One Cox Does Not Fit All: Choosing the Right NSAID

Total Page:16

File Type:pdf, Size:1020Kb

One Cox Does Not Fit All: Choosing the Right NSAID One Cox does not fit all: Choosing the right NSAID Stephen Cital RVT, SRA, RLAT, VCC, CVPP, VTS-LAM Veterinary Cannabinoid Academy, Veterinary Anesthesia Nerds, Stanford University www.stephencital.com The importance of NSAIDS is more critical than ever. In general, all NSAIDs have about the same analgesic capacity. With constant drug shortages NSAIDS play a critical role in a robust and effective pain control protocol for animals that can tolerate them. In fact, in human studies where NSAIDS are used at appropriate dosages and intervals, pain scores in comparison to those patients on opioids are the same if not better. Non NSAID medications with anti-inflammatory properties Lidocaine- This common and very effective analgesic is not only free radical scavenging but also has some notable anti-inflammatory effects described by Caracas et al. The studies do not support relying on lidocaine as an anti-inflammatory but it is a benefit to consider. Buprenorphine- Known for its effects at opioid receptors the information coming out on buprenorphine is exciting. Not only can this drug be used safely at higher doses in companion animals for equipotent effects as full mu-opioid drugs, it also has very mild anti-inflammatory properties in induced arthritic animal models. Cannabinoids- These diverse molecules not only delay or prevent the formation of arachidonic acid but also can have COX inhibiting effects. Acetaminophen aka Paracetamol (Tylenol)- This drug is NOT an NSAID but works in conjunction with NSAIDS. It should never be given to cats. Maropitant (Cerenia)- Is not an NSAID but some research has suggested its use as an analgesic. However, the evidence is still very weak for this theory and it is not recommended to rely on this drug as a stand alone analgesic. Instead it should be considered in conjunction with traditional protocols. The mechanism of action for an “anti-inflammatory” response is dynamic and will depend on the medication being used. When it comes to traditional NSAIDS we see the following. NSAIDS are an ever- evolving group with medications that have varying effects acting through inhibition of prostaglandin synthesis secondary to their inhibition of the enzyme cyclooxygenase (COX). This results in suppression of inflammation, and thus analgesia. Most NSAIDs not only inhibit prostaglandins at sites of inflammation, but systemically. Prostaglandins serve important functions in other parts of the body (kidneys and GI), a factor that accounts for some of the toxicity of these agents. The most frequent complications associated with NSAID usage are those involving the gastrointestinal tract and the creation of ulcers after administration. Studies on NSAIDS use the negative side effects on the gastrointestinal track as standard in safety testing. The evolution of NSAIDS has developed more specific (COX1, COX2) acting medications with improved safety and anti-inflammatory effects. NSAIDs that inhibit COX1, with increases up to 3 times with tissue injury were the first generation with more detrimental side effects on GI tissue. COX2 NSAIDS are more pain relieving by way of inhibiting the isoform synthesized by macrophages and inflammatory cells with tissue injury, which is the more pain stimulating concern able to produce severe inflammation and hyperalgesia. NSAIDS do have positive synergy with other analgesics, such as opioids, and can actually help reduce the dose of opioids to achieve the same level of pain without the NSAID synergistic effect. Some studies suggest one can anticipate cutting the opioid dose by 40%. More and more evidence is supporting the use of certain NSAIDS pre-operatively, affectively alleviating the inflammation process BEFORE it starts for hydrated, elective and healthy patients over 8 weeks of age. It is critical renal infarct is avoided to reduce potential negative side effects. Grapiprant (Galliprant) is a member of a new piprant chemical class developed by Arantana that works through a specific targeted mechanism. Specificity at the EP4 