Overexpression of Reticulon 3 Enhances CNS Axon Regeneration And

Total Page:16

File Type:pdf, Size:1020Kb

Overexpression of Reticulon 3 Enhances CNS Axon Regeneration And bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445420; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Overexpression of Reticulon 3 enhances CNS axon regeneration and 2 functional recovery after injury 3 4 Sharif Alhajlah1,2, Adam M. Thompson1, Zubair Ahmed1* 5 6 1Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, 7 Edgbaston, Birmingham, B15 2TT, UK. 8 2Applied Medical Science College, Shaqra University, Addawadmi, Riyadh, Saudi Arabia. 9 10 11 *Corresponding Author: Dr Zubair Ahmed, Neuroscience and Ophthalmology, 12 Institute of Inflammation and Ageing, College of Medical and Dental Sciences, 13 University of Birmingham, Birmingham, B15 2TT. Tel: +44 121 4148858; Fax: +44 14 121 4148867; email: [email protected]. 15 16 17 ORCID ID: 0000-0001-6267-6442 (ZA). 18 19 20 21 22 23 24 25 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445420; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 27 Abstract 28 CNS neurons are generally incapable of regenerating their axons after injury due to 29 several intrinsic and extrinsic factors, including the presence of axon growth inhibitory 30 molecules. One such potent inhibitor of CNS axon regeneration is Reticulon (RTN) 4 31 or Nogo-66. Here, we focused on RTN3 as its contribution in CNS axon regeneration 32 is currently unknown. We found that RTN3 expression correlated with an axon 33 regenerative phenotype in dorsal root ganglion neurons (DRGN) after injury to the 34 dorsal columns, a model of spinal cord injury. Overexpression of RTN3 promoted 35 disinhibited DRGN neurite outgrowth in vitro and dorsal column axon 36 regeneration/sprouting and electrophysiological, sensory and locomotor functional 37 recovery after injury in vivo. Knockdown of protrudin however, ablated RTN3- 38 enhanced neurite outgrowth/axon regeneration in vitro and in vivo. Moreover, 39 overexpression of RTN3 in a second model of CNS injury, the optic nerve crush 40 injury model, enhanced retinal ganglion cell (RGC) survival, disinhibited neurite 41 outgrowth in vitro and survival and axon regeneration in vivo, an effect that was also 42 dependent on protrudin. These results demonstrate that RTN3 enhances neurite 43 outgrowth/axon regeneration in a protrudin-dependent manner after both spinal cord 44 and optic nerve injury. 45 46 47 48 49 Key words: Reticulon-3, spinal cord injury, optic nerve injury, axon regeneration, 50 neurite outgrowth, protrudin. 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445420; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 51 Introduction 52 Reticulons (RTNs) are membrane-bound proteins of which four have been identified 53 in mammals and termed RTN1, 2, 3 and 4 (Nogo). RTNs are characterized by highly 54 conserved reticulon homology domains (RHD), approximately 150-200 amino acid 55 that are located in RTN C-terminal, which are involved in improvement of localization 56 and function of these proteins. RTNs are found in a variety of tissues including the 57 brain, kidney, spleen and liver, playing diverse roles such as ER shaping and 58 morphology, membrane trafficking and apoptosis. Moreover, RTNs are found in 59 neurodegenerative diseases such as Alzheimer’s, amyotrophic lateral sclerosis and 60 multiple sclerosis (Chiurchiu et al., 2014). RTN1, 2 and 4 have three splice isoforms 61 A, B and C whilst RTN3 only has two spliced isoforms RTN3A and B (Di Scala et al., 62 2005). RTN3 is expressed in many types of tissues but was first isolated from human 63 retina and later shown to have the highest expression in the brain(Cai et al., 2005). 64 The human RTN3 gene is localized in 11q13 and mutations of this gene cause 65 dysfunction of the retina and is therefore speculated that this gene may play a role in 66 retinal function (Kumamaru et al., 2004). Furthermore, RTN3 is also localised in 67 cultured cortical neurons and concentrated in axon growth cones in the early days 68 after culture (Kumamaru et al., 2004). 