UNIVERSIDADE ESTADUAL DO MARANHÃO

CENTRO DE EDUCAÇÃO, CIÊNCIAS EXTAS E NATURAIS

DEPARTAMENTO DE QUÍMICA E BIOLOGIA

PROGRAMA DE PÓS GRADUAÇÃO EM RECURSOS AQUÁTICOS E PESCA

HELLON CUNHA VIANA

MONITORAMENTO DA QUALIDADE AMBIENTAL COM USO DE BIOMARCADORES HISTOLÓGICOS EM Sciades herzbergii (Pisces, ) E Bagre bagre (Pisces, Ariidae) EM UM SISTEMA ESTUARINO NO NORDESTE AMAZÔNICO

São Luís – MA

2018

HELLON CUNHA VIANA

MONITORAMENTO DA QUALIDADE AMBIENTAL COM USO DE BIOMARCADORES HISTOLÓGICOS EM Sciades herzbergii (Pisces, Ariidae) E Bagre bagre (Pisces, Ariidae) EM UM SISTEMA ESTUARINO NO NORDESTE AMAZÔNICO

Documento de dissertação apresentado em cumprimento às exigências do Programa de Pós-Graduação em Recursos Aquáticos e Pesca da Universidade Estadual do Maranhão.

Orientadora: Prof.ª Dr.ª Raimunda Nonata Fortes Carvalho Neta

São Luís – MA

2018

HELLON CUNHA VIANA

MONITORAMENTO DA QUALIDADE AMBIENTAL COM USO DE BIOMARCADORES HISTOLÓGICOS EM Sciades herzbergii (Pisces, Ariidae) E Bagre bagre (Pisces, Ariidae) EM UM SISTEMA ESTUARINO NO NORDESTE AMAZÔNICO

Documento de dissertação apresentado em cumprimento às exigências do Programa de Pós-Graduação em Recursos Aquáticos e Pesca da Universidade Estadual do Maranhão.

Aprovado em: _____/_____/_____

Banca examinadora

______

Prof.ª Dr.ª Raimunda Nonata Fortes Carvalho Neta (Orientadora)

Universidade Estadual do Maranhão (UEMA)

______

Prof.ª Dr.ª Débora Martins Silva Santos

Universidade Estadual do Maranhão (UEMA)

2° Examinador

______

Prof.ª Dr.ª Marianna Jorge Basso

Universidade Federal do Maranhão (UFMA)

3° Examinador

“Dedico este trabalho aos amigos que estiveram ao meu lado e que sempre torceram e torcem pelo meu sucesso, e em especial a toda minha família que é de onde tiro a coragem, a força e o suporte necessário para alcançar os meus objetivos.”

“Quando temos sede parece-nos que poderíamos beber todo um oceano: é a fé; e quando bebemos, bebemos um copo ou dois: é a ciência.” Anton Tchekhov

Agradecimentos Primeiramente gostaria de agradecer à toda minha família, sempre ao meu lado.

Ao meu pai, Sr. Neemias Viana, pelo apoio incondicional para minha formação superior e ampliação dos meus conhecimentos, por ser esse cara justo e bom educador.

À minha mãe, Dona Eliane Viana, essa professora guerreira, com seu espirito de educador, por sempre investir tudo o que pôde, sem mesquinhez e com a melhor das intenções. Sempre com uma lição de moral e bondade para passar, trabalhando turno dobrado e que ainda assim cuida da casa, dos filhos, mãe dedicada e maior incentivadora do sucesso pelo conhecimento.

Agradecer à minha noiva, Simone Silva, pela companhia, carinho, amor, pelas horas de sono mal dormidas, pelas discussões, por toda essa jornada, praticamente juntos, em busca de um mesmo ideal.

Às minhas irmãs, Myrna e Milca, pelo amor fraternal e por também fazerem parte desse sonho, crescemos, desejamos, almejamos e alcançamos nossos objetivos.

À Professora Dr.ª Raimunda Nonata Fortes Carvalho Neta, que é uma mulher de cabeça aberta e perspicaz. Sempre atenciosa e incentivadora da busca pelo conhecimento de forma honesta e verdadeira. Obrigado pelo acolhimento, incentivo e orientação na hora que mais precisei.

À professora Dr.ª Débora Martins Silva Santos pela atenção prestada, pela sua disposição para tirar dúvidas e propor soluções e por se dirigir aos alunos de maneira honesta e sempre solícita.

À professora Dr.ª Marianna Basso Jorge por ter aceitado o convite para compor à banca avaliadora e por ter sanado algumas dúvidas e sugerido boas ideias.

Aos demais Professores do DQB que fizeram e fazem parte de toda essa compilação de conhecimentos.

Aos colegas LABOAQ e GPEMAAQ, em especial a Wanda Batista, que ajudou nas tarefas de laboratório e na organização, e os demais colegas, como a Simone, Andressa e Jorge que ajudaram nas coletas.

Ao pescador Denércio (Deco), pela paciência e determinação nas coletas, sempre colocando nosso trabalho em primeiro lugar.

A todos os colegas da turma PPGRAP 2017 com os quais tivemos muito bons momentos e pelo suporte nas horas mais difíceis e de maior concentração.

Fica aqui meu muito obrigado e desejo de sucesso a todos!

Resumo

Os ambientes aquáticos sofrem constantemente com a poluição através de diversos tipos de efluentes lançados sem o devido tratamento. O objetivo deste estudo foi comparar biomarcadores histológicos (lesões branquiais e hepáticas) em Sciades herzbergii e Bagre bagre indicativos de impactos ambientais na Baía de São José, Maranhão. Foram realizadas quatro coletas trimestralmente em quatro pontos na Baía de São José, Maranhão (A1 – referência; A2 – impactada, A3 – contaminada e A4 - referência). Foi realizado a biometria e aferição do peso total. As amostras de fígado e brânquia passaram pelo processo de histologia básica. Foram realizados cortes de 5µm, colorado com hematoxylina-eosina e examinado sob microscópio óptico (ZEISS). A análise histopatológica mostrou uma elevado número de alterações hepáticas como respostas inflamatórias (centros de melanomacrófagos - MMCs), hiperplasia e vacuolização citoplasmática em S. herzbergii da área impactada. Também foi possível identificar uma diferença significativa entre o índice do fígado (Iorg.) em peixes que vivem na área A2 em relação às demais áreas. Valores do índice hepatossomático (HSI) e o fator de condição (FC) mostraram-se similares nas áreas A1, A2 e A3, no entanto diferiu da área A4. Os peixes das áreas A3 e A2 tiveram um maior número de anormalidade no fígado. Resultados indicaram que os fígados dos indivíduos adultos da área A2 (260.50 ± 161.50 MMCs/mm²) apresentaram um número maior de MMCs quando comparados à indivíduos adultos da área A3 (60.00 ± 30.10 MMCs/mm²). Indivíduos jovens dos pontos A1 (100.00 ± 0.00) e A2 (95.33 ± 33.00) apresentaram valores consideráveis quando comparados à jovens do ponto A3 (49.00 ± 0.00). O maior percentual de lesões branquiais, tais como, deformação da lamela secundária, fusão parcial, fusão total, necrose, hipertrofia e hiperplasia foram constatadas em S. herzbergii que habitam a área A2 em relação as demais áreas estudadas. O presente estudo indica que o S. herzbergii é mais apropriado do que o Bagre bagre para estudos com biomarcadores histológicos, tanto para lesões hepáticas (efeitos crônicos) e em especial levando-se em consideração as lesões branquiais (efeitos agudos) e se mostrou útil para o monitoramento de regiões estuarinas, por causa da grande sensibilidade demonstrada para a área potencialmente impactada (A2) comparada às áreas de referencia (A1 e A4) e área contaminada (A3). Palavras- chave: Biomonitoramento, biomarcador, histopatologia, bagre, poluição.

Abstract

The aquatic environments constantly suffer from pollution through several types of effluent released without proper treatment. The aim of this study was to compare histological biomarkers (gill and hepatic lesions) in S. herbergii and B. bagre indicative of impacts from fishery and aquaculture systems in São José Bay, Maranhão. Four samplings were carried out quarterly at four different sites in the São José Bay, Maranhão. (A1 - reference, A2 - impacted, A3 - contaminated and A4 - reference). Biometric data and total weight were assessed. Liver and gill samples underwent basic histology. Sections of 5um were stained with hematoxylin-eosin and examined under an optic microscope (ZEISS). Histopathological analysis showed a high number of hepatic alterations such as inflammatory responses (melanomacrophagous centers - MMCs), hyperplasia and cytoplasmic vacuolization in S. herzbergii of the impacted area. It was also possible to identify a significant difference between the liver indexes (Iorg.) in fishes that live in the impacted area in relation to the other areas. The values of the hepatosomatic index (HSI) and the condition factor (K) were similar in areas A1, A2 and A3 but differed from area A4. Fish from areas A3 and A2 had a greater number of abnormalities in the liver. Results indicated that the adults‟ livers of the A2 area (260.50 ± 161.50 MMCs / mm²) had a higher number of MMCs when compared to the adults A3 area (60.00 ± 30.10 MMCs / mm²). Young individuals of A1 (100.00 ± 0.00) and A2 (95.33 ± 33.00) presented considerable values when compared to young A3 (49.00 ± 0.00). The highest rate of branchial lesions, such as secondary lamella deformity, partial fusion, total fusion, necrosis, hypertrophy and hyperplasia were observed in S. herzbergii that inhabit the potentially contaminated area in relation to the other areas. The present study indicates that S. herzbergii is more appropriate than Bagre bagre for histological biomarkers studies both for hepatic lesions (chronic effects) and especially taking into account the branchial lesions (acute effects). It has proved useful for monitoring of estuarine regions because of the great sensitivity shown for the potentially impacted area (A2) compared to the reference areas (A1 and A4) and contaminated area (A3). Keywords: Biomonitoring, biomarker, histopathology, , pollution.