prostaglandin receptor. Instead of inhibiting the cyclooxygenase enzymes, grapiprant has a specific target, at the EP4 prostaglandin receptor. What is particularly unique about this mechanism is grapiprant does not affect the function of the other prostaglandin pathways that are necessary to support normal kidney function, platelet function and other important physiological processes. In the classic definition of an NSAID, Galliprant is not an NSAID. Non-Selective NSAIDS COX2 selective COX2 preferred Phenylbutazone Firocoxib Carprofen (Non-selective in Ketoprofen Deracoxib people) Flunixin Celecoxib Meloxicam Piroxicam (Great for birds?) Mavacoxib (long lasting, only Aspirin approved in UK) Cimicoxib Robenacoxin My patient doesn’t seem to be responding to the NSAID anymore • This rare occurrence can be telling about the patient. It could suggest GI changes and absorption concerns or an increase inflammatory response/ hypersensitive nociceptor. To calm this effect amantadine can be administered to animals suffering from decreased responsiveness to NSAID therapy. Generally, benefits from the co-administration of amantadine are expected after or before a 21 day course of amantadine. • Amantadine appears to be helpful in maintaining comfort in dogs with musculoskeletal pain or osteosarcoma. • The dosage of both drugs for dogs and cats is approximately 3 to 5 mg/kg orally (PO) once daily. • Some clinicians prefer to switch NSAIDS, which usually includes a washout period between differing NSAID options. This should be avoided unless absolutely necessary. This washout period allows for inflammatory molecules to surge, leaving the pet in pain and us having to play catchup. • Instead, one can consider amantadine as described above or trying Galliprant or CBD. Long term use and use with chronic kidney disease NSAIDS are often used off label. More recent literature supports notorious NSAIDS like meloxicam are in fact safe for use in cats- as practiced by many foreign practitioners and can be used longer term. Robenacoxib (Onsior) can also be given longer term despite box labeling. It is in the patient’s best interest if maintaining on a chronic NSAID to have regular blood work done to ensure patient safety, such a q6 month liver and kidney function. Well maintained chronic kidney patients can tolerate NSAIDS despite long held fears and miseducation. However, there are some critical points to consider. • Acute renal azotemia would be a contraindication. • Pre-renal azotemia may be a different story. (A risk-benefit analysis of NSAID administration may suggest that it can be done with the owner’s informed consent.) • The animals should be eating and drinking normally. Safety Concerns There is a thought that adding a PPI such as omeprazole may be beneficial in reducing GI related concerns. A study released in 2020 by Jones et al. found that adding omeprazole was in fact not beneficial and could create more concern than alleviate. “Omeprazole prophylaxis induces fecal dysbiosis and increases intestinal inflammatory markers when coadministered with carprofen to otherwise healthy dogs with no other risk factors for GI bleeding.” Instead, misoprostol can be considered as a synthetic PGE producer to replace the PGE’s knocked out by NSAIDS. Addisonian patients receiving physiological doses of prednisone? Because they are only getting a physiological dose there should be minimal concern of co-administration. The author prefers to start with half the recommended dose to gauge efficacy and will increase from there. Human data affirms patients taking NSAIDs undergoing R/A have a higher rate of leakage from the anastamotic site; this might be especially true for the more highly selective COX2 NSAIDs (this is because PGE2 is also a factor in promoting tissue repair). Lactation- Only 1% of NSAID dose enters milk. Short term (<3-5 days) use for damns or bitches that are nursing raises little concern for the neonates. Wash out 5x half-life = 97% of drug elimination 10x half-life = 99% of drug elimination Half-life of common NSAIDS: Carprofen 8 hours Meloxicam 12-36 hours Robenacoxib 1 hour Deracoxib 3 hours References available upon request. .
