Runway Excursions Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Runway Excursion During Landing, Delta Air Lines Flight 1086, Boeing MD-88, N909DL, New York, New York, March 5, 2015
Runway Excursion During Landing Delta Air Lines Flight 1086 Boeing MD-88, N909DL New York, New York March 5, 2015 Accident Report NTSB/AAR-16/02 National PB2016-104166 Transportation Safety Board NTSB/AAR-16/02 PB2016-104166 Notation 8780 Adopted September 13, 2016 Aircraft Accident Report Runway Excursion During Landing Delta Air Lines Flight 1086 Boeing MD-88, N909DL New York, New York March 5, 2015 National Transportation Safety Board 490 L’Enfant Plaza, S.W. Washington, D.C. 20594 National Transportation Safety Board. 2016. Runway Excursion During Landing, Delta Air Lines Flight 1086, Boeing MD-88, N909DL, New York, New York, March 5, 2015. Aircraft Accident Report NTSB/AAR-16/02. Washington, DC. Abstract: This report discusses the March 5, 2015, accident in which Delta Air Lines flight 1086, a Boeing MD-88 airplane, N909DL, was landing on runway 13 at LaGuardia Airport, New York, New York, when it departed the left side of the runway, contacted the airport perimeter fence, and came to rest with the airplane’s nose on an embankment next to Flushing Bay. The 2 pilots, 3 flight attendants, and 98 of the 127 passengers were not injured; the other 29 passengers received minor injuries. The airplane was substantially damaged. Safety issues discussed in the report relate to the use of excessive engine reverse thrust and rudder blanking on MD-80 series airplanes, the subjective nature of braking action reports, the lack of procedures for crew communications during an emergency or a non-normal event without operative communication systems, inaccurate passenger counts provided to emergency responders following an accident, and unclear policies regarding runway friction measurements and runway condition reporting. -
Runway Safety Spring 2021 Report
Graphical NOTAM Interface For Improving Efficiency of Reporting NOTAM Information April 2021 Design Challenge: Runway Safety/Runway Incursions/Runway Excursions Challenge E: Optimizing application of NextGen technology to improve runway safety in particular and airport safety in general. Team Members: Undergraduate Students: Matthew Bacon, Gregory Porcaro, Andrew Vega Advisor’s Name: Dr. Audra Morse Michigan Technological University Table of Contents | 1 02 Executive Summary Runway excursions are a type of aviation incident where an aircraft makes an unsafe exit from the runway. According to the Ascend World Aircraft Accident Summary (WAAS), 141 runway excursion accidents involving the Western-built commercial aircraft fleet occurred globally from 1998 to 2007, resulting in 550 fatalities; 74% of landing phase excursions were caused by either weather-related factors or decision-making factors (Ascend, 2007). One mitigation strategy is training pilots how to interpret Runway Condition Codes (RWYCCs) to understand runway conditions. Recent developments such as NextGen and Electronic Flight Bags (EFBs) have improved the quality of weather condition reporting. However, Notices to Airmen (NOTAMs), the primary source of runway condition information and any other irregularities in airspace, are still presented to pilots in an inefficient format contributing to runway excursions and safety concerns NOTAMs consist of confusing abbreviations and do not effectively convey the relative importance of information. The team developed an Electronic Flight Bag (EFB) user interface that provides a graphical representation of NOTAM and weather information to improve how pilots receive condition changes at airports. The graphical NOTAM interface utilizes Automatic Dependent Surveillance-Broadcast (ADS-B) to receive real time NOTAM updates. -
Use of Rudder on Boeing Aircraft