69 70 In neurons, a specific transport system for membrane-bound vesicles that contain 71 lipids and proteins is required for extension and maintenance of neurites (Futerman 72 and Banker, 1996; Tang, 2001). Kinesin-1 is a molecular protein that plays a key role 73 in this process, moving unidirectionally over long distances to mediate anterograde 74 transport of neuronal cargos from the cell body to the synapse (Ferreira et al., 1992; 75 Kimura et al., 2005; Hirokawa et al., 2009; Konishi and Setou, 2009). Kinesin-1 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445420; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 76 contains a dimer of kinesin heavy chain isoform 5A (KIF5) which hydrolyses 77 adenosine triphosphate (ATP) and uses the resulting energy to move along 78 microtubules (Hirokawa and Noda, 2008). Protrudin was identified as a key regulator 79 of Rab11-dependent vesicular transport during neurite extension through the 80 interaction of the atypical Rab11-binding domain with guanosine diphosphate (GDP)- 81 bound form of Rab11 (Shirane and Nakayama, 2006). Protrudin associated with 82 Rab11 in PC12 cells in response to protrudin phosphorylation, resulting from 83 signalling triggered by extracellular signal-related kinase (ERK) in response to nerve 84 growth factor (Shirane and Nakayama, 2006). In addition, expression of protrudin, 85 even in non-neuronal cells, induced the formation of membrane protrusions whilst 86 RNA interference (RNAi)-mediated downregulation of protrudin, inhibited neurite 87 formation (Shirane and Nakayama, 2006). Interestingly, protrudin associates with 88 KIF5 and its overexpression in HeLa cells induced the formation of protrusions 89 similar to those observed after protrudin overexpression (Matsuzaki et al., 2011). 90 91 Protrudin also interacts with RTN3 and promotes its binding to KIF5 allowing the 92 protrudin-KIF5 complex to cargo RTN3 from the cell soma to neurites (Matsuzaki et 93 al., 2011). More recently, protrudin was shown to form repeated contact sites with 94 late endosomes (LEs; the main organelles of the secretory and endocytic pathways 95 along with the endoplasmic reticulum (ER)) via coincident detection of the small 96 GTPase RAB7 and phosphatidylinositol 3-phosphate (PtdIns(3)P), mediating transfer 97 of the microtubule kinesin 1 from protrudin to the motor adaptor FYCO1 (FYVE and 98 coiled-coil domain autophagy adaptor 1) on LEs (Raiborg et al., 2015). These 99 repeated LE-ER contacts promote microtubule-dependent translocation of LEs to the 100 cell periphery and subsequent synaptotagmin-VII (SYT7)-dependent fusion with the 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445420; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 101 plasma membrane, promoting neurite outgrowth (Raiborg et al., 2015). In this study, 102 we determined the contribution of RTN3 to CNS axon regeneration in a dorsal 103 column (DC) model of spinal cord injury (SCI) (Ahmed et al., 2014; Almutiri et al., 104 2018; Farrukh et al., 2019; Stevens et al., 2019; Tuxworth, 2019). We then employed 105 a second model of CNS injury, optic nerve crush injury (Ahmed et al., 2006; 106 Tuxworth, 2019) to confirm our findings in the SCI model. 107 108 109 Results 110 Levels of RTN3 correlate with an axon regenerative phenotype 111 To examine changes in RTN3 mRNA levels, we harvested dorsal root ganglion 112 (DRG) containing the DRG neurons (DRGN) at 10 days after: (1), DC injury (non- 113 regenerating model); (2), sciatic nerve (SN) injury (regenerating SN model); (3), and 114 preconditioning (p) SN+DC lesion (crush of SN at -7 days before a DC lesion; 115 regenerating DC model) (Figure 1A). Preconditioning lesions upregulate the intrinsic 116 capacity of DRGN neurons to regenerate (Ahmed et al., 2010b; Farrukh et al., 2019). 117 We used microarray to demonstrate that RTN3 mRNA levels were significantly 118 elevated in SN and pSN+DC models, by 4.11 ± 0.02 and 6.22 ± 0.04-fold (P<0.0001, 119 ANOVA with Dunnett’s post hoc test; n = 16 DRG/group), respectively, compared to 120 intact controls (Figure 1B). These results were confirmed by qRT-PCR (Figure 1C) 121 and Western blot (Figure 1D,E) which demonstrated that regenerating SN and 122 pSN+DC regenerating models contained significantly elevated RTN3 levels. Low 123 levels of RTN3 immunoreactivity were detected in the cytoplasm and cell membranes 124 of DRGN after DC injury (Figure 1F). However, in regenerating SN and pSN+DC 125 DRGN, RTN3 immunoreactivity (green) was widely observed in the cytoplasm and 5 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445420; this version posted May 25, 2021.
