cours Fauriel, F-42023 Saint Etienne Cedex 2, France d Laboratoire G-SCOP, Université Joseph Fourier, 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France e United Institute of Informatics Problems, National Academy of Sciences of Belarus, 6 Surganova Str., 220012 Minsk, Belarus article info a b s t r a c t Article history: We consider the complexity of the maximum (maximum weight) independent set problem Received 29 October 2009 within triangle graphs, i.e., graphs G satisfying the following triangle condition: for every Received in revised form 31 March 2011 maximal independent set I in G and every edge uv in G − I, there is a vertex w 2 I Accepted 2 April 2011 such that fu; v; wg is a triangle in G. We also introduce a new graph parameter (the Available online 27 April 2011 upper independent neighborhood number) and the corresponding upper independent neighborhood set problem. We show that for triangle graphs the new parameter is equal Keywords: to the independence number. We prove that the problems under consideration are NP- Independent set Neighborhood set complete, even for some restricted subclasses of triangle graphs, and provide several Triangle condition polynomially solvable cases for these problems within triangle graphs. Furthermore, we Triangle graph show that, for general triangle graphs, the maximum independent set problem and the NP-completeness upper independent neighborhood set problem cannot be polynomially approximated Approximability within any fixed constant factor greater than one unless P D NP. ' 2011 Elsevier B.V. All rights reserved. 1. Introduction and some preliminary results In this paper we consider the complexity of the maximum (maximum weight) independent set problem for graphs that satisfy the triangle condition. These problems are well known, and they arise naturally in many fields. Examples for applications of the problems can be found in determining an upper bound on the number of processors needed for parallel execution [24], in map labeling [45], in interval selection problems arising in manufacturing [43], and in scheduling jobs within time windows on parallel machines [14]. We consider only finite undirected simple graphs and use standard graph-theoretic terminologies; see, for example, [6]. For notions related to computational complexity, we follow [15], while for concepts related to approximability, we follow [4]. Let G be a graph with the vertex set V D V .G/ and the edge set E D E.G/. For a subset of vertices X ⊆ V , the subgraph of G induced by X is denoted by G.X/, and G − X D G.V n X/. As usual, NG.x/ denotes the neighborhood of a vertex x 2 V , i.e., the set of all vertices that are adjacent to x in G. The degree of x is defined as degG x D jNG.x/j. The maximum degree of vertices in G is denoted by ∆.G/. The closed neighborhood of x is NGTxUD NG.x/ [ fxg. The proper neighborhood of an edge ∗ Corresponding author. Tel.: +375 17 209 54 71. E-mail addresses: [email protected] (Y. Orlovich), [email protected] (J. Blazewicz), [email protected] (A. Dolgui), [email protected] (G. Finke), [email protected] (V. Gordon). 0012-365X/$ – see front matter ' 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.04.001 Y. Orlovich et al. / Discrete Mathematics 311 (2011) 1670–1680 1671 Fig. 1. Example of triangle (a) and non-triangle (b) graphs. e D xy 2 E is defined as PNG.e/ D NGTxU\ NGTyU; i.e., the set PNG.e/ consists of x, y, and all vertices adjacent to both x and y. ⊆ D S T UD [ If X V then NG.X/ x2X NG.x/ and NG X NG.X/ X. The subscript G will be omitted whenever the context is clear. The notation u ∼ v (u 6∼ v, respectively) means that the vertices u and v are adjacent (non-adjacent, respectively). For disjoint sets of vertices U and W , the notation U ∼ W (U 6∼ W , respectively) means that every vertex of U is adjacent (non-adjacent, respectively) to every vertex of W . When U D fug, we also write u ∼ W and u 6∼ W instead of fug ∼ W and fug 6∼ W , respectively. For a set H of graphs, a graph G is called H-free if no induced subgraph of G is isomorphic to a graph in H. The complement G of a graph G is that graph whose vertex set is V .G/ and where uv is an edge of G if and only if uv is not an edge of G. The ∼ notation G1 D G2 means that graph G1 is isomorphic to graph G2. For two (vertex-disjoint) graphs G1 and G2, the (disjoint) union G1 [ G2 of G1 and G2 is the (disconnected) graph with V .G1 [ G2/ D V .G1/ [ V .G2/ and E.G1 [ G2/ D E.G1/ [ E.G2/. For a positive integer n, the disjoint union of n copies of a graph G is denoted by nG. For example, the graph mK2 consists of m pairwise disjoint edges. Km;n denotes the complete bipartite graph with partition classes of cardinalities m and n; Kn is the complete graph on n vertices; Cn and Pn are the chordless cycle and the chordless