12ADOBL02 December 2011 Use of rudder on Boeing aircraft According to Boeing the Primary uses for rudder input are in crosswind operations, directional control on takeoff or roll out and in the event of engine failure. This Briefing Leaflet was produced in co-operation with Boeing and supersedes the IFALPA document 03SAB001 and applies to all models of the following Boeing aircraft: 707, 717, 727, 737, 747, 757, 767, 777, 787, DC-8, DC-9, DC-10, MD-10, md-11, MD-80, MD-90 Sideslip Angle Fig 1: Rudder induced sideslip Background As part of the investigation of the American Airlines Flt 587 crash on Heading Long Island, USA the United States National Transportation Safety Board (NTSB) issued a safety recommendation letter which called Flight path for pilots to be made aware that the use of “sequential full opposite rudder inputs can potentially lead to structural loads that exceed those addressed by the requirements of certification”. Aircraft are designed and tested based on certain assumptions of how pilots will use the rudder. These assumptions drive the FAA/EASA, and other certifica- tion bodies, requirements. Consequently, this type of structural failure is rare (with only one event over more than 45 years). However, this information about the characteristics of Boeing aircraft performance in usual circumstances may prove useful. Rudder manoeuvring considerations At the outset it is a good idea to review and consider the rudder and it’s aerodynamic effects. Jet transport aircraft, especially those with wing mounted engines, have large and powerful rudders these are neces- sary to provide sufficient directional control of asymmetric thrust after an engine failure on take-off and provide suitable crosswind capability for both take-off and landing. -
Development of a Bayesian Belief Network Runway Incursion and Excursion Model
Proceedings of the American Society for Engineering Management 2014 International Annual Conference S. Long, E-H. Ng, and C. Downing eds. DEVELOPMENT OF A BAYESIAN BELIEF NETWORK RUNWAY INCURSION AND EXCURSION MODEL Lawrence L. Green Vehicle Analysis Branch (E401) 1 North Dryden Street (Mail Stop 451) NASA Langley Research Center, Hampton VA 23681 __________________________________________________________________________________ Abstract In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics a nd Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper. Keywords Runway Safety, Runway Incursion (RI), Runway Excursion (RE), Bayesian Belief Network (BBN) Introduction One focus area of the National Aeronautics and Space Administration (NASA), enabled through the Aviation Safety Program (AvSP) of the NASA Aeronautics Research Mission Directorate and in cooperation with the Federal Aviation Administration (FAA), is to improve aviation safety. -
Chealander Testimony
Testimony of Steven Chealander National Transportation Safety Board before the Commerce, Science, and Transportation Committee Aviation Operations, Safety, and Security Subcommittee U.S. Senate April 10, 2008 Good morning, Chairman Rockefeller and Ranking Member Hutchison. Thank you for allowing me the opportunity to present testimony on behalf of the National Transportation Safety Board. I am privileged to represent an agency that is dedicated to the safety of the traveling public. As you know, the Safety Board is charged with investigating aviation incidents and accidents, determining their probable cause, and making recommendations to prevent similar accidents from happening again. The Board is concerned about key safety issues including: runway incursions, runway excursions, icing conditions, fuel tank inerting, human fatigue, and maintenance of aircraft. The world’s deadliest runway incursion accident, which remains the world’s deadliest aviation accident, occurred in March 1977 when two passenger jumbo jets collided on a runway at Tenerife, Canary Islands, causing the deaths of 583 passengers and crew. The deadliest U.S. runway incursion accident involving two aircraft was a collision between a USAir 737 and a Skywest Metroliner commuter airplane at Los Angeles International Airport (LAX) in February 1991, which killed 34 people. Another accident, involving a Comair Bombardier CL600 that departed the wrong runway on August 27, 2006, killed 49 people in Lexington, Kentucky. The Safety Board has also investigated several other runway excursions including the accident involving a Southwest Boeing 737 that killed one person at Chicago’s Midway Airport. Runway Incursions On October 1, 2007, the Federal Aviation Administration (FAA) adopted the International Civil Aviation Organization’s definition of runway incursion. -