Recommended publications
  • Functions of Nogo Proteins and Their Receptors in the Nervous System
    REVIEWS Functions of Nogo proteins and their receptors in the nervous system Martin E. Schwab Abstract | The membrane protein Nogo-A was initially characterized as a CNS-specific inhibitor of axonal regeneration. Recent studies have uncovered regulatory roles of Nogo proteins and their receptors — in precursor migration, neurite growth and branching in the developing nervous system — as well as a growth-restricting function during CNS maturation. The function of Nogo in the adult CNS is now understood to be that of a negative regulator of neuronal growth, leading to stabilization of the CNS wiring at the expense of extensive plastic rearrangements and regeneration after injury. In addition, Nogo proteins interact with various intracellular components and may have roles in the regulation of endoplasmic reticulum (ER) structure, processing of amyloid precursor protein and cell survival. Nogo proteins were discovered, and have been exten- The amino-terminal segments of the proteins sively studied, in the context of injury and repair of fibre encoded by the different RTN genes have differing tracts in the CNS1 — a topic of great research interest lengths and there is no homology between them3,5. The and clinical relevance. However, much less in known N termini of the RTN4 products Nogo-A and Nogo-B are about the physiological functions of Nogo proteins in identical, consisting of a 172-amino acid sequence that development and in the intact adult organism, including is encoded by a single exon (exon 1) that is followed by in the brain. Through a number of recent publications, a short exon 2 and, in Nogo-A, by the very long exon Nogo proteins have emerged as important regulators of 3 encoding 800 amino acids2,6 (FIG.
    [Show full text]
  • Hereditary Spastic Paraplegia: from Genes, Cells and Networks to Novel Pathways for Drug Discovery
    brain sciences Review Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery Alan Mackay-Sim Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; a.mackay-sim@griffith.edu.au Abstract: Hereditary spastic paraplegia (HSP) is a diverse group of Mendelian genetic disorders affect- ing the upper motor neurons, specifically degeneration of their distal axons in the corticospinal tract. Currently, there are 80 genes or genomic loci (genomic regions for which the causative gene has not been identified) associated with HSP diagnosis. HSP is therefore genetically very heterogeneous. Finding treatments for the HSPs is a daunting task: a rare disease made rarer by so many causative genes and many potential mutations in those genes in individual patients. Personalized medicine through genetic correction may be possible, but impractical as a generalized treatment strategy. The ideal treatments would be small molecules that are effective for people with different causative mutations. This requires identification of disease-associated cell dysfunctions shared across geno- types despite the large number of HSP genes that suggest a wide diversity of molecular and cellular mechanisms. This review highlights the shared dysfunctional phenotypes in patient-derived cells from patients with different causative mutations and uses bioinformatic analyses of the HSP genes to identify novel cell functions as potential targets for future drug treatments for multiple genotypes. Keywords: neurodegeneration; motor neuron disease; spastic paraplegia; endoplasmic reticulum; Citation: Mackay-Sim, A. Hereditary protein-protein interaction network Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. Brain Sci. 2021, 11, 403.