path on n vertices, respectively. The graph K1;n is also called a star, and K3 D C3 is called a triangle. At the same time, the star K1;3 is known as a claw. K4 − e is a graph obtained from the complete graph K4 by deleting an edge, and K1;3 C e is a graph obtained from the claw K1;3 by adding an edge between any two selected non-adjacent vertices. Let K0 be the null graph; i.e., K0 has no vertices and edges. See, for example, [44]. For a graph G, a subset I ⊆ V .G/ of vertices is called an independent (or stable) set if no two vertices in I are adjacent. The maximum cardinality taken over all independent sets of G is the independence number, and is denoted by α.G/. We say that an independent set I is maximum if jIj D α.G/. An independent set I is maximal if no other independent set contains I. The minimum cardinality over all maximal independent sets of G is called the independent domination number and is denoted by i.G/. A vertex subset U ⊆ V .G/ is called a clique in G if the vertices in U are pairwise adjacent. A clique U is maximal if it is not contained in a larger clique. A weighted graph is a pair .G; w/ consisting of a graph G and a non-negative weight function w: V .G/ ! Z that associates an integer w.v/ ≥ 0 to each vertex v of G (the weight of the vertex v). The weight of a subset of vertices S ⊆ V .G/ is defined P as v2S w.v/ and is denoted by w.S/. The weighted independence number αw.G/ of a weighted graph .G; w/ is the maximum weight of an independent set in G. A graph is called complement reducible (a cograph for short) if, for any induced subgraph F of G with at least two vertices, either F or the complement to F is disconnected. Cographs have a characterization in terms of forbidden induced subgraphs: they are P4-free graphs [13]. A graph G is called a general partition graph [33] if there exists a set L and an assignment of non-empty subsets Lu ⊆ L to the vertices u 2 V .G/ with the following properties: (i) any two vertices u and v are adjacent if and only if Lu \ Lv 6D ;, and (ii) for every maximal independent set I of G, the collection fLx V x 2 Ig partitions L. A graph G is called a triangle graph if it satisfies the following triangle condition: for every maximal independent set I and every edge uv in G − I, there exists a vertex w 2 I such that fu; v; wg induces a triangle in G. In other words, G is a triangle graph if and only if every maximal independent set in G intersects all sets PNG.e/, where e 2 E.G/. An example of a triangle graph is given in Fig. 1(a). In this graph, a maximal independent set consists either of the vertex of degree 4, or two non-adjacent vertices of degree 3. In both cases, it is easy to see that the triangle condition holds. On the other hand, graph G shown in Fig. 1(b) is not triangle, since, for the maximal independent set I D fx; yg, the condition does not hold because of the edge uv 2 E.G − I/. The definition of the triangle condition was introduced by McAvaney et al.
Recommended publications
  • Towards Maximum Independent Sets on Massive Graphs
    Towards Maximum Independent Sets on Massive Graphs Yu Liuy Jiaheng Lu x Hua Yangy Xiaokui Xiaoz Zhewei Weiy yDEKE, MOE and School of Information, Renmin University of China x Department of Computer Science, University of Helsinki, Finland zSchool of Computer Engineering, Nanyang Technological University, Singapore ABSTRACT Maximum independent set (MIS) is a fundamental problem in graph theory and it has important applications in many areas such as so- cial network analysis, graphical information systems and coding theory. The problem is NP-hard, and there has been numerous s- tudies on its approximate solutions. While successful to a certain degree, the existing methods require memory space at least linear in the size of the input graph. This has become a serious concern in !"#$!%&'!(#&)*+,+)*+)-#.+- /"#$!%&'0'#&)*+,+)*+)-#.+- view of the massive volume of today’s fast-growing graphs. Figure 1: An example to illustrate that fv , v g is a maximal inde- In this paper, we study the MIS problem under the semi-external 1 2 pendent set, but fv , v , v , v g is a maximum independent set. setting, which assumes that the main memory can accommodate 2 3 4 5 all vertices of the graph but not all edges. We present a greedy algorithm and a general vertex-swap framework, which swaps ver- duced subgraphs, minimum vertex covers, graph coloring, and tices to incrementally increase the size of independent sets. Our maximum common edge subgraphs, etc. Its significance is not solutions require only few sequential scans of graphs on the disk just limited to graph theory but also in numerous real-world ap- file, thus enabling in-memory computation without costly random plications, such as indexing techniques for shortest path and dis- disk accesses.