LISTA DE FIGURAS

TEXTO INTEGRADOR

Figura 1. Mapa de localização de captura do S. herzbergii e B. bagre na baía de São José, MA...... 25 Figura 2. Mapa de cobertura do solo da bacia hidrográfica do Rio Santo Antônio...... 26 Figura 3. Exemplar de S. herzbergii capturado na Baía de São José, Maranhão ...... 27 Figura 4. Exemplar de B. bagre capturado na Baía de São José, Maranhão...... 27

CAPÍTULO I

Figure 1. Site map of S. herzbergii and B. bagre catches at the Santo Antonio River basin and Curupu Bay estuary complex, Maranhão...... 36 Figure 2. Boxplots showing hepatosomatic index (HSI) variation (a) and condition factor (K) (b) in the different sampled areas...... 44 Figure 3. Boxplots showing melanomacrophage centers (MMCs) (c) for S. herzbergii and B. bagre in the different areas sampled...... 455 Figure 4. Photomicrography (H&E) of histopathological liver changes. (a) Macrovesicular steatosis (lipid cells). (b) Inflammatory response (leukocyte infiltrate). (c) Atrophy and tumor (psamomatous body). (d) Aneurysms and edema. (e) Necrosis. (f) Granulomatosis. (g) Melanomacrophage centers (MMCs). (h) Hyperplasia. The arrow () indicates the changes found...... 49 Figure 5. Photomicrography (H&E) of histological gill changes. (a) Normal gills. (b) Hyperplasia. (c) Necrosis and partial fusion. (d) Secondary lamellae disorganization. (e) Hypertrophy. (f) Epithelium raising. (g) Venous sinus dilation, total fusion and aneurysms. (h) Parasites. The arrow () indicates the changes found...... 51

CAPÍTULO II

Figure 1. Geographic location of sampling points. A1 – reference, A2 – impacted and A3 – contaminated...... 742

Figure 2. Photomicrograph of the liver of S. herzbergii sampled at three different points of the São José bay - MA. (A) H&E staining of a section of the liver showing lipid components. (B) Melanomacrophage center presence. (C) Lipid cells, psamomatous body in hepatopancreas tissue and MMCs. (D) antibodies surrounding the hepatocyte cytoplasm as well as the bile duct epithelium. (E, F) The histological appearance of normal liver. Asterisk: melanomacrophage center; m: macrophages; lp: lipid cells; s: sinusoids; pb: psamomatous body; bd: bile duct...... 796 Figure 3. Number of melanomacrophage centers (MMCs/mm²) (standard error) in young and adult S. herzbergii livers at the three capture sites. Asterisk (*) indicates a significant statistic difference comparing the reference and impacted areas...... 797 Figure 4. Number of melanomacrophage centers (MMCs/mm²) during the sample period. ... 79

LISTA DE TABELAS

CAPÍTULO I

Table 1. Biometric data and gonadosomatic index of S. herzbergii and B. bagre captured at Curupu bay...... 411 Table 2. Physical parameters of water (mean) recorded in dry and rainy periods at the fish collection sites...... 422 Table 3. Histopathological alterations identified in the liver of S. herzbergii and B. bagre of each sampling point...... 466 Table 4. Histopathological alterations identified in the gill of S. herzbergii and B. bagre of each sampling point...... 499 Table 5. Liver index of S. herzbergii and B. bagre for each site and sampled period...... 52 Table 6. Gill index of S. herzbergii and B. bagre to each site and period of collection...... 53

CAPÍTULO II

Table 1. Average length and percentage of young and adults of S. herzbergii from different sampled locations...... 775

SUMÁRIO 1 INTRODUÇÃO ...... 15

2 OBJETIVOS ...... 16

2.1 Objetivo geral ...... 16

2.2 Objetivos específicos ...... 16

3 FUNDAMENTAÇÃO TEÓRICA ...... 16

3.1 Monitoramento ambiental em sistemas estuarinos ...... 16

3.2 Biomonitoramento em ecossistemas aquáticos com uso de peixes ...... 18

3.3 Biomarcadores em organismos aquáticos ...... 20

3.4 Sciades herzbergii (Bloch, 1974) ...... 24

3.5 Bagre bagre (Linnaeus, 1766) ...... 24

4 METODOLOGIA ...... 25

4.1 Área de estudo ...... 25

4.2 Licença e comitê de ética ...... 26

4.3 Coleta das espécies, biometria e dados abióticos ...... 26

4.4 Histologia dos tecidos ...... 28

4.5 Quantificação dos Centros de Melanomacrófagos (MMCs) ...... 29

4.6 Fator de condição (K) ...... 29

4.7 Índice hepatossomático (HSI) ...... 29

4.8 Análises estatísticas ...... 30

5 RESULTADOS ...... 31

Article 1 – Histopathology on Sciades herzbergii (Pisces, Ariidae) and Bagre bagre (Pisces, Ariidae) gills to assess environmental pollution ...... 31

Abstract ...... 32

1. Introduction ...... 33

2. Material and Methods ...... 35

2.1 Study area ...... 35

2.2 Licensing and ethics declaration ...... 36

2.3 Collection of organisms ...... 37

2.4 Abiotic water parameter analysis ...... 37

2.5 Tissue processing and histopathology ...... 38

2.6 Microscopic analysis ...... 38

2.7 Statistical analysis ...... 40

3. Results ...... 40

3.1 Fish and abiotic water parameter data ...... 40

3.2 Biometric indexes ...... 42

3.3 Macroscopic observations ...... 44

3.4 Prevalence of histological alterations ...... 44

3.5 Quantitative analysis and comparison of fish from each studied area ...... 52

4. Discussion ...... 54

Conclusions ...... 60

Acknowledgements ...... 61

Funding ...... 61

References ...... 61

Article 2: Aggregation of hepatic melanomacrophage centers in S. herzbergii (Pisces, Ariidae) as indicators of environmental change and well-being ...... 70

Abstract ...... 71

1. Introduction ...... 72

2. Materials and Methods ...... 73

2.1 Study area ...... 73

2.2 Licensing and ethics declaration ...... 74

2.3 Tissue Processing and Histopathology ...... 74

2.4 Melanomacrophage Center Quantification (MMCs) ...... 75

2.5 Condition factor ...... 75

2.6 Statistical analysis ...... 76

3. Results ...... 76

3.1 Histopathology ...... 77

3.2 MMC quantitative analysis ...... 79

3.3 Condition factor and melanomacrophage centers ...... 80

4. Discussion ...... 81

Conclusions ...... 84

Acknowledgements ...... 84

Funding ...... 85

References ...... 85

6 CRONOGRAMA ...... 110

7 CONSIDERAÇÕES FINAIS ...... 111

REFERÊNCIAS ...... 111

15

1 INTRODUÇÃO O Golfão Maranhense é constituído pelas baías de São Marcos e São José, separadas pela Ilha de São Luís. A Baía de São José insere-se no contexto das regiões tropicais úmidas e tem grande importância ambiental pela caracterização marcada por estuários e reentrâncias (TEIXEIRA; SOUZA FILHO, 2009). Os sistemas estuarinos apresentam extensas florestas de mangue e fornecem os principais nutrientes para a região costeira através da concentração de material originado na sua bacia de drenagem e aportes de origem antropogênica (AZEVEDO et al., 2008).

O crescente processo de urbanização e o desenvolvimento econômico próximo às áreas costeiras, sob influência de ações antropogênicas, como uso e ocupação do solo, uso de fertilizantes na agricultura, pecuária, piscicultura e o aporte de efluentes domésticos e industriais sem tratamento adequado, tem causados danos irreparáveis em todos os ecossistemas aquáticos (SIMÕES et al., 2007; DOMINGOS et al., 2009; LINS et al., 2010; SANTOS et al., 2012; CANTANHÊDE et al., 2014). Os peixes têm sido utilizados como bioindicadores e alguns de seus órgãos (brânquia e fígado) têm funcionado para análises de biomarcadores através de alterações histológicas, cuja principal finalidade é a identificação de contaminação em ambientes aquáticos através da avaliação das lesões causadas por potenciais poluentes (CARVALHO-NETA; ABREU-SILVA, 2010). Os modernos programas de biomonitoramento ambiental tem utilizado essa técnica por apresentarem respostas mais rápidas e mais concisas às possíveis contaminações (CARVALHO-NETA; TORRES; ABREU-SILVA, 2012; CARVALHO-NETA; ABREU-SILVA, 2013; CARVALHO NETA et al., 2014; SALES et al., 2017).

Dentre as espécies de peixes, destaca-se o Sciades herzbergii (guribu), uma das poucas espécies que possui todo o seu ciclo de vida nos estuários maranhenses, sendo considerado como uma espécie “estuarino-residente” (CARVALHO-NETA; ABREU-SILVA, 2010). E o Bagre bagre (bandeirado), peixe marinho que ocorre comumente próximo à desembocadura de rios (FIGUEIREDO; MENEZES, 1978; CARVALHO-NETA; CASTRO, 2008) e que fazem migração na época de reprodução (ABSOLON; ANDREATA, 2009). Esses táxons são considerados bons bioindicadores, por serem topo de cadeia alimentar, importante fonte de proteína e renda para comunidades de pesca artesanal e por sua ampla distribuição geográfica (CARVALHO-NETA; CASTRO, 2008). São bem relatadas na literatura em estudos de Biomonitoramento de contaminação aquática no Complexo Estuarino de São Marcos

16

(SOUSA; ALMEIDA; CARVALHO-NETA, 2013a; SOUSA; ALMEIDA; CARVALHO- NETA, 2013b; CARVALHO-NETA; TORRES; ABREU-SILVA, 2012; CARVALHO NETA et al., 2014) porém são escassos os trabalhos na Baía de São José, apesar da complexidade de ecossistemas e de sua importância ecológica.

Este trabalho será apresentado em dois capítulos em forma de artigos científicos que serão posteriormente enviados a revistas para sua publicação. O primeiro capítulo aborda a avaliação de alterações encontradas em fígados e brânquias de S. herzbergii e B. bagre, através de observações de necropsia, prevalência de alterações histológicas e índices biométricos para avaliar poluição ambiental. O segundo capítulo consiste na utilização de centros de melanomacrófagos hepáticos de S. herzbergii como biomarcador de exposição a poluentes ambientais, em particular o material oriundo de sistemas de piscicultura.

2 OBJETIVOS

2.1 Objetivo geral Avaliar o uso de biomarcadores histológicos (lesões branquiais e hepáticas) em Sciades herzbergii e Bagre bagre indicativos de impactos ambientais na Baía de São José, Maranhão.

2.2 Objetivos específicos  Identificar e quantificar as lesões branquiais e as lesões hepáticas nas espécies Sciades herzbergii e Bagre bagre na baía de São José.  Correlacionar dados biométricos das espécies Sciades herzbergii e Bagre bagre com os biomarcadores histológicos.

3 FUNDAMENTAÇÃO TEÓRICA

3.1 Monitoramento ambiental em sistemas estuarinos A Baía de São José está situada no litoral do Estado do Maranhão, limitada a oeste pela Ilha de São Luís, que a separa da Baía de São Marcos, e a leste pelas ilhas que formam a Baía de Tubarão, formando assim o Golfão Maranhense (COUTINHO, P. N; MORAIS, 1976). As amplitudes de marés estão entre as maiores do litoral brasileiro, com até 6,5 metros nas marés equinociais (CASTRO; MIRANDA, 1998) e correntes com velocidade superior a 7,5 nós registradas pela DHN (1972). De um modo geral, os padrões de circulação e mistura das águas conferem ao ambiente como um sistema dinâmico (CARVALHO-NETA; CASTRO, 2008). A Baía de São José possui um espelho d‟água de aproximadamente 665

17 km², recebendo na sua formação o aporte fluvial dos rios Itapecuru e Munim (PNRH, 2006). O clima é tropical úmido, com estações seca (julho a dezembro) e chuvosa (janeiro a junho) bem definidas, com temperatura média em torno de 26ºC (NUGEO, 2011). A vegetação predominante são os manguezais, considerados os mais estruturalmente complexos do Brasil (MOCHEL, 1997). Este aspecto é atribuído em parte pelas diversas características da linha de costa, assim como, o imenso volume de água doce aportada pelos rios, as altas taxas de precipitação, bem como as altas amplitudes de maré (TEIXEIRA; SOUZA FILHO, 2009).