Aviation Investigation Report, Runway Excursion, Cargojet Airways Ltd., Boeing 727-225, C-GCJZ, Moncton, New Brunswick, 24 March
AVIATION INVESTIGATION REPORT A10A0032 RUNWAY EXCURSION CARGOJET AIRWAYS LTD. BOEING 727-225, C-GCJZ MONCTON, NEW BRUNSWICK 24 MARCH 2010 The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Aviation Investigation Report Runway Excursion Cargojet Airways Ltd. Boeing 727-225, C-GCJZ Moncton, New Brunswick 24 March 2010 Report Number A10A0032 Synopsis On 24 March 2010, at 0120 Atlantic Daylight Time, a Boeing 727-225 aircraft (registration C-GCJZ, serial number 21854) operated as Cargojet flight 620, departed Hamilton/John Munro International Airport, Ontario, on a scheduled cargo flight to the Greater Moncton International Airport, New Brunswick, with 3 crew members on board. An Instrument Landing System approach was carried out and at 0307, the aircraft touched down on the 6150 foot long Runway 06. Following touchdown, the flight crew were unable to stop the aircraft prior to the end of the runway. The aircraft came to rest in deep mud, the nose wheel approximately 340 feet beyond the runway end and 140 feet beyond the edge of the paved runway end strip. A local fire department responded and arrived on-scene approximately 20 minutes after the aircraft departed the runway. The flight crew exited the aircraft using a ladder provided by the fire fighters. There were no injuries and the aircraft had minor damage. Ce rapport est également disponible en français. Table of Contents -
The Influence of Wing Loading on Turbofan Powered Stol Transports with and Without Externally Blown Flaps
https://ntrs.nasa.gov/search.jsp?R=19740005605 2020-03-23T12:06:52+00:00Z NASA CONTRACTOR NASA CR-2320 REPORT CXI CO CNI THE INFLUENCE OF WING LOADING ON TURBOFAN POWERED STOL TRANSPORTS WITH AND WITHOUT EXTERNALLY BLOWN FLAPS by R. L. Morris, C. JR. Hanke, L. H. Pasley, and W. J. Rohling Prepared by THE BOEING COMPANY WICHITA DIVISION Wichita, Kans. 67210 for Langley Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • NOVEMBER 1973 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA CR-2320 4. Title and Subtitle 5. Reoort Date November. 1973 The Influence of Wing Loading on Turbofan Powered STOL Transports 6. Performing Organization Code With and Without Externally Blown Flaps 7. Author(s) 8. Performing Organization Report No. R. L. Morris, C. R. Hanke, L. H. Pasley, and W. J. Rohling D3-8514-7 10. Work Unit No. 9. Performing Organization Name and Address The Boeing Company 741-86-03-03 Wichita Division 11. Contract or Grant No. Wichita, KS NAS1-11370 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Contractor Report National Aeronautics and Space Administration Washington, D.C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes This is a final report. 16. Abstract The effects of wing loading on the design of short takeoff and landing (STOL) transports using (1) mechanical flap systems, and (2) externally blown flap systems are determined. Aircraft incorporating each high-lift method are sized for Federal Aviation Regulation (F.A.R.) field lengths of 2,000 feet, 2,500 feet, and 3,500 feet, and for payloads of 40, 150, and 300 passengers, for a total of 18 point-design aircraft. -
Reducing the Risk Runway Excursions