    [Show full text]
  • Matroids You Have Known
    26 MATHEMATICS MAGAZINE Matroids You Have Known DAVID L. NEEL Seattle University Seattle, Washington 98122 [email protected] NANCY ANN NEUDAUER Pacific University Forest Grove, Oregon 97116 nancy@pacificu.edu Anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day. —Gian Carlo Rota [10] Why matroids? Have you noticed hidden connections between seemingly unrelated mathematical ideas? Strange that finding roots of polynomials can tell us important things about how to solve certain ordinary differential equations, or that computing a determinant would have anything to do with finding solutions to a linear system of equations. But this is one of the charming features of mathematics—that disparate objects share similar traits. Properties like independence appear in many contexts. Do you find independence everywhere you look? In 1933, three Harvard Junior Fellows unified this recurring theme in mathematics by defining a new mathematical object that they dubbed matroid [4]. Matroids are everywhere, if only we knew how to look. What led those junior-fellows to matroids? The same thing that will lead us: Ma- troids arise from shared behaviors of vector spaces and graphs. We explore this natural motivation for the matroid through two examples and consider how properties of in- dependence surface. We first consider the two matroids arising from these examples, and later introduce three more that are probably less familiar. Delving deeper, we can find matroids in arrangements of hyperplanes, configurations of points, and geometric lattices, if your tastes run in that direction.
    [Show full text]
  • Greedy Sequential Maximal Independent Set and Matching Are Parallel on Average
    Greedy Sequential Maximal Independent Set and Matching are Parallel on Average Guy E. Blelloch Jeremy T. Fineman Julian Shun Carnegie Mellon University Georgetown University Carnegie Mellon University [email protected] jfi[email protected] [email protected] ABSTRACT edge represents the constraint that two tasks cannot run in parallel, the MIS finds a maximal set of tasks to run in parallel. Parallel al- The greedy sequential algorithm for maximal independent set (MIS) gorithms for the problem have been well studied [16, 17, 1, 12, 9, loops over the vertices in an arbitrary order adding a vertex to the 11, 10, 7, 4]. Luby’s randomized algorithm [17], for example, runs resulting set if and only if no previous neighboring vertex has been in O(log jV j) time on O(jEj) processors of a CRCW PRAM and added. In this loop, as in many sequential loops, each iterate will can be converted to run in linear work. The problem, however, is only depend on a subset of the previous iterates (i.e. knowing that that on a modest number of processors it is very hard for these par- any one of a vertex’s previous neighbors is in the MIS, or know- allel algorithms to outperform the very simple and fast sequential ing that it has no previous neighbors, is sufficient to decide its fate greedy algorithm. Furthermore the parallel algorithms give differ- one way or the other). This leads to a dependence structure among ent results than the sequential algorithm. This can be undesirable in the iterates.
    [Show full text]
  • Enumeration of Unlabeled Graph Classes a Study of Tree Decompositions and Related Approaches
    Enumeration of unlabeled graph classes A study of tree decompositions and related approaches Jessica Shi Advisor: Jérémie Lumbroso Independent Work Report Fall, 2015 Abstract In this paper, we study the enumeration of certain classes of graphs that can be fully charac- terized by tree decompositions; these classes are particularly significant due to the algorithmic improvements derived from tree decompositions on classically NP-complete problems on these classes [12, 7, 17, 35]. Previously, Chauve et al. [6] and Iriza [26] constructed grammars from the split decomposition trees of distance hereditary graphs and 3-leaf power graphs. We extend upon these results to obtain an upper bound grammar for parity graphs. Also, Nakano et al. [25] used the vertex incremental characterization of distance hereditary graphs to obtain upper bounds. We constructively enumerate (6;2)-chordal bipartite graphs, (C5, bull, gem, co-gem)-free graphs, and parity graphs using their vertex incremental characterization and extend upon Nakano et al.’s results to analytically obtain upper bounds of O7n and O11n for (6;2)-chordal bipartite graphs and (C5, bull, gem, co-gem)-free graphs respectively. 1. Introduction 1.1. Context The technique of decomposing graphs into trees has been an object of significant interest due to its applications on classical problems in graph theory. Indeed, many graph theoretic problems are inherently difficult due to the lack of recursive structure in graphs, and recursion has historically offered efficient solutions to challenging problems. In this sense, classifying graphs in terms of trees is of particular interest, since it associates a recursive structure to these graphs.