    [Show full text]
  • Roles of Reticulons and Reeps in Organisation of Axonal Endoplasmic Reticlum in Drosophila
    Roles of reticulons and REEPs in organisation of axonal endoplasmic reticlum in Drosophila Belgin Yalçın1, Niamh C. O’Sullivan1, Martin Stofanko1, Zi Han Kang, Annika Hartwich, Matt Thomas, Cahir J. O’Kane2 (1equal contributions; 2corresponding author) Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK The length of motor axons requires significant engineering for their formation and maintenance. Failures of this maintenance are seen in the Hereditary Spastic Paraplegias (HSPs), characterised by lower limb weakness, and degeneration of longer upper motor axons. To date over 50 causative Spastic Paraplegia Genes (SPGs) have been identified. Several encode endoplasmic reticulum membrane proteins, with intramembrane hairpin structures that curve and model ER membrane. Two of these protein families, reticulons and REEPs, are together required for formation of most tubular ER in yeast. To test whether they are also required for formation or maintenance of axonal ER, we have developed suitable markers in Drosophila, and analyzed mutants that lack members of these protein families. Drosophila has two reticulon genes, one of which, Rtnl1, is widely expressed. YFP-tagged Rtnl1 localises strongly in axons and presynaptic terminals, in contrast to most conventional ER markers. Rtnl1 knockdown reduces levels of smooth ER marker in longer distal motor axons, but not in shorter or proximal ones – analogous to HSP. This effect is also seen in labeled single axons, with no loss of ER continuity. Drosophila has six REEP genes, two of which are widely and highly expressed. ReepA is orthologous to mammalian REEPs 1 to 4, and ReepB to mammalian REEP5 and REEP6. We can detect ReepB::GFP but not ReepA::GFP in axons and presynaptic terminals.
    [Show full text]
  • A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication
    Article A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication Graphical Abstract Authors Kristin M. Kotewicz, Vinay Ramabhadran, Nicole Sjoblom, ..., Jessica Behringer, Rebecca A. Scheck, Ralph R. Isberg Correspondence [email protected] In Brief Intracellular pathogens, including Legionella, target host organelles for replication. Kotewicz et al. show that Legionella generates an ER- encompassed replication compartment via Sde protein-mediated ubiquitination of host reticulon 4. Ubiquitination is mediated by sequential action of the ADP-ribosyltransferase and nucleotidase activities of Sde and independent of the host ubiquitination system. Highlights d Legionella Sde proteins remodel tubular ER to initiate intracellular replication d The tubular ER protein reticulon 4 is targeted by Sde proteins d ER remodeling requires ubiquitin transfer by Sde proteins d Ubiquitin transfer involves ADP-ribosyltransferase and nucleotidase activities Kotewicz et al., 2017, Cell Host & Microbe 21, 169–181 February 8, 2017 ª 2016 Elsevier Inc. http://dx.doi.org/10.1016/j.chom.2016.12.007 Cell Host & Microbe Article ASingleLegionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication Kristin M. Kotewicz,1,6 Vinay Ramabhadran,1,3,6 Nicole Sjoblom,2 Joseph P. Vogel,4 Eva Haenssler,1,7 Mengyun Zhang,1 Jessica Behringer,5 Rebecca A. Scheck,2 and Ralph R. Isberg1,3,8,* 1Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA 2Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, USA 3Howard Hughes Medical Institute, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA 4Department of Molecular Microbiology, Washington University School of Medicine, St.