MAIN MENU Report . Reducing the Risk of Runway Excursions: Report of the Runway Safety Initiative . Appendixes Reducing the Risk of RUNWAY EXCURSIONS REPORT OF THE RUNWAY SAFETY INITIATIVE This information is not intended to supersede operators’ or manufacturers’ policies, practices or requirements, and is not intended to supersede government regulations. Reducing the Risk of RUNWAY EXCURSIONS REPORT OF THE RUNWAY SAFETY INITIATIVE Contents 1. Introduction 4 1.1 Definitions 4 2. Background 5 3. Data 6 Reducing the Risk of 4.0 Common Risk Factors inRunway Excursion Events 9 RUNWAY EXCURSIONS 4.1 Flight Operations 9 4.1.1 Takeoff Excursion Risk Factors 9 REPORT OF THE RUNWAY SAFETY INITIATIVE 4.1.2 Landing Excursion Risk Factors 9 4.2 Air Traffic Management 9 TABLE OF CONTENTS 4.3 Airport 9 1. Introduction .......................................................................................................................................................................... 4 1.1 Definitions ................................................................................................................................................................. 4 4.4 Aircraft Manufacturers 9 2. Background .......................................................................................................................................................................... 5 4.5 Regulators 9 3. Data ................................................................................................................................................................................... -
Crosswind Landings What Could Possibly Go Wrong? by STEVE KROG
STEVE KROG COMMENTARY / THE CLASSIC INSTRUCTOR Crosswind Landings What could possibly go wrong? BY STEVE KROG CROSSWIND LANDINGS CONTINUE to cause sweaty palms and mild SETTING THE STAGE cases of indigestion whenever discussed among the local gang of We began our flights working from the turf hangar pilots. As many of you have heard me say before, hours of runway, which provided us with a good pleasure flying are missed by many due to a fear of crosswinds. starting point from which to establish a base I recently was working on crosswind landings with a longtime and to measure progress. Other than experi- pilot who was relatively new to tailwheel flying. He had contacted encing a few bounces during the three-point me expressing a desire to become a better, more relaxed, and confi- landing, all went well. The wheel landings dent tailwheel pilot, as he was experiencing a lot of anxiety were equally safe and smooth. His ability to whenever he flew his recently acquired Cub. handle the Cub safely on turf was evident, especially with no crosswind. Then it was time to switch runways and CROSSWIND LANDINGS begin tackling crosswind landings, in this case a crosswind from left to right at approx- imately 30 degrees and 10 mph. It was immediately apparent that his anxiety was WIND building at the mention of a crosswind land- ing. A method I like to use in this situation is to do a crosswind takeoff and closely observe the pilot’s control inputs. He made all the right control movements, but they were very stiff and almost always a split-second behind the aircraft when they were needed. -
FY 2021 Southwest (ASW) Regional Runway Safety Plan
FY2021 Southwest (ASW) Regional Runway Safety Plan COMMITTED TO CONTINUOUSLY IMPROVING SURFACE SAFETY. www.faa.gov ATO Safety and Technical Training Executive Summary In response to the agency goal and follow up to is a fluid and dynamic document which will be the National Runway Safety Plan, the ASW Runway evaluated and modified as events warrant. Safety Plan serves as a roadmap with regional Runway Safety Program FAA Order 7050.1B runway safety emphasis for FY2021. prescribes the FAA Runway Safety Program and FAA Safety Management System (SMS) The members of the Regional Runway Safety establishes policy, assigns responsibility, and TABLE OF 04 Governance Council (RSGC) and the Regional delegates’ authority for ensuring compliance with CONTENTS Runway Safety Program Manager(s) (RSPMs) this order within each organization. will determine the impact and resources. This 06 Regional Runway Safety Plan (RRSP) Methodology ASW Executive Roster ASW Runway Safety Team Rob Lowe Darren Fields ASW Regional Administrator ASW Runway Safety Program Manager 07 FY21 RRSP Initiatives and Safety Assurance Lisa Ryan Heather Peet ASW Deputy Regional ASW Runway Safety