    [Show full text]
  • Fully Dynamic Maximal Independent Set with Polylogarithmic Update Time
    2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS) Fully Dynamic Maximal Independent Set in Polylogarithmic Update Time Soheil Behnezhad∗, Mahsa Derakhshan∗, MohammadTaghi Hajiaghayi∗, Cliff Stein† and Madhu Sudan‡ ∗University of Maryland {soheil,mahsa,hajiagha}@cs.umd.edu †Columbia University [email protected] ‡Harvard University [email protected] Abstract— We present the first algorithm for maintaining a time. As such, one can trivially maintain MIS by recomput- maximal independent set (MIS) of a fully dynamic graph—which ing it from scratch after each update, in O(m) time. In a undergoes both edge insertions and deletions—in polylogarith- pioneering work, Censor-Hillel, Haramaty, and Karnin [15] mic time. Our algorithm is randomized and, per update, takes 2 2 O(log Δ · log n) expected time. Furthermore, the algorithm presented a round-efficient randomized algorithm for MIS in 2 4 can be adjusted to have O(log Δ · log n) worst-case update- dynamic distributed networks. Implementing the algorithm time with high probability. Here, n denotes the number of of [15] in the sequential setting—the focus of this paper— vertices and Δ is the maximum degree in the graph. requires Ω(Δ) update-time (see [15, Section 6]) where Δ The MIS problem in fully dynamic graphs has attracted sig- is the maximum-degree in the graph which can be as large nificant attention after a breakthrough result of Assadi, Onak, as Ω(n) or even Ω(m) for sparse graphs. Improving this Schieber, and Solomon [STOC’18] who presented an algorithm bound was one of the major problems the authors left 3/4 with O(m ) update-time (and thus broke the natural Ω(m) open.
    [Show full text]
  • Minimum Dominating Set Approximation in Graphs of Bounded Arboricity
    Minimum Dominating Set Approximation in Graphs of Bounded Arboricity Christoph Lenzen and Roger Wattenhofer Computer Engineering and Networks Laboratory (TIK) ETH Zurich {lenzen,wattenhofer}@tik.ee.ethz.ch Abstract. Since in general it is NP-hard to solve the minimum dominat- ing set problem even approximatively, a lot of work has been dedicated to central and distributed approximation algorithms on restricted graph classes. In this paper, we compromise between generality and efficiency by considering the problem on graphs of small arboricity a. These fam- ily includes, but is not limited to, graphs excluding fixed minors, such as planar graphs, graphs of (locally) bounded treewidth, or bounded genus. We give two viable distributed algorithms. Our first algorithm employs a forest decomposition, achieving a factor O(a2) approximation in randomized time O(log n). This algorithm can be transformed into a deterministic central routine computing a linear-time constant approxi- mation on a graph of bounded arboricity, without a priori knowledge on a. The second algorithm exhibits an approximation ratio of O(a log ∆), where ∆ is the maximum degree, but in turn is uniform and determinis- tic, and terminates after O(log ∆) rounds. A simple modification offers a trade-off between running time and approximation ratio, that is, for any parameter α ≥ 2, we can obtain an O(aα logα ∆)-approximation within O(logα ∆) rounds. 1 Introduction We are interested in the distributed complexity of the minimum dominating set (MDS) problem, a classic both in graph theory and distributed computing. Given a graph, a dominating set is a subset D of nodes such that each node in the graph is either in D, or has a direct neighbor in D.