    [Show full text]
  • A Conserved Amphipathic Helix Is Required for Membrane Tubule Formation by Yop1p
    A conserved amphipathic helix is required for PNAS PLUS membrane tubule formation by Yop1p Jacob P. Brady, Jolyon K. Claridge, Peter G. Smith, and Jason R. Schnell1 Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom Edited by William F. DeGrado, School of Pharmacy, University of California, San Francisco, CA, and approved December 31, 2014 (received for review August 18, 2014) The integral membrane proteins of the DP1 (deleted in polyposis) C-terminal tubulin binding domains providing a link between ER and reticulon families are responsible for maintaining the high morphology and the cytoskeleton (19). membrane curvature required for both smooth endoplasmic retic- The RHDs are proposed to form hydrophobic hairpins too ulum (ER) tubules and the edges of ER sheets, and mutations in short to traverse the membrane fully, leading to greater dis- these proteins lead to motor neuron diseases, such as hereditary placement of lipids from the outer leaflet than from the in- spastic paraplegia. Reticulon/DP1 proteins contain reticulon ho- ner leaflet. By this mechanism, a combination of hydrophobic mology domains (RHDs) that have unusually long hydrophobic wedging and oligomeric scaffolding could lead to the stabiliza- segments and are proposed to adopt intramembrane helical hair- tion of the tubular ER membrane. However, there is currently pins that stabilize membrane curvature. We have characterized no structural information available for these intramembrane the secondary structure and dynamics of the DP1 family protein domains, and the exact mechanism of curvature generation and produced from the YOP1 gene (Yop1p) and identified a C-termi- stabilization remains unknown. The mechanism for exclusive nal conserved amphipathic helix (APH) that, on its own, interacts localization of RHD proteins to highly curved membranes also strongly with negatively charged membranes and is necessary remains unclear; however, the transmembrane domains have for membrane tubule formation.
    [Show full text]
  • Update on the Genetics of Spastic Paraplegias Maxime Boutry, Sara Morais, Giovanni Stevanin
    Update on the genetics of spastic paraplegias Maxime Boutry, Sara Morais, Giovanni Stevanin To cite this version: Maxime Boutry, Sara Morais, Giovanni Stevanin. Update on the genetics of spastic paraple- gias. Current Neurology and Neuroscience Reports, Current Medicine Group, 2019, 19 (4), pp.18. 10.1007/s11910-019-0930-2. hal-02272013 HAL Id: hal-02272013 https://hal.sorbonne-universite.fr/hal-02272013 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Update on the genetics of spastic paraplegias Maxime Boutry1,2*, Sara Morais1,2,3, Giovanni Stevanin1,2 1 Institut du Cerveau et de la Moelle épinière, Sorbonne Université UMR_S1127, INSERM Unit 1127, CNRS UMR7225, 75013, Paris, France 2 Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, Neurogenetics team, 75013, Paris, France 3 UnIGENe, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal *Current affiliation: Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada Corresponding author: Giovanni Stevanin [email protected] ORCID 0000-0001-9368-8657 Abstract Purpose of review Hereditary spastic paraplegias are a genetically heterogeneous group of neurological disorders.
    [Show full text]
  • Investigation of Two Early Events in Amyotrophic Lateral Sclerosis
    INVESTIGATION OF TWO EARLY EVENTS IN AMYOTROPHIC LATERAL SCLEROSIS -MRNA OXIDATION AND UP-REGULATION OF A NOVEL PROTECTIVE FACTOR MSUR1 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yueming Chang, Bachelor in Medicine *********** The Ohio State University 2007 Dissertation Committee: Approved by Professor Chien-liang Glenn Lin, Advisor Professor Andrej Rotter ------------------------------------------- Professor Arthur H.M. Burghes Advisor Professor John Oberdick The Ohio State Biochemistry Program ABSTRACT Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder that is characterized by progressive degeneration of motor neurons in the spinal cord, motor cortex and brainstem, which typically results in mortality within 2-5 years after the onset of disease. The cause of disease is unknown in the majority of cases, and there is no cure for ALS of the moment. Approximately 5% of ALS cases are familial, and 15-25% of the familial cases are linked to mutation in the gene encoding the antioxidant enzyme Cu 2+ /Zn 2+ superoxide dismutase (SOD1). Overexpression of some of ALS-linked mutant SOD1 proteins in transgenic mice results in the development of a neurological disorder that resembles ALS patients. The transgenic mice expressing mutant SOD1 (G93A) is a commonly used ALS animal model. This dissertation demonstrates two early events occurred in the pre-symptomatic stage of SOD1 (G93A) mice, including RNA oxidation and up-regulation of a novel protective factor MSUR1 (mutant SOD1-upregulated RNA 1). Accumulating evidence indicates that messenger RNA (mRNA) oxidation may be associated with neuronal deterioration during the process of neurodegeneration.