Program Manager Administrator Safety Risk Management (SRM) Andy Atchley 08 Director, Central Service Center Ignacio Flores Director, Airports Division Safety Policy Southwest Region 10 Frank McIntosh Director, Air Traffic Services Central Service Area 11 Safety Promotion Randall Burke Director, Technical Operations Services Central Service Area 13 Appendices 4 Southwest (ASW) Regional Runway Safety Plan FY21 Southwest (ASW) Regional Runway Safety Plan FY21 5 FAA Safety Management National Runway System (SMS) Safety Plan Objectives The FAA Order 8000.369B, Safety Management A main function of the SMS is to collect and System, advances safety management by analyze relevant data that identifies the factors moving toward a process-oriented safety that constitute acceptable risk. -
FINAL INVESTIGATION REPORT on RUNWAY EXCURSION to M/S AIR INDIA EXPRESS LTD BOEING 737-800 NG AIRCRAFT VT-AXT on 10/07/2018 at MUMBAI
88 380873/2019/DIRECTORATE OF AIR SAFETY (AS)-DGCA FINAL INVESTIGATION REPORT ON RUNWAY EXCURSION TO M/s AIR INDIA EXPRESS LTD BOEING 737-800 NG AIRCRAFT VT-AXT ON 10/07/2018 AT MUMBAI GOVERNMENT OF INDIA O/o, DIRECTOR AIR SAFETY, WESTERN REGION, NEW INTEGRATED OPERATIONAL OFFICE COMPLEX, SAHAR ROAD, VILE PARLE (EAST), MUMBAI-400099 89 380873/2019/DIRECTORATE OF AIR SAFETY (AS)-DGCA OBJECTIVE This investigation is conducted in accordance with the provisions of Aircraft (Investigation of Accidents and Incidents) Rules, 2017 of India. The sole objective of this investigation is the prevention of accidents and incidents and not to apportion blame or liability. i 90 380873/2019/DIRECTORATE OF AIR SAFETY (AS)-DGCA FOREWARD This document has been prepared based upon the evidences collected during the investigation, opinion obtained from the experts and laboratory examination of various components. Consequently, the use of this report for any purpose other than for the prevention of accidents or incidents could lead to erroneous interpretations. ii 91 380873/2019/DIRECTORATE OF AIR SAFETY (AS)-DGCA CONTENTS CHAPTER ITEM PAGE NO. --- ABBREVIATIONS 1 --- SYNOPSIS 6 1 FACTUAL INFORMATION 1.1 History of Flight 6 1.2 Injuries to Persons 15 1.3 Damage to Aircraft 15 1.4 Other Damage 16 1.5 Personnel Information 16 1.6 Aircraft Information 19 1.7 Meteorological Information 23 1.8 Aids to Navigation 23 1.9 Communication 24 1.10 Aerodrome Information 24 1.11 Flight Recorders 27 1.12 Wreckage and Impact Information 36 1.13 Medical and Pathological Information -
Crosswind Landings
Landing Techniques Flight Operations Briefing Notes Crosswind Landings Flight Operations Briefing Note Landing Techniques Crosswind Landings I Introduction Operations in crosswind conditions require strict adherence to applicable crosswind limitations or maximum recommended crosswind values, operational recommendations and handling techniques, particularly when operating on wet or contaminated runways. This Flight Operations Briefing Note provides an overview and discussion of operational factors involved in planning and conducting the approach and flare under crosswind conditions, particularly on a contaminated runway. The Flight Operations Briefing Note Landing on Wet or Contaminated Runway provides expanded information on operations on wet or contaminated runways. II Statistical Data Adverse wind conditions (i.e., strong crosswinds, tail winds and wind shear) are involved in 33 % of approach-and-landing accidents. Crosswind in association with runway condition is a circumstantial factor in nearly 70 % of runway excursion events. 85 % of crosswind incidents and accidents occur at landing. (Source: Flight Safety Foundation Flight Safety Digest Volume 17 & 18 – November 1998 / February 1999). III Runway Condition and Maximum Recommended Crosswind The maximum demonstrated crosswind and maximum computed crosswind, discussed in Flight Operations Briefing Note Understanding Forecast / ATC / Aircraft Wind Information are applicable only on dry or wet runway. Page 1 of 12 Landing Techniques Flight Operations Briefing Notes Crosswind Landings