Recommended publications
  • Pain Management in Companion Animals
    CONTINUING EDUCATION TAP OUR APP Pain Management in Companion Animals Download “NCPA Mobile” Today! by Ann Philbrick, PharmD, BCPS Don’t be left out of the latest news affecting community pharmacy—download our new app, NCPA Mobile! Receive real-time updates, join the conversation on Twitter with a built-in feed, Jul. 1, 2015 (expires Jul. 1, 2018) and never miss out on breaking news affecting community pharmacy. Keep the Activity Type: Application-based app on your phone year-round for updates, news, alerts, and more from NCPA. To earn continuing education credit: ACPE Program 0207-0000-15-007-H01-P; 0207-0000-15-007-H01-T Upon successful completion of this article, the pharmacist should be able to: 1. Describe the process of pain in the dog and cat including identification of ways they express pain. 2. Describe the appropriate use, mechanism of action, and precautions for use of analgesics in the treatment of pain in dogs and cats. 3. Explain the key issues that impair the prevention of diversion in compan- ion animal owners. Upon successful completion of this article, the pharmacist should be able to: 1. Describe the process of pain in the dog and cat including identification of ways they express pain. To get the free NCPA Mobile app: 2. Describe the appropriate use, mechanism of action, and precautions for FREE ONLINE CE. To take advantage use of analgesics in the treatment of pain in dogs and cats. of free continuing pharmacy educa- iPhone and iPad users—search “NCPA 3. Explain the key issues that impair the prevention of diversion in compan- tion (CPE) for this program, pharma- ion animal owners.
    [Show full text]
  • Pain Management E-Book
    VetEdPlus E-BOOK RESOURCES Pain Management E-Book WHAT’S INSIDE Gabapentin and Amantadine for Chronic Pain: Is Your Dose Right? Grapiprant for Control of Osteoarthritis Pain in Dogs Use of Acupuncture for Pain Management Regional Anesthesia for the Dentistry and Oral Surgery Patient A SUPPLEMENT TO Laser Therapy for Treatment of Joint Disease in Dogs and Cats Manipulative Therapies for Hip and Back Hypomobility in Dogs E-BOOK PEER REVIEWED CONTINUING EDUCATION Gabapentin and Amantadine for Chronic Pain: Is Your Dose Right? Tamara Grubb, DVM, PhD, DACVAA Associate Professor, Anesthesia and Analgesia Washington State University College of Veterinary Medicine Pain is not always a bad thing, and all pain is not Untreated or undertreated pain can cause myriad the same. Acute (protective) pain differs from adverse effects, including but not limited to chronic (maladaptive) pain in terms of function insomnia, anorexia, immunosuppression, and treatment. This article describes the types of cachexia, delayed wound healing, increased pain pain, the reasons why chronic pain can be sensation, hypertension, and behavior changes difficult to treat, and the use of gabapentin and that can lead to changes in the human–animal amantadine for treatment of chronic pain. bond.2 Hence, we administer analgesic drugs to patients with acute pain, not to eliminate the protective portion but to control the pain ACUTE PAIN beyond that needed for protection (i.e., the pain Acute pain in response to tissue damage is often that negatively affects normal physiologic called protective pain because it causes the processes and healing). This latter type of pain patient to withdraw tissue that is being damaged decreases quality of life without providing any to protect it from further injury (e.g., a dog adaptive protective mechanisms and is thus withdrawing a paw after it steps on something called maladaptive pain.
    [Show full text]
  • Comparative Efficacy and Safety of Mavacoxib and Carprofen in The
    Paper Paper Comparative efficacy and safety of mavacoxib and carprofen in the treatment of canine osteoarthritis M Payne-Johnson, C Becskei, Y Chaudhry, M R Stegemann A multi-site, masked, randomised parallel group study employing a double dummy treatment design was performed in canine veterinary patients to determine the comparative efficacy and safety of mavacoxib and carprofen in the treatment of pain and inflammation associated with osteoarthritis for a period of 134 days. Treatments were administered according to their respective summaries of product characteristics. Of 139 dogs screened, 124 were suitable for study participation: 62 of which were dosed with mavacoxib and 62 with carprofen. Both treatments resulted in a very similar pattern of considerable improvement as indicated in all parameters assessed by both owner and veterinarian. The primary efficacy endpoint ‘overall improvement’ was a composite score of owner assessments after approximately six weeks of treatment. Both drugs were remarkably effective, with 57/61 (93.4 per cent) of mavacoxib-treated dogs and 49/55 (89.1 per cent) of carprofen-treated dogs demonstrating overall improvement and with mavacoxib’sefficacy being non-inferior to carprofen. The treatments had a similar safety profile as evidenced by documented adverse events and summaries of clinical pathology parameters. The positive clinical response to treatment along with the safety and dosing regimen of mavacoxib makes it an attractive therapy for canine osteoarthritis. Introduction convert arachidonic acid into prostaglandin H2, from which a Osteoarthritis (OA) is characterised by a degenerative, progres- series of prostanoids is derived; this can result in sensitisation of sive and irreversible deterioration of joints resulting in a nociceptive neurone terminals and with repeated stimulation decreased range of motion, pain, joint swelling and crepitus.