    [Show full text]
  • Maximal Independent Set
    Maximal Independent Set Partha Sarathi Mandal Department of Mathematics IIT Guwahati Thanks to Dr. Stefan Schmid for the slides What is a MIS? MIS An independent set (IS) of an undirected graph is a subset U of nodes such that no two nodes in U are adjacent. An IS is maximal if no node can be added to U without violating IS (called MIS ). A maximum IS (called MaxIS ) is one of maximum cardinality. Known from „classic TCS“: applications? Backbone, parallelism, etc. Also building block to compute matchings and coloring! Complexities? MIS and MaxIS? Nothing, IS, MIS, MaxIS? IS but not MIS. Nothing, IS, MIS, MaxIS? Nothing. Nothing, IS, MIS, MaxIS? MIS. Nothing, IS, MIS, MaxIS? MaxIS. Complexities? MaxIS is NP-hard! So let‘s concentrate on MIS... How much worse can MIS be than MaxIS? MIS vs MaxIS How much worse can MIS be than MaxIS? minimal MIS? maxIS? MIS vs MaxIS How much worse can MIS be than Max-IS? minimal MIS? Maximum IS? How to compute a MIS in a distributed manner?! Recall: Local Algorithm Send... ... receive... ... compute. Slow MIS Slow MIS assume node IDs Each node v: 1. If all neighbors with larger IDs have decided not to join MIS then: v decides to join MIS Analysis? Analysis Time Complexity? Not faster than sequential algorithm! Worst-case example? E.g., sorted line: O(n) time. Local Computations? Fast! ☺ Message Complexity? For example in clique: O(n 2) (O(m) in general: each node needs to inform all neighbors when deciding.) MIS and Colorings Independent sets and colorings are related: how? Each color in a valid coloring constitutes an independent set (but not necessarily a MIS, and we must decide for which color to go beforehand , e.g., color 0!).
    [Show full text]
  • Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search
    Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search Zhuwen Li Qifeng Chen Vladlen Koltun Intel Labs HKUST Intel Labs Abstract We present a learning-based approach to computing solutions for certain NP- hard problems. Our approach combines deep learning techniques with useful algorithmic elements from classic heuristics. The central component is a graph convolutional network that is trained to estimate the likelihood, for each vertex in a graph, of whether this vertex is part of the optimal solution. The network is designed and trained to synthesize a diverse set of solutions, which enables rapid exploration of the solution space via tree search. The presented approach is evaluated on four canonical NP-hard problems and five datasets, which include benchmark satisfiability problems and real social network graphs with up to a hundred thousand nodes. Experimental results demonstrate that the presented approach substantially outperforms recent deep learning work, and performs on par with highly optimized state-of-the-art heuristic solvers for some NP-hard problems. Experiments indicate that our approach generalizes across datasets, and scales to graphs that are orders of magnitude larger than those used during training. 1 Introduction Many of the most important algorithmic problems in computer science are NP-hard. But their worst-case complexity does not diminish their practical role in computing. NP-hard problems arise as a matter of course in computational social science, operations research, electrical engineering, and bioinformatics, and must be solved as well as possible, their worst-case complexity notwithstanding. This motivates vigorous research into the design of approximation algorithms and heuristic solvers.
    [Show full text]
  • (1, K)-Swap Local Search for Maximum Clique Problem
    (1, k)-Swap Local Search for Maximum Clique Problem LAVNIKEVICH N. Given simple undirected graph G = (V, E), the Maximum Clique Problem(MCP) is that of finding a maximum-cardinality subset Q of V such that any two vertices in Q are adjacent. We present a modified local search algorithm for this problem. Our algorithm build some maximal solution and can determine in polynomial time if a maximal solution can be improved by replacing a single vertex with k, k ≥ 2, others. We test our algorithms on DIMACS[5], Sloane[15], BHOSLIB[1], Iovanella[8] and our random instances. 1. Introduction Given an arbitrary simple(without loops and multiple edges) undirected graph G = (V, E). The order of a graph is number of vertices n =|V|, where V = {1, …, n} is vertex set. Two vertices v and u of a graph G may be adjacent or not. If two vertices v and u are adjacent they perform an edge e(v, u). All edges perform edges set E. A graph's size is the number of edges in the graph, |E|= m. The neighbourhood N(v) of a vertex v in a graph G consists of all vertices adjacent to v, N(v) = { u | u V, e(v, u) E }. By 푁̅(v) we will denote set of all vertices not adjacent with v, 푁̅ (v) = { u | u V, u ≠ v and e(v, u) E }. A complement of graph G is the graph 퐺 = (V, 퐸) where 퐸 = { (v, u) | v, u V, v ≠ u and (v, u) E }.