Nesse contexto, alguns sistemas estuarinos de rios perenes destacam-se por sua importância social e econômica na região. Um desses sistemas é o estuário do Rio Santo Antônio, localizado na porção nordeste da Ilha do Maranhão, compreendendo o município de Paço do Lumiar, parte de São José de Ribamar e de São Luís. O comprimento total da bacia do rio Santo Antônio é de aproximadamente 21,0 km (FERREIRA, 2003).

Os principais processos erosivos observados na bacia do rio Santo Antônio são causados por agentes oceanográficos, tais como, ondas, marés, correntes e por agentes climáticos, tais como, ventos, temperatura, pluviosidade e umidade (FEITOSA, 1996). O clima é tropical úmido, caracterizado por dois períodos: um chuvoso, com grandes índices pluviométricos, de janeiro a junho e outro de estiagem, com poucas chuvas, de julho a dezembro (KOPPEN, 1948). A temperatura média é de 26°C, com temperaturas mais elevadas durante os meses de outubro e dezembro e inferiores, em abril e maio. A precipitação média anual oscila em torno de 2000 mm (NUGEO, 2011).

A ocupação desenfreada e a rápida expansão urbana vêm gerando alguns problemas ambientais e sociais ao longo da área da bacia hidrográfica do rio Santo Antônio, destacando- se a sustentabilidade do sistema de aproveitamento da água para consumo humano e a destruição da flora e da fauna, principalmente porque compreende áreas de manguezais e matas de galeria (FERREIRA, 2003).

A mata ciliar está completamente devastada no curso superior do rio Santo Antônio e a sua destruição está relacionada ao acelerado processo de ocupação sem planejamento urbano, do município de São Luís, particularmente com a construção dos conjuntos habitacionais, Cidade Operária e Paranã (FERREIRA, 2003). O médio e o baixo curso do rio Santo Antônio estão razoavelmente conservados, dada as características do município de Paço do Lumiar, com ocupações de pequenos povoados, como, Pau deitado, Mojó, Salina, Pindoba, Iguaíba e Timbuba, onde ainda é considerado preservada a vegetação das margens do rio (FERREIRA,

18

2003). No baixo curso do rio, o desmatamento nas áreas de manguezais é pouco evidenciado, sendo um dos ecossistemas mais conservados de toda a Ilha de São Luís, servindo de subsistência para populações ribeirinhas, que fazem utilização da área para pesca, extração de mariscos e moluscos.

Os processos erosivos ocorrem principalmente no período chuvoso, com a ação das chuvas e aumento do volume do rio e a ação antrópica está relacionada à intensa extração de barro e areia para a construção civil. Ocorre também a lixiviação de todo o material que fica solto, sendo transportado para o rio, ocasionando processos de assoreamento e de alteração da morfologia do canal. Dar-se ainda o lançamento de esgoto in natura e lixo diretamente nas nascentes e nos canais do rio (FERREIRA, 2003).

As principais atividades registradas nessa região são a pesca artesanal, agricultura familiar e piscicultura. Nesse contexto, o monitoramento ambiental do rio Santo Antônio e baía de São José de Ribamar são de extrema importância para a conservação dos principais corpos hídricos da região.

Recentemente, esta região têm apresentado um crescente desenvolvimento de empreendimentos aquícolas, trazendo uma grande preocupação quanto aos lançamentos de efluentes de piscicultura de forma inapropriada. Esses efluentes podem conter amônia e nitrito, que são compostos tóxicos para organismos aquáticos. Estes poluentes estão presentes no ambiente natural pela excreção dos organismos aquáticos, no entanto podem aumentar suas concentrações pelo processo de degradação do alimento não consumido e pelo processo incompleto de nitrificação (DOS SANTOS SILVA et al., 2018). Assim, a utilização de peixes estuarinos, principalmente os bagres, por sua importância ecológica e econômica, em estudos de biomonitoramento, pode torná-los um potencial modelo biológico para indicar contaminação ambiental nos ecossistemas aquáticos.

3.2 Biomonitoramento em ecossistemas aquáticos com uso de peixes O desenvolvimento de metodologias de diagnósticos eficientes é o primeiro passo para a resolução de problemas relacionados à má gestão dos recursos hídricos. Nas últimas quatro décadas, pesquisadores do mundo inteiro argumentam que as metodologias tradicionais de classificação das águas baseadas tão somente nas características físico-químicas e bacteriológicas são insuficientes para atender aos usos múltiplos da água. Dessa forma, as respostas biológicas foram incorporadas na avaliação dos sistemas aquáticos (BUSS; BAPTISTA; NESSIMIAN, 2003).

19

Duas formas de metodologias são utilizadas para a avaliação, a primeira , utiliza testes toxicológicos, que são as respostas de organismos aquáticos a estressores específicos, tais como, alterações bioquímicas, fisiológicas, comportamentais, metabólicas e do ciclo de vida (VAN DER OOST; BEYER; VERMEULEN, 2003). Neste contexto, destacam-se os bioensaios de reação aguda, especializados na determinação de poluição letal e subletal de substâncias sintéticas ou naturais de origem mineral, ou vegetal (EWELL et al., 1986). No entanto, a avaliação em laboratório envolve ainda a análise da exposição crônica, conferindo os efeitos deletérios quanto a genotoxicidade, carcinogenicidade e mutagenicidade (REYNOLDSON; METCALFE-SMITH, 1992). A segunda metodologia avalia, em nível macro, os impactos ambientais por meio da medição da alteração da organização estrutural e funcional das comunidades biológicas ou dos ecossistemas (BUSS; BAPTISTA; NESSIMIAN, 2003).

Segundo Metcalfe (1989), o uso das respostas biológicas como indicadores de degradação ambiental é vantajoso em relação às medidas físicas e químicas da água, pois estas registram apenas o momento em que foram coletadas, como uma fotografia do rio, necessitando assim de um grande número de análises para a realização de um monitoramento temporal eficiente. Outra desvantagem é que, se forem feitas longe da fonte poluente, as medições químicas não serão capazes de detectar perturbações sutis sobre o ecossistema (PRATT; COLER, 1976).

Os ecossistemas aquáticos estão frequentemente sob exposição de substâncias tóxicas lançadas no ambiente. A poluição em ambientes aquáticos é bastante difusa, porém as principais fontes de contaminação são os efluentes industriais, processos de drenagem agrícola (fertilizantes, agrotóxicos), derrames acidentais e não acidentais de lixos químicos (metais pesados, compostos orgânicos e inorgânicos) e efluentes domésticos (LINS et al., 2010). O biomonitoramento ambiental através da avaliação de bioindicadores acrescenta informações a respeito da resposta biológica que aquele táxon apresenta na presença desses poluentes (WHO, 1996). O termo bioindicador pode ser reconhecido como sendo espécies sentinelas que são utilizadas como primeiros indicadores de efeito da contaminação de seu habitat (ADAMS et al., 2002). Em se tratando de ambiente aquático, plantas aquáticas, algas, crustáceos, moluscos, peixes, mamíferos, aves, entre outros, podem ser alvos de estudos, portanto são considerados bioindicadores. Um bom biomonitor deve sobreviver em ambientes saudáveis, mas também apresentar resistência relativa ao contaminante que está exposto, ser taxonomicamente bem definido e facilmente reconhecível por não-especialistas, apresentar

20 distribuição geográfica ampla, ter baixa variabilidade genética e ecológica, preferencialmente possuir tamanho grande, apresentar baixa mobilidade e longo ciclo de vida e dispor de características ecológicas bem conhecidas (JOHNSON et al., 1993). Outros aspectos que podem facilitar o desenvolvimento de um estudo são a abundância dessa espécie no ambiente e facilidades de coleta e de se adaptar a ensaios laboratoriais (AKAISHI et al., 2004).

Nesse contexto, a seleção de espécies que possam refletir a situação ambiental do baixo curso do rio Santo Antônio e baía de Curupu, torna-se relevante para monitoramento das interferências que essa região vêm sofrendo ao longo dos anos. Os peixes por serem organismos pertencentes ao topo da cadeia alimentar são comumente utilizados por possuírem intrínseca relação com toda a cadeia inferior, indicando respostas de efeitos crônicos, acumulativos e persistentes no nível de cadeia, além de efeitos diretos à nível individual (CARVALHO NETA et al., 2014).

Três categorias aplicáveis de bioindicadores para estudos de biomonitoramento de ambientes aquáticos e terrestres são considerados (GERHARDT, 2009). O primeiro, é um bioindicador a nível ambiental, no qual a espécie ou grupo de espécies respondem previsivelmente à perturbação ambiental ou alteração ambiental, tais como organismos sentinelas, acumuladores e os que são utilizados em bioensaios. O segundo, é um bioindicador a nível ecológico, onde os indivíduos são conhecidos pela sensibilidade aos locais poluídos ou contaminados e pode ocasionar a fragmentação do habitat. O terceiro, é um bioindicador a nível de biodiversidade, é levado em consideração a riqueza de um táxon que é utilizado como indicador da riqueza de espécies de uma comunidade.

No presente trabalho iremos enfocar os peixes como bioindicadores a nível ambiental, por se tratar de um estudo que utiliza biomarcadores de contaminação aquática e outros parâmetros ambientais para compreender a saúde dos indivíduos provenientes de ecossistemas naturais do rio Santo Antônio e baía de Curupu, Maranhão.

3.3 Biomarcadores em organismos aquáticos O uso de parâmetros biológicos para medir a qualidade da água se baseia nas respostas dos organismos em relação ao meio onde vivem. Como os rios estão sujeitos a inúmeras perturbações, a biota aquática reage a esses estímulos, sejam eles naturais ou antropogênicos. A habilidade de proteger os ecossistemas depende da capacidade de distinguir os efeitos das ações humanas das variações naturais, buscando categorizar a influência das ações humanas sobre os sistemas biológicos (CAIRNS; VAN DER SCHALIE, 1980). Nesse contexto, a

21 definição de biomonitoramento mais aceita é o uso sistemático das respostas de organismos vivos para avaliar as mudanças ocorridas no ambiente, geralmente causadas por ações antropogênicas (MATTHEWS et al., 1982).

Por sua vez, os organismos integram as condições ambientais durante toda a sua vida, permitindo que a avaliação biológica seja utilizada com bastante eficiência na detecção tanto de ondas tóxicas intermitentes agudas quanto de lançamentos crônicos contínuos (DE PAUW; VANHOOREN, 1983). Além disso, as metodologias biológicas são bastante eficazes na avaliação de poluição não pontual (difusa), tendo, portanto, grande valor para avaliações em escala regional (PRATT; COLER, 1976).