    [Show full text]
  • A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies
    Comparative Medicine Vol 69, No 6 Copyright 2019 December 2019 by the American Association for Laboratory Animal Science Pages 520–534 Overview A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies George J DeMarco1* and Elizabeth A Nunamaker2 One of the most significant challenges facing investigators, laboratory animal veterinarians, and IACUCs, is how to bal- ance appropriate analgesic use, animal welfare, and analgesic impact on experimental results. This is particularly true for in vivo studies on immune system function and inflammatory disease. Often times the effects of analgesic drugs on a particu- lar immune function or model are incomplete or don’t exist. Further complicating the picture is evidence of the very tight integration and bidirectional functionality between the immune system and branches of the nervous system involved in nociception and pain. These relationships have advanced the concept of understanding pain as a protective neuroimmune function and recognizing pathologic pain as a neuroimmune disease. This review strives to summarize extant literature on the effects of pain and analgesia on immune system function and inflammation in the context of preclinical in vivo studies. The authors hope this work will help to guide selection of analgesics for preclinical studies of inflammatory disease and immune system function. Abbreviations and acronyms: CB,Endocannabinoid receptor; CD,Crohn disease; CFA, Complete Freund adjuvant; CGRP,Calcitonin gene-related
    [Show full text]
  • Non-Steroidal Anti-Inflammatory Drugs As Chemopreventive Agents: Evidence from Cancer Treatment in Domestic Animals
    Annual Research & Review in Biology 26(1): 1-13, 2018; Article no.ARRB.40829 ISSN: 2347-565X, NLM ID: 101632869 Non-Steroidal Anti-Inflammatory Drugs as Chemopreventive Agents: Evidence from Cancer Treatment in Domestic Animals Bianca F. Bishop1 and Suong N. T. Ngo1* 1School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia. Authors’ contributions This work was carried out in collaboration between both authors. Author BFB performed the collection and analysis of the data. Author SNTN designed the study, managed the analyses and interpretation of the data and prepared the manuscript. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2018/40829 Editor(s): (1) David E. Martin, Martin Pharma Consulting, LLC, Shawnee, OK, USA. (2) George Perry, Dean and Professor of Biology, University of Texas at San Antonio, USA. Reviewers: (1) Fulya Ustun Alkan, Istanbul University, Turkey. (2) Thompson Akinbolaji, USA. (3) Ramesh Gurunathan, Sunway Medical Center, Malaysia. (4) Mohamed Ahmed Mohamed Nagy Mohamed, El Minia Hospital, Egypt. Complete Peer review History: http://www.sciencedomain.org/review-history/24385 Received 10th February 2018 Accepted 21st April 2018 Review Article Published 30th April 2018 ABSTRACT Aims: This study aims to systematically review currently available data on the use of non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of cancer in domestic animals to evaluate the efficacy of different treatment protocols and to suggest further recommendations for future study. Methodology: Literature data on the use of NSAIDs in domestic animals as chemo-preventive agents in the last decade were collected and critically reviewed.