    [Show full text]
  • The Effects of ER Morphology on Synaptic Structure and Function in Drosophila Melanogaster James B
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 1635-1648 doi:10.1242/jcs.184929 RESEARCH ARTICLE The effects of ER morphology on synaptic structure and function in Drosophila melanogaster James B. Summerville1,*, Joseph F. Faust1,*, Ethan Fan1, Diana Pendin2, Andrea Daga3, Joseph Formella1, Michael Stern1,‡ and James A. McNew1,‡ ABSTRACT (Di Sano et al., 2012). The nature of most of these secondary Hereditary spastic paraplegia (HSP) is a set of genetic diseases functions remains to be revealed. caused by mutations in one of 72 genes that results in age-dependent The large ER network also maintains luminal and membrane corticospinal axon degeneration accompanied by spasticity and continuity throughout the cytoplasm. This interconnected nature paralysis. Two genes implicated in HSPs encode proteins that of the ER network is required for ER function and is maintained regulate endoplasmic reticulum (ER) morphology. Atlastin 1 (ATL1, by the ER membrane fusion GTPase atlastin (Orso et al., 2009), also known as SPG3A) encodes an ER membrane fusion GTPase which is a member of the fusion dynamin-related protein family and reticulon 2 (RTN2, also known as SPG12) helps shape ER tube (fusion DRP) (McNew et al., 2013; Moss et al., 2011; Pendin et al., formation. Here, we use a new fluorescent ER marker to show that the 2011). ER within wild-type Drosophila motor nerve terminals forms a network The ER is closely associated with and functionally connected to of tubules that is fragmented and made diffuse upon loss of the the plasma membrane. This connection is often associated with 2+ atlastin 1 ortholog atl.
    [Show full text]
  • Modeling of Axonal Endoplasmic Reticulum Network by Spastic
    RESEARCH ARTICLE Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins Belgin Yalc¸ın1, Lu Zhao1, Martin Stofanko1, Niamh C O’Sullivan1, Zi Han Kang1, Annika Roost1, Matthew R Thomas1, Sophie Zaessinger1, Olivier Blard1, Alex L Patto1, Anood Sohail1, Valentina Baena2, Mark Terasaki2, Cahir J O’Kane1* 1Department of Genetics, University of Cambridge, Cambridge, United Kingdom; 2Department of Cell Biology, University of Connecticut Health Center, Farmington, United States Abstract Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function. DOI: 10.7554/eLife.23882.001 *For correspondence: c.okane@ gen.cam.ac.uk Competing interests: The Introduction authors declare that no Axons allow long-range bidirectional communication in neurons. They carry action potentials along competing interests exist. their plasma membrane from dendrites and cell body to presynaptic terminals; and they transport cell components and signaling complexes using motor proteins, anterogradely and retrogradely.
    [Show full text]
  • Extended Synaptotagmin Localizes to Presynaptic ER and Promotes Neurotransmission and Synaptic Growth in Drosophila
    Genetics: Early Online, published on September 7, 2017 as 10.1534/genetics.117.300261 Extended Synaptotagmin localizes to presynaptic ER and promotes neurotransmission and synaptic growth in Drosophila Koto Kikuma*,†, Xiling Li*,†, Daniel Kim*, David Sutter*, and Dion K. Dickman*,1 *Department of Neurobiology and †Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089 1 Copyright 2017. Running title: Synaptic functions of Esyt Keywords: Drosophila, neuromuscular junction, endoplasmic reticulum, synapse 1Correspondence: Dion Dickman Department of Neurobiology, 3641 Watt Way, HNB 309, University of Southern California, Los Angeles, California 90089 (213) 740-7533 [email protected] 2 ABSTRACT The endoplasmic reticulum (ER) is an extensive organelle in neurons with important roles at synapses including the regulation of cytosolic Ca2+, neurotransmission, lipid metabolism, and membrane trafficking. Despite intriguing evidence for these crucial functions, how presynaptic ER influences synaptic physiology remains enigmatic. To gain insight into this question, we have generated and characterized mutations in the single Extended Synaptotagmin (Esyt) ortholog in Drosophila melanogaster. Esyts are evolutionarily conserved ER proteins with Ca2+-sensing domains that have recently been shown to orchestrate membrane tethering and lipid exchange between the ER and plasma membrane. We first demonstrate that Esyt localizes to presynaptic ER structures at the neuromuscular junction. Next, we show that synaptic growth, structure, and homeostatic plasticity are surprisingly unperturbed at synapses lacking Esyt expression. However, neurotransmission is reduced in Esyt mutants, consistent with a presynaptic role in promoting neurotransmitter release. Finally, neuronal overexpression of Esyt enhances synaptic growth and the sustainment of the vesicle pool during intense activity, suggesting that increased Esyt levels may modulate the membrane trafficking and/or resting calcium pathways that control synapse extension.