A identificação dos biomarcadores mais apropriados para um melhor diagnóstico do ecossistema em que se pretende investigar, deve-se levar em consideração o poluente a ser estudado e o melhor modelo biológico para a avaliação de impacto ambiental (JESUS; CARVALHO, 2008). Para tanto, existem várias classificações acerca dos biomarcadores e sua aplicabilidade (AELION et al., 2009).

A divisão clássica da ecotoxicologia aquática e as mais utilizadas pelos pesquisadores, subdivide os biomarcadores em nível de exposição, efeito e de suscetibilidade (GOLDSTEIN et al., 1987; WORLD HEALTH ORGANIZATION, 2001; AMORIM, 2003; JESUS; CARVALHO, 2008). Por outro lado, os biomarcadores são categorizados de acordo com indicadores e/ou marcadores específicos presentes nos indivíduos, tais como: enzimas de biotransformação, estresse oxidativo, proteínas reguladoras, parâmetros hematológicos, imunológicos, reprodutivos, genotóxicos, neuromusculares, fisiológicos e a nível morfológico ou histológico (VAN DER OOST; BEYER; VERMEULEN, 2003).

Neste trabalho, iremos utilizar a classificação de Van der Oost et al. (2003) que leva em consideração a utilização de marcadores biológicos histológicos. A histologia é uma ferramenta sensível para se diagnosticar efeitos tóxicos diretos e indiretos que afetem tecidos animais. Por isso é considerada um excelente método de avaliação de impacto ambiental causado por agentes tóxicos sobre os animais constituintes de uma determinada fauna e, portanto, é amplamente utilizada (PÉREZ et al., 2018). Exclusivamente, o estudo de patologias nos tecidos resulta dados sobre lesões, mas não especifica a causa pontual dessa lesão, ou seja, não diagnostica o poluente em questão, somente pontua a resposta biológica aos estressores ambientais. Entretanto, a associação de métodos de análises e estudos histológicos pode auxiliar o entendimento mais detalhado de diversas situações (LINS et al.,

22

2010). A escolha de um órgão é crucial para a relevância dos dados obtidos. Alguns órgãos, como as brânquias, que apresenta contato direto com o poluente, o fígado e o rim, que metabolizam e excretam os xenobióticos, podem indicar alterações de ações agudas ou crônicas desses poluentes em tecidos animais (SANTOS et al., 2012; CARVALHO-NETA et al., 2014).

Em bagres, como na maioria dos teleósteos, a brânquia é a principal superfície corporal envolvida nas trocas gasosas (HUGHES, 1982). Desempenha um papel crucial na regulação ácido-base, na osmoregulação e na excreção de substâncias azotadas (GOSS et al., 1998). As consequências da ação de poluentes neste órgão-alvo podem desencadear processos degenerativos, necróticos e transtornos do crescimento celular (HIBIYA, 1982). Dessa maneira, as alterações histológicas encontradas nas brânquias são facilmente reconhecidas, tornando-se importante para determinar os danos causados aos níveis de exposição dos peixes aos poluentes (ARELLANO; STORCH; SARASQUETE, 1999).

O epitélio da brânquia é a principal superfície de contato com o ambiente e na presença de agentes estressores, as brânquias podem exibir modificações que são consideradas respostas de defesa. Agentes estressores químicos, físicos ou biológicos induzem reações nos tecidos causando distúrbios circulatórios, como congestão, telangectasia, edema e a proliferação de células como a hiperplasia epitelial e de células mucosas, além de processos inflamatórios que podem levar a necrose dos tecidos (GARCIA-SANTOS et al., 2007; FONTAÍNHAS-FERNANDES et al., 2008; ROQUES et al., 2015).

Telangectasia lamelar ou aneurisma é uma alteração característica dos sinusóides branquiais e está associada a traumas físicos ou químicos. Apresenta-se após manejos mais severos e pode estar associada com lesões parasitárias, resíduos metabólicos ou contaminantes químicos. Quando muitas lamelas são afetadas, a função respiratória pode diminuir especialmente em temperaturas altas, quando os níveis de oxigênio são baixos e a demanda metabólica é alta (SANTOS et al., 2012).

Alguns estudos realizados com peixes têm demonstrado que a exposição das brânquias a poluentes ambientais produzem alterações nos filamentos branquiais como o espessamento do epitélio filamentar, que podem advir da proliferação de células de cloro e de células indiferenciadas do epitélio. A proliferação celular pode conduzir à fusão parcial ou total das lamelas branquiais (REIS et al., 2009).

23

As alterações histológicas, por exemplo, a fusão lamelar, podem funcionar como mecanismos de defesa, diminuindo a área de superfície da brânquia ou, também, aumentando a barreira de difusão ao agente poluente ou estressor; entretanto, a maior dificuldade respiratória pode induzir à vasodilatação, podendo levar ao aparecimento de edemas e descolamento do epitélio branquial (ERKMEN; KOLANKAYA, 2000).

O fígado é considerado o principal órgão responsável pelo metabolismo das substâncias químicas, por meio de diferentes reações e processos enzimáticos, sendo o mais importante sítio anatômico de armazenamento, biotransformação e excreção de pesticidas (CENGIZ; UNLU, 2006). Também é um dos órgãos que tendem a acumular as substâncias tóxicas em concentrações superiores aos da corrente sanguínea, em função do alto grau de vascularização e importância fisiológica e toxicocinética (PEDROZO et al., 2002). Além do mais, estudos intensivos e detalhados de lesões hepáticas representam os exemplos mais convincentes de relação causal entre doenças em peixes e poluição do ambiente aquático (VAN DER OOST; BEYER; VERMEULEN, 2003).

O componente hepático é constituído pelos hepatócitos e um sistema de condutos que drenam a bile. Os hepatócitos são células poliédricas, grandes, geralmente com um núcleo central e nucléolos característicos, espalhados como cordões dispostos em duas camadas celulares, e rodeado por sinusóides. Os ductos biliares são geralmente encontrados perto da veia porta e eles são revestidos por epitélio cuboide simples (VICENTINI et al., 2005; WEBB, 2009).

Os hepatócitos podem ser considerados o primeiro alvo de toxicidade de uma substância, o que caracteriza o fígado como um órgão biomarcador da poluição ambiental (ZELIKOFF, 1998). Alterações como vacuolização dos hepatócitos, redução do estoque de glicogênio, inflamação, alteração no formato dos capilares sinusóides e neoplasmas podem ser interpretados como respostas ao estresse ambiental, sendo, considerados indicadores histopatológicos da qualidade do ambiente (TEH; ADAMS; HINTON, 1997).

A histopatologia, integrada com outros métodos, como a bioquímica, a imunologia, avaliação de crescimento e diagnóstico de doenças, é utilizada para a avaliação dos efeitos ambientais como a qualidade da água e as condições de internas de peixes. Observam-se também as alterações histológicas no fígado, sendo comumente reconhecidos vacuolização dos hepatócitos, degeneração gordurosa do fígado, alterações na atividade metabólica, alterações no parênquima hepático e necrose (RASKOVIC et al., 2011).

24

3.4 Sciades herzbergii (Bloch, 1974) A espécie S. herzbergii pertence a Ordem Siluriformes, família Ariidae. Os peixes dessa espécie são popularmente conhecidos como bagre guribu, ocupam ambientes de água marinha, doce e estuarina demersal em climas tropicais. A sua distribuição ocorre no continente sul americano, no Caribe, rios do atlântico e estuários da Colômbia ao Brasil. Os adultos dessa espécie ocorrem em estuários com águas túrbidas, mangues e baixos cursos de rios e toleram mudanças de salinidade. São encontrados em regiões costeiras rasas (CERVIGÓN et al., 1992), alimentam-se de uma grande variedade de animais pelágicos, crustáceos, vermes e animais encontrados entre as raízes dos manguezais e sua reprodução ocorre entre setembro e dezembro. Uma fêmea coloca 20-30 ovos, com um diâmetro de 10-12 mm e os machos os incubam em sua boca (FROESE; PAULLY, 2018). A incubação demora 10 a 12 dias. Após 50-60 dias, jovens totalmente funcionais são libertados. As fêmeas atingem a maturidade em idade mais jovem que os machos e crescem mais rapidamente (MARCENIUK, 2005).

3.5 Bagre bagre (Linnaeus, 1766) O Bagre bagre, conhecido popularmente como bandeirado, é uma espécie demersal com comportamento restrito de migração. Essa espécie ocupa ambientes de águas marinhas costeiras, e faz migrações para ambientes estuarinos ou planícies costeiras em busca de alimento e para desovar (DA SILVA et al., 2016). Alimenta-se principalmente de pequenos peixes e invertebrados, como crustáceos. Os machos mantém os ovos fertilizados na sua cavidade oral por aproximadamente três meses, sem se alimentar, quando então os jovens estão prontos e permanecem no ambiente estuarino até ficarem maduros, não apresenta estágios pelágicos larvais (RIMMER, 1985; ARAÚJO, 1988).

O Bagre bagre é amplamente conhecido por sua distribuição ao longo da costa do continente Sul Americano, da Colômbia à boca do Rio Amazonas, Brasil. É mais comum em profundidades até 50 m, em áreas Tropicais (MARCENIUK, 2005). Em contraste com outros arídeos, que são tipicamente endêmicos de uma área geográfica restrita, espécies do gênero Bagre são amplamente distribuídos (MARCENIUK, 2007), sendo considerados como característica de espécie invasora (LODGE, 1993). Em algumas partes do Brasil, como no nordeste amazônico, essa espécie é alvo de intensivas pescarias industriais e algumas capturas artesanais (MARCENIUK, 2015).

25

4 METODOLOGIA

4.1 Área de estudo Os pontos amostrais localizam-se nos municípios de Paço do Lumiar e São José de Ribamar – MA (figura 1). Os embarques foram realizados no Porto do Pau Deitado, utilizou- se uma embarcação motorizada conhecida popularmente como biana. As coletas do S. herzbergii foram realizadas em um ponto no baixo curso do Rio Santo Antônio 2°29'36.54"S 44° 3'34.38"W (A2 - Pecoapara), um na foz, já na Baía de Curupu 2°27'47.58"S 44° 2'45.42"W (A1 - Panaquatira) e um terceiro ponto 2°33'18.36"S 44° 3'10.02"W (A3 - Porto do Vieira). Um único ponto foi amostrado para o Bagre bagre 2°28'56.64"S44° 1'44.40"W (A4 - Panaquatira).

Figura 1. Mapa de localização de captura do S. herzbergii e B. bagre na baía de São José, MA.

Foi realizado um mapeamento de uso e ocupação do solo para uma melhor compreensão das unidades paisagísticas da bacia do rio Santo Antônio (Figura 2). Através desse levantamento, a área caracterizou-se como sendo bem preservada por causa das extensas áreas verdes (11.435,43 km³) que representam quase 73,80% de toda a área

26 mapeada. Os corpos hídricos ocupam uma área de aproximadamente 4.057,02 km², correspondendo à 26% da região. Somente 1,50 km² da bacia hidrográfica da bacia do rio Santo Antônio correspondem a áreas ocupadas.