    [Show full text]
  • Survey of Pain Knowledge and Analgesia in Dogs and Cats by Colombian Veterinarians
    veterinary sciences Article Survey of Pain Knowledge and Analgesia in Dogs and Cats by Colombian Veterinarians Carlos Morales-Vallecilla 1, Nicolas Ramírez 1, David Villar 1,*, Maria Camila Díaz 1 , Sandra Bustamante 1 and Duncan Ferguson 2 1 Facultad de Ciencias Agrarias Universidad de Antioquia, Medellín 050010, Colombia; [email protected] (C.M.-V.); [email protected] (N.R.); [email protected] (M.C.D.); [email protected] (S.B.) 2 Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; [email protected] * Correspondence: [email protected]; Tel.: +57-3178047381 Received: 6 December 2018; Accepted: 5 January 2019; Published: 10 January 2019 Abstract: A questionnaire study was conducted among 131 veterinarians practicing in the city of Medellin, Colombia, to assess views on pain evaluation and management in dogs and cats. When pain recognition and quantification abilities were used as a perceived competence of proper pain assessment, only 83/131 (63.4%, confidence interval (CI) 0.55–0.72) were deemed to have satisfactory skills, with the rest considered to be deficient. There were 49/131 (37.4) veterinarians who had participated in continuing education programs and were more confident assessing pain, with an odds ratio ( standard error) of 2.84 1.15 (p = 0.01; CI 1.27–6.32). In addition, the odds of using ± ± pain scales was 4.28 2.17 (p < 0.01, CI 1.58–11.55) greater if they had also participated in continuing ± education programs. The term multimodal analgesia was familiar to 77 (58.7%) veterinarians who also claimed to use more than one approach to pain control.
    [Show full text]
  • Grapiprant: an EP4 Prostaglandin Receptor Antagonist and Novel Therapy for Pain and Inflammation
    DOI: 10.1002/vms3.13 Review Grapiprant: an EP4 prostaglandin receptor antagonist and novel therapy for pain and inflammation † Kristin Kirkby Shaw , Lesley C. Rausch-Derra* and Linda Rhodes* † *Aratana Therapeutics, Inc., Kansas City, Kansas, USA and Animal Surgical Clinic of Seattle, Seattle, Washington, USA Abstract There are five active prostanoid metabolites of arachidonic acid (AA) that have widespread and varied physio- logic functions throughout the body, including regulation of gastrointestinal mucosal blood flow, renal haemo- dynamics and primary haemostasis. Each prostanoid has at least one distinct receptor that mediates its action. Prostaglandin E2 (PGE2) is a prostanoid that serves important homeostatic functions, yet is also responsible for regulating pain and inflammation. PGE2 binds to four receptors, of which one, the EP4 receptor, is primar- ily responsible for the pain and inflammation associated with osteoarthritis (OA). The deleterious and patho- logic actions of PGE2 are inhibited in varying degrees by steroids, aspirin and cyclo-oxygenase inhibiting NSAIDs; however, administration of these drugs causes decreased production of PGE2, thereby decreasing or eliminating the homeostatic functions of the molecule. By inhibiting just the EP4 receptor, the homeostatic function of PGE2 is better maintained. This manuscript will introduce a new class of pharmaceuticals known as the piprant class. Piprants are prostaglandin receptor antagonists (PRA). This article will include basic physiol- ogy of AA, prostanoids and piprants, will review available evidence for the relevance of EP4 PRAs in rodent models of pain and inflammation, and will reference available data for an EP4 PRA in dogs and cats. Piprants are currently in development for veterinary patients and the purpose of this manuscript is to introduce veteri- narians to the class of drugs, with emphasis on an EP4 PRA and its potential role in the control of pain and inflammation associated with OA in dogs and cats.
    [Show full text]
  • GALLIPRANT; INN: Grapiprant
    9 November 2017 EMA/747932/2017 Veterinary Medicines Division Committee for Medicinal Products for Veterinary Use CVMP assessment report for GALLIPRANT (EMEA/V/C/004222/0000) International non-proprietary name: grapiprant Assessment report as adopted by the CVMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Introduction ........................................................................................................................... 4 Scientific advice ........................................................................................................................ 4 MUMS/limited market status ...................................................................................................... 4 Part 1 - Administrative particulars ......................................................................................... 5 Detailed description of the pharmacovigilance system ................................................................... 5 Manufacturing authorisations and inspection status ....................................................................... 5 Overall conclusions on administrative particulars .........................................................................