    [Show full text]
  • Protein Disulfide Isomerase and the Endoplasmic Reticulum in Amyotrophic Lateral Sclerosis
    The Journal of Neuroscience, March 17, 2010 • 30(11):3865–3867 • 3865 Journal Club Editor’s Note: These short reviews of a recent paper in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more infor- mation on the format and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml. Protein Disulfide Isomerase and the Endoplasmic Reticulum in Amyotrophic Lateral Sclerosis Adam K. Walker1,2 1Howard Florey Institute, Florey Neuroscience Institutes, and Centre for Neuroscience, The University of Melbourne, Parkville, Victoria 3010, Australia, and 2Department of Biochemistry, La Trobe University, Bundoora, Victoria 3086, Australia Review of Yang et al. Amyotrophic lateral sclerosis (ALS) is a proteins continue to accumulate. The vitro. Furthermore, the authors showed devastating neurodegenerative disease UPR is activated in motor neurons of the that deletion of the gene encoding reti- primarily affecting motor neurons. No most commonly used ALS model, high- culon-4A,B (Rtn-4A,B, also known as previous family history exists in the ma- expressing mutant SOD1 G93A transgenic NogoA,B) prevents PDI redistribution and jority of cases, but mutations in the gene mice, as early as postnatal day 5, long be- accelerates degeneration and disease pro- encoding superoxide dismutase 1 (SOD1) fore symptom onset at approximately day gression in SOD1 G93A mice. These findings cause ϳ20% of familial disease. Although 90 (Saxena et al., 2009). Additionally, ge- suggest that reticulon expression and PDI the mechanisms causing motor neuron netic ablation of the ER stress-activated localization could be important modulating degeneration in ALS remain unknown, transcription factor X-box-binding protein-1 factors in ALS.
    [Show full text]
  • Drosophila Mitochondrial Proteome Is Partially Corrected with Exercise
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.06.425659; this version posted January 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The dysregulated Pink1- Drosophila mitochondrial proteome is partially corrected with exercise. Brad Ebanks1*, Thomas L Ingram1*, Gunjan Katyal1, John R Ingram2, Nicoleta Moisoi3, Lisa Chakrabarti1,4# 1 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK. 2 Ullswater Avenue, West End, Southampton 3 Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, De Montfort University, The Gateway, Leicester LE1 9BH 4 MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, UK * Equally contributing authors # Corresponding author [email protected] Running title: Pink1 fly mitochondrial proteomics and exercise Keywords: Mitochondria, PINK1/Pink1, Parkinson’s disease, exercise, proteomics bioRxiv preprint doi: https://doi.org/10.1101/2021.01.06.425659; this version posted January 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract One of the genes which has been linked to the onset of juvenile/early onset Parkinson’s disease (PD) is PINK1. There is evidence that supports the therapeutic potential of exercise in the alleviation of PD symptoms. It is possible that exercise may enhance synaptic plasticity, protect against neuro-inflammation and modulate L-Dopa regulated signalling pathways.
    [Show full text]