Figura 2. Mapa de cobertura do solo da bacia hidrográfica do Rio Santo Antônio, MA.

4.2 Licença e comitê de ética O protocolo para captura dos peixes foi aprovado pelo Comitê de ética da Universidade Estadual do Maranhão (número 064/2018 CRMV-MA).

4.3 Coleta das espécies, biometria e dados abióticos Quatro coletas foram realizadas, (1ª - setembro de 2017; 2ª – dezembro de 2017; 3ª – março de 2018 e 4ª – maio de 2018). A coleta do S. herbergii (figura 3) foi realizada com o uso de covos, conhecidos popularmente como manzuá. Sardinhas foram usadas como iscas, espetadas em cordões de até 3kg, presos na parte interna dos corvos. Os covos foram instalados no baixo curso do rio Santo Antônio, durante a maré baixa, em baixas profundidades e deixados de um dia para o outro, quando então ocorreu a despesca. A coleta do Bagre bagre (figura 4) foi realizada com o uso de redes de emalhar flutuantes, com uma malha de 15 a 40 mm entre nós adjacentes, 4 a 5 metros de altura e 200 metros de

27 comprimento para as capturas. As amostragens ocorreram durante a maré de quadratura com esforço de pesca padronizado de 6 horas, correspondendo a todo o ciclo da vazante.

Figura 3. Exemplar de S. herzbergii capturado na Baía de São José, Maranhão.

Figura 4. Exemplar de B. bagre capturado na Baía de São José, Maranhão.

Os peixes foram identificados segundo Cervigon et al. (1992). Após a identificação, a atualização taxonômica foi realizada acessando o Projeto Fishbase (FROESE; PAULY, 2018), em seguida foram colocados em caixas térmicas com gelo e encaminhados ao Laboratório de Biomarcadores em Organismos Aquáticos da Universidade Estadual do Maranhão – LABOaq. Foi aferido alguns dados de biometria, como peso total (Wt), comprimento total (Lt) e comprimento padrão (Lp). Posteriormente, uma incisão na parte ventral dos peixes foi realizada para a retirada dos órgãos (brânquias, fígados e gônadas) e aferição do peso das gônadas (Wg) e peso do fígado (Wl). A classificação dos estádios de maturação gonadal foi realizada segundo Brown-Peterson et al. (2011), I – Imaturo, II – Em desenvolvimento, III – Capaz de desovar, IV – Em Regressão e V – Em Regeneração.

Foram coletados 73 indivíduos da espécie S. herzbergii (24 machos e 49 fêmeas) e 42 B. bagre (27 machos e 15 fêmeas). São mostrados os dados biométricos (Lt – comprimento total, Lp – comprimento padrão, Wt – peso total, Wg – peso das gônadas e GSI – índice gonadossomático) dos peixes coletados na baía de Curupu.

28

Os dados abióticos foram aferidos com auxílio do multiparâmetro da marca AK88, sondas de temperatura (ºC), salinidade, pH e Oxigênio dissolvidos (OD) auxiliaram na análise da qualidade da água. Os parâmetros físicos da água aferidos, pH, temperatura e oxigênio dissolvido apresentaram-se uniformes em todas as áreas e períodos analisados.

4.4 Histologia dos tecidos O protocolo de avaliação de poluição aquática proposta por Bernet et al. (1999) serviu para determinar o grau de severidade das lesões branquiais e hepáticas encontradas nos indivíduos dessa pesquisa. De acordo com o protocolo foi determinado um fator de importância (w) da lesão, que divide-se em três níveis: 1 – mínima importância patológica ou reversível; 2 – moderada importância patológica ou reversível na maioria dos casos e 3 – marcada importância patológica ou irreversível. O alcance da alteração histológica também foi registrado, classificando o grau e a extensão da lesão (a): 0 (sem mudanças), 2 (ocorrência leve), 4 (ocorrência moderada), e 6 (ocorrência severa), com valores intermediários também sendo considerados.

O uso do fator de importância e dos valores das alterações permitiu o cálculo de dois índices. Como as lesões de cada órgão foram estudadas separadamente, aplicou-se o cálculo de dois índices, o índice do órgão (Iorg.) e o índice de reação do órgão (Iorg rp), conforme proposto por Bernet et al. (1999):

Iorg. = Σrp Σ alt (a.w)

Onde: org = órgão (constante); rp = padrão de reação; alt = alteração encontrada no órgão; a = grau de extensão da alteração; w = fator de importância.

O índice representa o grau de dano para um órgão. Ele é a soma da multiplicação dos fatores de importância pelos valores de todas as mudanças encontradas no órgão examinado. Um elevado índice indica um alto grau de dano.

Iorg rp = Σ alt (a.w)

Onde: org e rp = constante.

A qualidade da lesão em um órgão é expressada pelo índice da reação. Ele é calculado pelo somatório da multiplicação do fator de importância pelo valor das alterações do padrão de reação correspondente. A soma dos cinco índices de reação do órgão é equivalente ao

índice do órgão (Iorg.).

29

Onde: rp1 – distúrbios circulatórios (hemorragia, hiperemia, aneurisma e edema intercelular); rp2 – mudanças regressivas (alterações estruturais, atrofia, depósitos, necrose, alterações no plasma e alterações nucleares); rp3 – mudanças progressivas (hiperplasia e hipertrofia); rp4 – inflamação (exsudase, ativação do sistema reticuloendotelial e infiltração) e rp5 – tumores (benigno e maligno).

4.5 Quantificação dos Centros de Melanomacrófagos (MMCs) Primeiramente, os centros de melanomacrófagos consistem em agregação de macrófagos, como células e fragmentos de células fagocitadas, principalmente eritrócitos e pigmentos, como, melanina, hemosiderina e lipofuscina, localizados no tecido reticuloendotelial do fígado, rim e pâncreas (AGIUS; ROBERTS, 2003). Uma análise quantitativa da agregação de MMCs foi realizada em seções de tecido hepático dos peixes. Cada campo digital foi fotografado utilizando Zen Imaging software Axiovision 4.8 montado no microscópio óptico Zeiss com as objetivas de 4X, 10X e 40X. A agregação de MMCs foi medida usando análise de imagem no software ImageJ e foi medida aleatoriamente como número de MMCs por mm2. Cada seção foi retirada da região central do fígado, sendo possível mensurar todo o órgão.

4.6 Fator de condição (K) O fator de condição é um indicador quantitativo do grau de higidez ou de bem-estar de um indivíduo. Ele é usado para indicar variações na densidade populacional e nas condições alimentares. O valor reflete as condições nutricionais recentes e/ou gastos de reservas em atividades metabólicas, possibilitando relações com condições ambientais e aspectos comportamentais das espécies (VAZZOLER, 1996).

O fator de condição (K) foi estimado para cada indivíduo e suas médias obtidas para cada período, segundo a expressão (VAZZOLER,1996): K = Wt/Ltb, onde: Wt = peso total, Lt = comprimento e b = coeficiente angular da relação peso/comprimento.

4.7 Índice hepatossomático (HSI) O fígado de cada peixe foi pesado para o cálculo do índice hepatossomático (HSI) (massa do fígado/massa corporal x 100). O índice hepatossomático pode estar relacionado com a mobilização das reservas energéticas necessária para o processo de vitelogênese, reprodução ou preparação para o período mais seco (AZEVEDO; DE CASTRO; SILVA, 2017).

30

4.8 Análises estatísticas Estatísticas descritivas são apresentadas na forma de médias, desvios-padrão, medianas e prevalência percentual. Os resultados histopatológicos de HSI, CF, e quantitativos foram comparados entre os locais utilizando o teste de variância ANOVA e teste Tukey. As Análises estatísticas foram realizadas utilizando-se o software PAlaeontological STatistics (PAST), version 1.0.0.0 (RYAN; HAMMER; HARPER, 2001) e significância estatística foi aceita para p ≤ 0.05. Os resultados da quantidade de MMCs foram comparados entre os locais utilizando o teste de Kruskal-Wallis. Para as variáveis com um resultado de teste significativo, comparações entre pares entre os diferentes locais foram feitas usando o teste U não-paramétrico de Mann-Whitney, controlando o erro do Tipo I entre os testes por meio do ajuste de Bonferroni. As diferenças estatísticas foram consideradas significativas quando p <0,05. Os dados foram verificados quanto à normalidade usando os testes de Kolmogorov- Smirnov ou Shapiro-Wilk.

31

1 5 RESULTADOS

2 Article 1 – Histopathology on Sciades herzbergii (Pisces, Ariidae) and Bagre bagre (Pisces,

3 Ariidae) gills to assess environmental pollution

4 Este artigo será submetido à revista Chemosphere. ISSN: 0045-6535. Fator de impacto: 4.427.

5 Qualis A1 (2018) para a área Zoologia/Recursos pesqueiros.

6 Hellon Cunha Viana a, Simone Karla Lima e Silva b, Marianna Basso Jorge c, Débora Martins

7 Silva Santos d, Raimunda Nonata Fortes Carvalho Neta d.

8 a Master Student in Aquatic Resources and Fisheries (PPGRAP) by State University of

9 Maranhão (UEMA), Campus Paulo VI, São Luis, Maranhão, Brazil.

10 b Master in Biodiversity and Conservation by Federal University of Maranhão (UFMA), São

11 Luis, Maranhão, Brazil.

12 c Department of Oceanography and Limnology, Federal University of Maranhão (UFMA),

13 São Luis, Maranhão, Brazil.

14 d Department of Chemistry and Biology, State University of Maranhão (UEMA), Campus

15 Paulo VI, São Luis, Maranhão, Brazil.

16 Corresponding author: Hellon Cunha Viana¹. Email: [email protected], phonenumber:

17 +55 98 983109904

18 „Declarations of interests: none‟

19

20

21

32

22 Abstract

23 Fish have been used as biomonitors, and hepatic and gill alterations as biomarkers for

24 contamination identification in aquatic environments. The objective of this research was to

25 evaluate data corresponding to alterations found in S. herzbergii and B. bagre gills and livers,

26 including necropsy observations, prevalence of histological alterations and biometrical

27 indexes. Biological samples were collected at four different sample sites (A1 – reference; A2

28 – impacted A3 – contaminated and A4 - reference) at Curupu Bay, Maranhão. The greatest

29 percentage of gill injuries, such as secondary flap deformity, partial fusion, total fusion,

30 hypertrophy and hyperplasia were recorded in S. herzbergii, which live in area A2 in relation

31 to the rest of the studied areas. These injuries remained between the end of the dry period and

32 start of the rainy period. Histopathological analysis showed an elevated number of hepatic

33 alterations such as inflammatory responses, melanomacrophage centers, hyperplasia and

34 cytoplasmtic vacuolization (lipid cells) in S. herzbergii from area A2. It was also possible to

35 identify a significant difference in the liver index (Iorg.) of fish, which live in area A2 in

36 relation to the other areas. Hepatosomatic index values (HSI) and condition factor (K) were

37 similar in areas A1, A2 and A3, however differed from area A4. Fish from areas A3 and A2

38 had the largest number of liver abnormalities (fat nodes). Results suggest that histological

39 alterations in S. herzbergii liver and gills might be used to assess areas with different levels of

40 water pollution in estuary environments.