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0296.191 A1 PATEL Et Al
    US 20140296.191A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0296.191 A1 PATEL et al. (43) Pub. Date: Oct. 2, 2014 (54) COMPOSITIONS OF PHARMACEUTICAL (52) U.S. Cl. ACTIVES CONTAINING DETHYLENE CPC ............... A61K 47/10 (2013.01); A61 K9/0019 GLYCOL MONOETHYLETHER OR OTHER (2013.01); A61 K9/0048 (2013.01); A61 K ALKYL DERVATIVES 45/06 (2013.01) USPC ........... 514/167: 514/177; 514/178: 514/450; (71) Applicant: THEMIS MEDICARE LIMITED, 514/334: 514/226.5: 514/449; 514/338; Mumbai (IN) 514/256; 514/570; 514/179; 514/174: 514/533; (72) Inventors: Dinesh Shantilal PATEL, Mumbai (IN); 514/629; 514/619 Sachin Dinesh PATEL, Mumbai (IN); Shashikant Prabhudas KURANI, Mumbai (IN); Madhavlal Govindlal (57) ABSTRACT PATEL, Mumbai (IN) (73) Assignee: THEMIS MEDICARE LIMITED, The present invention relates to pharmaceutical compositions Mumbai (IN) of various pharmaceutical actives, especially lyophilic and hydrophilic actives containing Diethylene glycol monoethyl (21) Appl. No.: 14/242,973 ether or other alkyl derivatives thereofas a primary vehicle and/or to pharmaceutical compositions utilizing Diethylene (22) Filed: Apr. 2, 2014 glycol monoethyl ether or other alkyl derivatives thereofas a primary vehicle or as a solvent system in preparation of Such (30) Foreign Application Priority Data pharmaceutical compositions. The pharmaceutical composi Apr. 2, 2013 (IN) ......................... 1287/MUMA2013 tions of the present invention are safe, non-toxic, exhibits enhanced physical stability compared to conventional formu Publication Classification lations containing such pharmaceutical actives and are Suit able for use as injectables for intravenous and intramuscular (51) Int. Cl. administration, as well as for use as a preformed solution/ A647/ (2006.01) liquid for filling in and preparation of capsules, tablets, nasal A6 IK 45/06 (2006.01) sprays, gargles, dermal applications, gels, topicals, liquid oral A6 IK9/00 (2006.01) dosage forms and other dosage forms.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Deracoxib Item No. 27371 CAS Registry No.: 169590-41-4 O H2N Formal Name: 4-[3-(difluoromethyl)-5-(3-fluoro- S O 4-methoxyphenyl)-1H-pyrazol-1- yl]-benzenesulfonamide F Synonym: SC-59046 O MF: C17H14F3N3O3S 397.4 FW: N Purity: ≥98% N UV/Vis.: λmax: 256 nm Supplied as: A solid Storage: -20°C F Stability: ≥2 years F Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Deracoxib is supplied as a solid. A stock solution may be made by dissolving the deracoxib in the solvent of choice, which should be purged with an inert gas. Deracoxib is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of deracoxib in ethanol is approximately 3 mg/ml and approximately 10 mg/ml in DMSO and DMF. Deracoxib is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, deracoxib should first be dissolved in DMF and then diluted with the aqueous buffer of choice. Deracoxib has a solubility of approximately 0.1 mg/ml in a 1:8 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description Deracoxib is a non-steroidal anti-inflammatory drug (NSAID) and selective inhibitor of COX-2 1 (IC50s = 0.63 and 23 μM for COX-2 and COX-1, respectively). In vivo, deracoxib (0.3-10 mg/kg) increases weight bearing and decreases lameness and joint effusion in a canine model of urate crystal-induced intraarticular synovitis.2 Deracoxib induces less lesion formation in the gastric mucosa of healthy canines than aspirin (Item No.