    [Show full text]
  • Greedy Maximal Independent Sets Via Local Limits
    Greedy maximal independent sets via local limits Michael Krivelevich∗ Tam´as M´esz´aros† Peleg Michaeli‡ Clara Shikhelman§ July 12, 2021 Abstract The random greedy algorithm for finding a maximal independent set in a graph has been studied extensively in various settings in combinatorics, probability, computer science, and even chemistry. The algorithm builds a maximal independent set by inspecting the graph’s vertices one at a time according to a random order, adding the current vertex to the independent set if it is not connected to any previously added vertex by an edge. In this paper, we present a natural and general framework for calculating the asymptotics of the proportion of the yielded independent set for sequences of (possibly random) graphs, involving a notion of local convergence. We use this framework both to give short and simple proofs for results on previously studied families of graphs, such as paths and binomial random graphs, and to study new ones, such as random trees and random planar graphs. We conclude our work by analysing the random greedy algorithm more closely when the base graph is a tree. We show that in expectation, the cardinality of a random greedy independent set in the path is no larger than that in any other tree of the same order. 1 Introduction Algorithmic problems related to finding or approximating the independence number of a graph, or to producing large independent sets, have long been in the focus of the computer science com- munity. Computing the size of a maximum independent set is known to be NP-complete [33], and the groundbreaking work [18] on the difficulty of approximating it even made its way to The New York Times.
    [Show full text]
  • A Parallel Maximal Independent Set Algorithm
    A Parallel Maximal Indep endent Set Algorithm y Mark Adams Abstract The parallel construction of maximal independent sets is a useful building blo ck for many algorithms in the computational sciences including graph coloring and multigrid coarse grid creation on unstructured meshes We present an ecient asynchronous maximal indep endent set algorithm for use on parallel computers for well partitioned graphs that arise from nite element mo dels For appropriately par titioned b ounded degree graphs it is shown that the running time of our algorithm under the PRAM computational mo del is O which is an improvement over the previous b est PRAM complexity for this class of graphs We present numerical exp eriments on an IBM SP that conrm our PRAM complexity mo del is indicative of the p erformance one can exp ect with practical partitions on graphs from nite element problems Key words maximal indep endent sets multigrid parallel algorithms graph coloring AMSMOS sub ject classication F F Y Q R C Introduction An independent set is a set of vertices I V in a graph G V E in which no two members of I are adjacent ie v w I v w E a maximal independent set MIS is an indep endent set for which no prop er sup erset is also an indep endent set The parallel construction of an MIS is useful in many computing applications such as graph coloring and coarse grid creation for multigrid algorithms on unstructured nite element meshes In addition to requiring an MIS which is not unique many of these applications want an MIS that maximizes a particular
    [Show full text]
  • Package 'Igraph'
    Package ‘igraph’ February 28, 2013 Version 0.6.5-1 Date 2013-02-27 Title Network analysis and visualization Author See AUTHORS file. Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization,centrality indices and much more. Depends stats Imports Matrix Suggests igraphdata, stats4, rgl, tcltk, graph, Matrix, ape, XML,jpeg, png License GPL (>= 2) URL http://igraph.sourceforge.net SystemRequirements gmp, libxml2 NeedsCompilation yes Repository CRAN Date/Publication 2013-02-28 07:57:40 R topics documented: igraph-package . .5 aging.prefatt.game . .8 alpha.centrality . 10 arpack . 11 articulation.points . 15 as.directed . 16 1 2 R topics documented: as.igraph . 18 assortativity . 19 attributes . 21 autocurve.edges . 23 barabasi.game . 24 betweenness . 26 biconnected.components . 28 bipartite.mapping . 29 bipartite.projection . 31 bonpow . 32 canonical.permutation . 34 centralization . 36 cliques . 39 closeness . 40 clusters . 42 cocitation . 43 cohesive.blocks . 44 Combining attributes . 48 communities . 51 community.to.membership . 55 compare.communities . 56 components . 57 constraint . 58 contract.vertices . 59 conversion . 60 conversion between igraph and graphNEL graphs . 62 convex.hull . 63 decompose.graph . 64 degree . 65 degree.sequence.game . 66 dendPlot . 67 dendPlot.communities . 68 dendPlot.igraphHRG . 70 diameter . 72 dominator.tree . 73 Drawing graphs . 74 dyad.census . 80 eccentricity . 81 edge.betweenness.community . 82 edge.connectivity . 84 erdos.renyi.game . 86 evcent . 87 fastgreedy.community . 89 forest.fire.game . 90 get.adjlist . 92 get.edge.ids . 93 get.incidence . 94 get.stochastic .
    [Show full text]