41 Keywords: Biomonitoring, catfish, Pollution.

42

43

44

45

33

46 1. Introduction

47 Anthropogenic changes such as rapid population growth and urbanization of large areas have

48 led to a decline in the quality of aquatic ecosystems (Pérez et al., 2018). In addition, water

49 quality directly relates to the sanitary conditions of humans and that inhabit these

50 environments (Ghisi et al., 2016). Uncontrolled domestic and industrial effluent discharges,

51 agrochemical dumps, heavy metals, organic compounds among other xenobiotics (Van der

52 Oost et al., 2003) directly affect fish, among aquatic organisms. In this sense, fish are sentinel

53 organisms that can be used as bioindicators of environmental stress, both of abiotic and biotic

54 changes caused by pollutants (Débora Batista Pinheiro Sousa et al., 2013; DBP Sousa et al.,

55 2013, Carvalho Neta et al., 2014). The first responses of organisms to stress are changes at the

56 cellular and tissue levels (Facey et al., 2005).

57 Fish gills have a large surface in direct contact with water, gill changes have been widely used

58 as environmental contamination indicators (Zhang et al., 2014; Olivares-Rubio and Vega-

59 López, 2016). Experimental studies have assessed gill damage induced by xenobiotics, such

60 as heavy metals and pesticides (Garcia-Santos et al., 2007; Carvalho-Neta and Abreu-Silva,

61 2013; Olurin et al., 2016) and gill structure after a period of exposure to contaminants and

62 being relocated to good quality environments (Sales et al., 2017; Choi et al., 2018).

63 Studies on from the South American continent, USA, Europe, Africa and Asia have

64 shown that liver histopathology, through alterations found in liver are advantageous exposure

65 biomarkers to contaminants (Au, 2004; Triebskorn et al., 2008; Van Dyk et al., 2012, Zhang

66 et al., 2014, Sardi et al., 2016, Pérez et al., 2018). Some of these studies were incorporated

67 into biomonitoring programs and programs of this nature require a level of histopathological

68 data and biomonitoring fish species from the region in question (Carvalho-Neta and Abreu-

69 Silva, 2010).

34

70 The northern region of Maranhão is well developed for its proximity to port complexes and

71 accelerated urban and industrial development (Carvalho-Neta et al., 2012). As a result, many

72 water bodies have suffered negative impacts related to releases of industrial effluents,

73 untreated sewage, among others (Cantanhêde et al., 2014).

74 Among pollutant mixtures, fishery effluents stand out the most, containing ammonia and

75 nitrite, which are toxic compounds for aquatic organisms. These pollutants are present in the

76 natural environment through aquatic organism excretion; however, they can increase their

77 concentrations through the processes of unconsumed food degradation and incomplete

78 nitrification (dos Santos Silva et al., 2018). Aquaculture has been responsible for continued

79 growth in fish supplying for human consumption (47% of 171 million tons produced in 2016),

80 because since the 1980s, fish production has been relatively static (FAO, 2018). Aquaculture

81 in Brazil produced more than 586 thousand tons of fish (70.9% referring to fish farming

82 followed by 19.3% to shrimp farming) (IBGE, 2016). Maranhão currently occupies the

83 seventh position in fish production, climbing two positions in comparisons to bulletins

84 published in previous years (IBGE, 2016).

85 Exposure regimes for pollutants experienced by fish are difficult to determine. Often, there is

86 fluctuation of chemicals in the river water due to varying rates of biodegradation as well as

87 physical-chemical conditions and water flow rates. These factors may alter the levels of

88 effluent dilution and fish movements between habitats (Vrana et al., 2005). However, some

89 histological changes, such as hyperplasia, cell hypertrophy and vascular damage depending

90 on the number of lesions assessed may be indicators of acute environmental contamination by

91 pollutants (Carvalho Neta et al., 2014). The taxon Sciades herzbergii is a typical benthic fish

92 and maintains a close relationship with the environment; it is common to coastal areas and has

93 been used as a model for the effect of contaminants in estuarine systems. Bagre bagre is a

94 migratory species which resides in estuarine environments in the Gulf of Maranhão

35

95 (CARVALHO-NETA; TORRES; ABREU-SILVA, 2012). These catfish species are widely

96 distributed and are used for research because of their sedentary habit and economic

97 importance for river front communities and small-scale fisheries which are located throughout

98 the Santo Antônio River basin (CARVALHO NETA et al., 2014).

99 This study sought to incorporate all data related to liver and gill abnormalities found in S.

100 herzbergii and B. bagre, including necropsy observations, prevalence of histological changes

101 and biometric indexes (hepatosomatic index-HSI and K-condition factor). It was determined

102 whether these measures differed and/or reflected the state of pollution of different aquatic

103 ecosystems on a regional scale. The approach divided four different sampling sites (A1 -

104 reference, A2 - impacted, A3 - contaminated and A4 - reference) in terms of site and pollution

105 status. Quantitative histopathological scoring systems were integrated to assess histological

106 changes in fish from each site in terms of severity of occurrence and pathological importance.

107

108 2. Material and Methods

109 2.1 Study area

110 The four selected collection sites are located between the mouth of the Santo Antônio River

111 and Curupu Bay, in the eastern region of São Luís Island, Maranhão (Fig. 1). It is

112 characterized as a rural region, marked by extensive mangrove areas. However, there is an

113 accelerated urbanization process. A region at the mouth of the river, and therefore further

114 away from the banks of the river, was selected as reference area for S. herzbergii (A1 - 2 °

115 27'47.58 "S 44 ° 2'45.42" W). A closer and more accessible location to the channel, where

116 fishery effluents are theoretically released, was characterized as an impacted area (A2 - 2°

117 29'36.54"S 44° 3'34.38" W). A third point, within an urban center, which constantly suffers

118 from domestic effluent releases was selected as a contaminated area (A3 - 2° 33'18.36 "S 44°

36

119 3'10.02" W). In addition, a fourth, further away from the coast, was selected as reference area

120 for the B. bagre A4 (2° 28'56.64 "S44° 1'44.40" W). Shipments left the Port of Pau Deitado,

121 municipality of Paço do Lumiar and they took a motorized vessel called biana.

122

123 Figure 1 Geographic location of S. herzbergii and B. bagre catches at the Santo Antonio River

124 basin and Curupu Bay estuary complex, Maranhão.

125

126 2.2 Licensing and ethics declaration

127 The capture of fish was authorized by the Ethics Committee of Maranhão State University

128 (number 064/2017-2018 CRMV-MA) and met the guidelines of the Brazilian College for

129 Animal Experimentation (SBCAL/COBEA, 2018).

130

37

131 2.3 Collection of organisms

132 The collection of S. herzbergii was carried out with the use of cages, known as manzuá.

133 Sardines were used as bait, arranged on cords up to 3kg and tied inside of the cages. The

134 cages were installed during the low tide, in low depths and left overnight, when the harvesting

135 occurred. The collection of B. bagre was carried out using floating gill nets with a mesh of 15

136 to 40 mm between adjacent nots, 4 to 5 meters in height and 200 meters in length for catches.

137 Samplings occurred during the quadrature tide with standard fishing effort of 6 hours,

138 corresponding to the entire ebb. The fish were acclimatized in thermal iceboxes to the Aquatic

139 Organisms Biomarker Laboratory at the State University of Maranhão - LABOaq.

140 Measurement of total length (cm) and total weight (g) were carried out to calculate condition

141 factor according to Vazzoler (1996). Evisceration was performed for macroscopic

142 identification of maturational stages, where: I - Immature, II - In development, III - Able to

143 spawn, IV - Regression and V - Regeneration (Brown-Peterson et al., 2011). The liver of each

144 fish was weighed to calculate the hepatosomatic index (HSI) (liver mass/body mass x 100).

145 The gonadosomatic index (GSI) was also evaluated (gonad mass/body mass x 100), it is the

146 value that expresses body weight allocated in the gonads.

147

148 2.4 Abiotic water parameter analysis

149 Abiotic data measured with assistance from the AK88 multi-parameter, temperature (ºC)

150 probes, salinity, pH and dissolved oxygen (DO) helped in the water quality analysis.

151

38

152 2.5 Tissue processing and histopathology

153 The same LABOaq team collected fish and tissue samples from each sampling point where

154 the same methodological process was applied. A basic histology procedure was applied, fish

155 were dissected and liver and gill samples were set in 10% formaldehyde, gills were

156 decalcified with nitric acid and later the organs were dehydrated in increasing alcohol

157 concentrations, they were diaphanized in xylol and went through paraffin inclusion. Sections

158 of liver and gills (5 μm) were stained with hematoxylin-eosin (H & E) (Merck) for hepatic

159 and branchial structure description, respectively.

160

161 2.6 Microscopic analysis

162 The optic microscope assisted in the quantitative assessment of histological changes. The

163 liver and gill slides were inspected with 4X, 10X and 40X lenses, depending on the lesion. To

164 determine the degree of hepatic and branchial lesion severity, the water pollution assessment

165 protocol proposed by Bernet et al. 1999 was used. In short, histological changes were

166 assessed according to identification of changes in five reaction patterns (rp). Where: rp1 -

167 circulatory disorders (hemorrhage, hyperemia, aneurysm and intercellular edema); rp2 -

168 regressive changes (structural changes, atrophy, deposits, necrosis, changes in plasma and

169 nuclear alterations); rp3 - progressive changes (hyperplasia and hypertrophy); rp4 -

170 inflammation (exsudase, reticuloendothelial system activation and infiltration) and rp5 -

171 tumors (benign and malignant).

172 When the lesion was identified, the importance factor (w) was evaluated at three levels: 1 -

173 minimal pathological or reversible importance; 2 - moderate pathological or reversible

174 importance in most cases and 3 - marked pathological or irreversible importance. We also

175 recorded the extent of the histological alteration, which classified degree and extent of the

39

176 lesion (a): 0 (no changes), 2 (mild occurrence), 4 (moderate occurrence), and 6 (severe

177 occurrence), with intermediate values also being considered.

178 Since lesions of each organ were studied separately, the calculation of two indices were

179 applied, the organ index (Iorg.) and organ reaction index (Iorg rp), as proposed by Bernet et al.

180 1999:

181

182 Iorg. = ΣrpΣalt (a.w)

183

184 Where: org = organ (constant); rp = reaction standard; alt = alteration found in the organ; a =

185 alteration extension degree; w = importance factor.

186 The index represents a degree of organ damage. It is the result of the sum of multiplying

187 importance factors with the values from all changes found in the examined organ. A high

188 index indicates a high degree of damage.

189

190 Iorgrp = Σ alt (a.w)

191

192 Where: org and rp = constant.

193 Lesion quality in an organ is expressed by the reaction index. It is calculated by the sum of

194 multiplying the importance factor with the value of the corresponding standard reaction

195 alterations. The sum of the organ reaction‟s five indices (Irp1; Irp2; Irp3; Irp4 e Irp5) is

196 equivalent to the organ index (Iorg.).