    [Show full text]
  • Assessment of the Efficacy of Firocoxib and Robenacoxib
    Assessment of the Efficacy of Firocoxib and Robenacoxib in an Induced Synovitis Model of Acute Arthritis in Dogs Christelle Dauteloupa Corinne Pichoub Frederic Beugneta,* aMerial SAS, 2 Av Pasteur, 69007, Lyon, France b Amatsigroup, Site AmatsiAvogadro, Parc de Génibrat, 31470 Fontenilles, France * Corresponding author: E-mail address: [email protected] KEY WORDS: Firocoxib, Robenacoxib, and the increased PVF values compared to Arthritis, Lameness score, Peak Vertical the control group at 3 and 5 hours post- force injection. Firocoxib performed significantly better than robenacoxib at 3, 5, and 10 hours ABSTRACT post-UC injection. In this model, robena- The objective of this study was to compare coxib was not different from control for both the analgesic activity of a single oral dose the VLS and the PVF values. Pre-treatment of two COX-2 selective inhibitors, firo- with firocoxib reduced the induced pain as- coxib (Previcox®, Merial) and robenacoxib sociated with intra-articular administration (Onsior®, Elanco), in an acute pain model of urate crystals. in dogs. Sixteen healthy Beagle dogs were randomly allocated to three groups. Two INTRODUCTION successive experiments were conducted, in Chronic osteoarthritis is common in dogs which eight dogs served as control. Eight and is estimated to affect 20% of dogs dogs received firocoxib or robenacoxib in a over 1 year of age (Johnston, 1997). Since cross-over design at the recommended dos- no drug has been shown to reverse the age 13 hours before intra-articular injection pathological changes of osteoarthritis, the of a urate crystal suspension (UC) for induc- objective of treatment is to reduce pain and tion of synovitis.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,722,636 B2 Rock Et Al
    USOO8722636B2 (12) United States Patent (10) Patent No.: US 8,722,636 B2 Rock et al. (45) Date of Patent: May 13, 2014 (54) ANIMAL TREATMENTS 2004/0248942 A1* 12/2004 Hepburn et al. .............. 514,338 2007/0042023 A1 2/2007 Puri et al. 2007. O1841.06 A1 8/2007 Schellenger et al. (75) Inventors: s G "Eby, S.S); 2007/0275058 A1* 11/2007 Tanaka et al. ................. 424/465 ark Ridall, Princeton, NJ (US) 2008, 0096971 A1* 4/2008 Baxter et al. .................. 514,646 (73) Assignee: New Market Pharmaceuticals, LLC, OTHER PUBLICATIONS Princeton, NJ (US) Glossary of medical education terms, Institute of International Medi (*) Notice: Subject to any disclaimer, the term of this cal Education. http://www.iime.org/glossary.htm Accessed on Jan. patent is extended or adjusted under 35 2013.* U.S.C. 154(b) by 0 days. Chubineh et al. Proton pump inhibitors: the good, the bad, and the unwanted. South Med J 105:613-618, Nov. 2012.* (21) Appl. No.: 13/343,692 www.fda.gov/AnimalVeterinary/NewsEvents/FDAVeterinarian Newsletter/ucm100268.htm, Mar/Apr. 2003. (22) Filed: Jan. 4, 2012 Veterinary Compounding Brochure, American Veterinary Medical 9 Association (AVMA) Jun. 2001. O O Nagar, Mona et al., “Formulation, Evaluation and Comparison of (65) Prior Publication Data Fast-Dissolving Tablet of Nimesulide by Using Crospovidone as US 2012/O196819 A1 Aug. 2, 2012 Superdisintegrant.” International Journal of Pharmaceutical Sciences and Drug Research. 2009, 1(3), pp. 172-175. Related U.S. Application Data Panigrahi. R et al., “A Review On Fast Dissolving Tablets.” WebmedCentral Pharmaceutical Sciences.
    [Show full text]