197

40

198

199 2.7 Statistical analysis

200 Descriptive statistics are presented in the form of averages, standard deviations, medians and

201 percentage prevalence. Histological results, hepatosomatic and condition factor variation, and

202 quantitative were compared between sites using the ANOVA variance test and Tukey test.

203 Statistical analyses were performed using the software PAlaeontological STatistics (PAST),

204 version 1.0.0.0 (Ryan et al., 2001) and statistical significance was accepted for p ≤ 0.05.

205 MMC quantity results were compared between sites using the Kruskal-Wallis test. For

206 variables with a significant test result, comparisons between pairs between different sites were

207 made using the Mann-Whitney non-parametric U test, controlling the Type I error between

208 the tests by Bonferroni adjustment. Data was checked for normality using the Kolmogorov-

209 Smirnov or Shapiro-Wilk tests.

210

211 3. Results

212 3.1 Fish and abiotic water parameter data

213 In the first collection (September/2017), four fish were caught at point A1, 10 fish at point A2

214 and 11 fish at point A4. In the second collection (December/2017), six fish were collected at

215 point A1, 3 fish at point A2, 12 fish at point A3 and 11 fish at point A4. In the third collection

216 (March/2018), 6 fish from point A1, 2 fish from point A2, 11 fish from point A3 and 9 fish

217 from point A4 were captured. In the fourth and final collection (May/2018), six fish were

218 caught at point A1, 5 fish at A2 points, 8 fish at point A3 and 11 fish at point A4. In total, 73

219 individuals of S. herzbergii (24 males and 49 females) and 42 B. bagre (27 males and 15

220 females) were collected (Table 1).

221

41

222

223

224 Table 1. Biometric data and gonadosomatic index of S. herzbergii and B. bagre captured at

225 Curupu bay.

Sampling Gender Lt (cm) Ls (cm) Wt (g) Wg (g) GSI point Females 34.50 ± 4.60 28.57 ± 3.88 399.77 ± 153.75 6.3415 ± 5.8604 1.3151 ± 1.0912 (A1) Males 28.57 ± 4.00 22.12 ± 4.81 237.89 ± 115.85 0.2433 ± 0.3364 0.0787 ± 0.0688 Females 30.72 ± 4.31 25.47 ± 3.94 286.85 ± 113.66 3.0635 ± 3.9105 0.9941 ± 1.1658 (A2) Males 20.27 ± 9.67 16.99 ± 8.27 281.71 ± 65.52 0.2872 ± 0.2401 0.1112 ± 0.1085 Females 30.25 ± 3.68 25.03 ± 2.88 269.22 ± 100.55 5.3420 ± 5.8499 1.6152 ± 1.5846 (A3) Males 26.25 ± 3.03 21.69 ± 2.69 177.25 ± 60.12 0.2107 ± 0.1031 0.1286 ± 0.0710 Females 29.02 ± 2.95 23.03 ± 2.44 165.13 ± 55.56 2.9654 ± 10.0217 1.2378 ± 4.0645 (A4) Males 28.02 ± 3.42 22.12 ± 2.86 144.96 ± 46.30 0.1912 ± 0.2037 0.1415 ± 0.1488 226

227 Values given as mean ( ) and standard deviation (± SD). Lt: Total length; Ls: Standard length;

228 Wg: Weight of gonad; GSI: Gonadosomatic index.

229

230 At point A1, it was divided among 12 young individuals and 10 adults; at point A2, 16 young

231 fish and 4 adults; at point A3, specimens were divided into 7 young and 24 adults and finally,

232 at point A4, 24 young individuals and 18 adults were identified. Biometric data (Lt - total

233 length, Lp - standard length, Wt - total weight, Wg - weight of gonads and GSI -

234 gonadosomatic index) of fish collected in Curupu Bay are shown. Females from the A1 area

235 showed the highest length and weight averages, whereas males from the A3 area had the

236 smallest average size, and males and females from the A4 area showed lower average weight.

237 The fish in the A2 area were mostly young and presented lower average GSI. In relation to the

238 physical parameters of the water measured, pH, temperature and dissolved oxygen were

239 uniform in all analyzed areas and periods. Salinity showed greater variation between drought

42

240 and rainy periods. All parameters sampled were in compliance with Brazilian legislation

241 (Conama 357/2005) (table 2).

242 Table 2. Physical parameters of water (mean) recorded in dry and rainy periods at the fish

243 collection sites.

244

(A1) (A2) (A3) a Recommended Parameters Dry Rainning Dry Rainning Dry Rainning values season season season season season season pH 7.57 7.40 7.42 7.41 7.46 7.70 from 6.5 to 8.5 Temp. (°C) 30.20 29.65 33.30 30.40 31.60 31.20 < 40°C DO (mg/L) 8.76 11.19 9.14 9.91 8.69 11.16 > 5mg/L Salinity 37.50 27.05 37.45 26.65 38.70 26.60

245

246 Values given as mean ( ). pH: Hydrogenic potential; Temp.: Temperature; DO: Dissolved

247 oxygen. a Recommended values based on resolution nos. 357 and 430 of Brazil‟s National

248 Environmental Council, CONAMA 2005. Reference area (A1); impacted area (A2);

249 contaminated area (A3).

250

251 3.2 Biometric indexes

252 The HSI and K variation from four different research areas were investigated. The highest

253 HSI averages were found in area A1 (1.77 ± 0.44) and A3 (1.98 ± 0.42) and the lowest

254 averages were found in areas A2 (1.73 ± 0.37) and A4 (1.07 ± 0.38) (Fig. 2A). The greatest

255 HSI variations occurred at points A3 and A4, as demonstrated in the boxplot quartiles

256 compared with the smallest variations at areas A1 and A2. A statistical difference was noted

257 in relation to point A4 and the other collection sites (p<0,05).

43

258 The average K of all fish sampled from areas A1, A2, A3 and A4 was 0.98 ± 0.08, 1.03 ±

259 0.10, 1.00 ± 0.08 and 1.52 ± 0.14, respectively. The highest variation in K value occurred

260 with individuals from point A4. The variation of the other groups was similar, with the A1

261 group indicating a lower K than expected (K = 1). The condition factor of S. herzbergii

262 ranged from 1.0387 to 0.9672 for area A1. K ranged from 1.0432 to 0.9700 in area A2 and

263 decreased from 1.0433 to 0.9800 in area A3. The ANOVA did not show significant values of

264 K in fish from points A1, A2 and A3, but there was a significant difference in relation to the

265 A4 point (p <0.05). The condition factor of each fish was examined and the monthly average

266 indicated that, in at least two different periods of the year, fish were in good condition (Fig.

267 2B).

3,5 A 3,0

2,5

2,0

1,5

1,0

Hepatosomatic (HSI) indexHepatosomatic 0,5

0,0 Area 1 Area 2 Area 3 Area 4 268

44

2,0 B 1,8 1,6 1,4 1,2 1,0

Condition factor (K) factor Condition 0,8 0,6 0,4 Area 1 Area 2 Area 3 Area 4 269

270 Figure 2 Boxplots showing hepatosomatic index (HSI) variation (a) and condition factor (K)

271 (b) in the different sampled areas.

272 3.3 Macroscopic observations

273 Fish livers from the sampled points did not show many noticeable macroscopic abnormalities.

274 Abnormalities, such as fat nodes, were identified in fish from sites A2, A3 and A4 and were

275 more prevalent (31%) in area A2 fish. These livers were characterized by the presence of fatty

276 nodes with regions of tissue coloring ranging from yellow, green, black and red. Only 6%,

277 12% and 9% of the fish presented similar macroscopic abnormalities in areas A1, A3 and A4,

278 respectively.

279

280 3.4 Prevalence of histological alterations

281 At all points sampled, MMCs prevailed in livers compared to any other type of lesion

282 identified, at more than 90%. Changes such as hyperplasia and lipid cells were also widely

283 observed (> 80%) in areas A1, A2 and A3, with a lower frequency in the A4 area (<60%).

45

284 The average number of MMCs/mm² was higher in areas A2 (72.00 ± 113.36) and A3 (70 ±

285 50.59), showing similarities between both (Fig. 3). Areas A1 (41 ± 21.52) and A4 (22 ±

286 16.50) had the lowest average MMCs/mm². The greatest variation occurred in area A2. The

287 number of MMCs was significantly lower in individuals' livers from areas A1 and A4 (p <

288 0.05) compared to individuals from areas A2 and A3. A statistical difference (p = 0.01) was

289 observed in hepatic MMCs among groups of individuals from the four areas observed.

450,0 400,0 350,0

300,0

250,0

200,0 (MMCs) 150,0 100,0

Melanomacrophage centers Melanomacrophage 50,0 0,0 Area 1 Area 2 Area 3 Area 4 290

291 Fig.3. Boxplots showing melanomacrophage centers (MMCs) (c) for S. herzbergii and B.

292 bagre in the different areas sampled.

293

294 The most frequent hepatic lesions found in this study (> 70%) were lipid cells, hyperplasia,

295 hypertrophy, necrosis, atrophy, intercellular edema and melanomacrophage centers.

296 Hemorrhages, aneurysms, structural and nuclear alterations showed frequencies of

297 intermediate lesions (40-70%). While the other lesions, deposits, granuloma, neutrophilic

298 infiltration and leukocyte infiltrate showed the lowest frequencies (0 - 40%) (Table 3).

299

46

300

301

302

303

304

305 Table 3. Histopathological alterations identified in the liver of S. herzbergii and B. bagre of

306 each sampling point.

Reaction Sampling sites Alteration w pattern A1 A2 A3 A4

Circulatory Haemorrhage/Hiperaemia/Aneurysm 1 26.32 66.67 66.67 52.63 disturbances Intercellular edema 1 73.68 60.00 86.67 68.42 Strctural alerations 1 31.58 33.33 66.67 47.37 Lipidosis 1 78.95 86.67 93.33 57.89 Regressive Deposits 1 15.79 20.00 0.00 15.79 changes Nuclear alterations 2 21.05 13.33 66.67 36.84 Atrophy 2 36.84 60.00 80.00 57.89 Necrosis 3 68.42 66.67 93.33 73.68 Hipertrophy 1 63.16 73.33 86.67 52.63 Progressive Hiperplasia 2 84.21 100.00 93.33 57.89 changes Granulomatosis 2 36.84 13.33 26.67 15.79 Leukocyte infiltrate 2 10.53 13.33 20.00 26.32 Neutrophilic infiltration 1 10.53 20.00 0.00 0.00 Inflammation Melanomacrophages centres 1 94.74 93.33 93.33 89.47

307

308 Values givens as percentage (%). The importance factor (w) of each alteration. Reference area

309 for S. herzbergii (A1); impacted area (A2); contaminated area (A3). Reference area for B.

310 bagre (A4).

311

47

312 A large number of circulatory disorders, such as hemorrhaging and edema (Fig. 4D) were

313 identified in the four study areas; the A3 area demonstrated a greater amount of these lesions

314 while the A2 area found the lowest incidence.

315 Regarding regressive changes, changes including cell necrosis (Fig. 4E), autolysis (Fig. 4C),

316 and massive lipid cell presence (Fig. 4A) prevailed in the A3 area. Structural and nuclear

317 changes also prevailed in the same region.

318 With regard to progressive changes, the presence of hyperplasia lesions (Fig. 4H) was more

319 constant in the A2 region. A huge hypertrophy process in area A3 fish was also noted. The

320 presence of granuloma (Fig. 4F) prevailed in fish of area A1 and was less constant in fish of

321 area A2.

322 Among inflammatory processes, hepatic melanomacrophagous centers (Fig. 4G) were the

323 most frequent lesions compared to any other type of alteration identified. In all studied areas

324 (n = 115), hepatic MMCs (60%) were characterized as multiple structures dispersed through

325 the liver parenchyma. An increase in the number and size of these structures (> 100) was

326 identified in 11% of assessed fish, while the presence of some of these structures (< 30) was

327 observed in 21% of the investigated livers. Liver samples without MMCs were the case in

328 only 5% of the fish. A similar MMCs percentage distribution was noted for all the studied

329 areas. However, at specific sites where a large increase in the number of MMCs was observed

330 in a single liver sample, it was found in fish from areas A2 and A3.

331 An inflammatory response characterized by mononuclear leucocyte infiltration (Fig. 4B) was

332 identified in 26.32% of the fish in the A4 area. Similar responses were identified in the other

333 study areas, 20%, 13.33%, 10.53%, in areas A3, A2 and A1, respectively.

48

334 Tumors characterized as psamomatous bodies (Fig. 4C) were more common in area A2 and

335 A3 fish. As there was no mitosis or necrosis, it was not possible to indicate benignity. No

336 tumors were found in fish livers from areas A1 and A4.

337

49

338 Figure 4 Photomicrography (H&E) of histopathological liver changes. (a) Macrovesicular

339 steatosis (lipid cells). (b) Inflammatory response (leukocyte infiltrate). (c) Atrophy and tumor

340 (psamomatous body). (d) Aneurysms and edema. (e) Necrosis. (f) Granulomatosis. (g)

341 Melanomacrophage centers (MMCs). (h) Hyperplasia. The arrow () indicates the changes

342 found.

343 In relation to the gills, the main histological changes consisted of secondary lamella

344 deformity, partial fusion, total fusion, necrosis (regressive changes), hypertrophy and

345 hyperplasia (progressive changes) (table 4). It was also possible to observe parasite presence e

346 in more than 1/4 of the fish studied in area A2.

347 Table 4. Histopathological alterations identified in the gill of S. herzbergii and B. bagre of

348 each sampling point.

Reaction Sampling sites Alteration w pattern A1 A2 A3 A4

Haemorrhage/Hiperaemia/Aneurysm 1 47.37 66.67 46.67 45.00

Circulatory Profusion and dilation of blood 1 52.63 73.33 46.67 40.00 disturbances vessels Intercellular edema 1 42.11 26.67 33.33 20.00

Epithelial lifting 1 26.32 80.00 40.00 25.00

Regressive Deformation of lamellae 1 73.68 100.00 66.67 50.00 changes Partial lamellar fusion 1 78.95 100.00 73.33 60.00 Necrosis 3 5.26 100.00 53.33 40.00 Total lamellar fusion 1 63.16 80.00 66.67 55.00 Progressive Hipertrophy 1 78.95 93.33 66.67 55.00 changes Hiperplasia 2 73.68 100.00 66.67 55.00 Parasite 5.26 26.67 0.00 5.00

349

350 Values givens as percentage (%). The importance factor (w) of each alteration. Reference area

351 for S. herzbergii (A1); impacted area (A2); contaminated area (A3). Reference area for B.

352 bagre (A4).

50

353

354 Despite the large number of gill lesions of the studied fish, the normal gill structure was also

355 observed (Fig. 5A). The hyperplasia lesion was recorded in 100% of the specimens studied in

356 area A2 (Fig. 5B), as well as necrosis, partial fusion (Fig. 5C) and lamella disorganization

357 (Fig. 5D). Hypertrophy (Fig. 5E) also showed great representativeness in the four areas

358 studied. In relation to circulatory disorders, the epithelial lining (Fig. 5F) was more prevalent,

359 followed by venous sinus dilation and aneurysms (Fig. 5G). Parasite presence was observed

360 in some cases (fig 5H).

51

361

362 Figure 5 Photomicrography (H&E) of histological gill changes. (a) Normal gills. (b)

363 Hyperplasia. (c) Necrosis and partial fusion. (d) Secondary lamellae disorganization. (e)

364 Hypertrophy. (f) Epithelium raising. (g) Venous sinus dilation, total fusion and aneurysms.

365 (h) Parasites. The arrow () indicates the changes found.

366

52

367 3.5 Quantitative analysis and comparison of fish from each studied area

368 For hepatic reaction patterns, Irp1 (circulatory disorders) reaction had the highest average in

369 individuals in area A2 (126.50 ± 40.44), in March 2018 (rainy period). For this same reaction

370 pattern, individuals from the A3 area showed values of 71.60 ± 48.90, in May, 2018 (rainy

371 period). The lowest averages were found in the areas A4 (15.00 ± 0.00) and A1 (2.00 ± 0.71),

372 respectively. In relation to Irp2 (regression changes) pattern (104.50 ± 104.52), Irp 3

373 (progressive changes) (60.86 ± 63.32) and Irp4 (inflammation) (95.17 ± 149.58), the

374 specimens from area A2 also showed higher values than with other study areas.

375 Consequently, the liver index was significantly higher (91.48 ± 103.46) in A2 individuals than

376 the other specimens of areas A1, A4 and A3. However, the lowest organ index was also

377 measured in the same area (19.5 ± 15.87). These higher averages correspond to individuals

378 captured in March 2018 (rainy period) and the lowest ones in December 2017 (dry period).

379 The lowest average in the Irp2 reaction pattern (9.13 ± 7.32) was observed in individuals from

380 area A1, in December 2017 (drought period). The lowest average values of the Irp3 (14.69 ±

381 8.26) and Irp4 (13.25 ± 5.19) were analyzed in individuals from the A4 area, in March and

382 May 2018 (rainy period), respectively (Table 5).

383

384

385

386

387

388 Table 5. Liver index of S. herzbergii and B. bagre for each site and sampled period.

Sampling sites Month Reaction pattern of the Alteration Organ index

Reference site S. Irp1 Irp2 Irp3 Irp4 I Liver herzbergii (A1)

53

Dec/17 2.00 ± 0.71 9.13 ± 7.32 19.17 ± 13.96 56.60 ± 13.43 20.48 ± 20.86 Mar/18 16.80 ± 8.66 45.64 ± 47.88 26.29 ± 21.71 64.78 ± 67.27 38.48 ± 45.25 May/18 9.80 ± 18.38 20.89 ± 18.38 16.65 ± 7.40 102.2 ± 54.41 25.36 ± 34.02

Impacted site (A2)

Dec /17 28.00 ± 5.10 9.43 ± 4.95 19.89 ± 20.47 33.33 ± 2.62 19.5 ± 15.87 Mar/18 126.50 ± 40.44 104.50 ± 104.52 60.86 ± 63.32 95.17 ± 149.58 91.48 ± 103.46 May/18 68 ± 43.54 59.9 ± 58.25 40.19 ± 22.66 142.4 ± 108.19 63.39 ± 61.65 Cotaminated site (A3) Dec /17 2.00 ± 1.00 29.58 ± 28.15 19.43 ± 16.98 57.8 ± 27.26 27.88 ± 27.03 Mar/18 18.00 ± 10.00 20.53 ± 19.54 23.47 ± 13.49 32.6 ± 16.57 22.14 ± 16.04 May/18 71.60 ± 48.90 44.59 ± 41.96 30.12 ± 19.90 24.43 ± 17.11 42.29 ± 38.62 Reference site B. bagre (A4) Dec /17 15.00 ± 0.00 58.50 ± 36.47 22.44 ± 16.19 38.17 ± 17.60 38.08 ± 29.53 Mar/18 20.10 ± 12.26 55.71 ± 59.84 14.69 ± 8.26 18.8 ± 15.73 30.77 ± 41.15 May/18 26.12 ± 5.73 40.23 ± 41.37 22.58 ± 10.10 13.25 ± 5.19 27.05 ± 26.12 389

390 Values given as mean ( ) and standard deviation (± SD). Reaction pattern: Irp1: circulatory

391 disturbances; Irp2: regressive changes; Irp3: progressive changes; Irp4: Inflammation.

392

393 The reaction patterns of the most representative branchial lesions were circulatory disorders in

394 the A1 area. Fish collected in this area showed a higher index of the gill in September 2017

395 (dry period). The main lesions found in area A2 were progressive changes (Irp3) followed by

396 circulatory disorders (Irp1). Fish collected in December 2017 (drought period) showed a

397 higher index of the organ compared to the other specimens of all the research. For fish of area

398 A3, the progressive changes were more representative and the organ index was higher in the

399 rainy period (May 2018) in this region. Individuals in the A4 area showed a higher index of

400 lesions related to progressive changes and the organ index was higher in September 2017. The

401 gill index was significantly higher in individuals from area A2 than the other specimens from

402 areas A1 and A3 (Table 6).

403 Table 6. Gill index of S. herzbergii and B. bagre to each site and period of collection.

54

Sampling sites Month Reaction pattern of the alteration Organ index Reference site for rp1 rp2 rp3 I Gill S. herzbergii (A1) Sep /17 149.14 ± 297.57 59.00 ± 29.81 73.10 ± 86.92 86.57 ± 165.08 Dec/17 25.00 ± 32.47 12.71 ± 17.33 12.80 ± 11.14 14.24 ± 18.10 Mar/18 17.00 ± 3.00 12.93 ± 18.52 18.50 ± 12.80 15.04 ± 16.30 May/18 7.30 ± 3.29 13.00 ± 6.18 15.33 ± 17.46 12.40 ± 12.23 Impacted site (A2) Sep /17 9.75 ± 13.53 77.05 ± 202.14 34.64 ± 35.91 49.44 ± 141.94 Dec/17 277.83 ± 556.69 59.67 ± 72.01 632.66 ± 1080.34 299.15 ± 723.11 Mar/18 9.50 ± 8.50 16.86 ± 11.04 31.20 ± 35.20 20.93 ± 24.05 May/18 17.33 ± 10.09 11.42 ± 8.09 32.31 ± 28.12 19.34 ± 19.66 Contaminated site (A3) Sep /17

Dec/17 28.67 ± 21.72 81.29 ± 113.02 16.64 ± 11.93 36.07 ± 65.03 Mar/18 68.00 ± 76.52 15.93 ± 76.52 17.14 ± 11.28 26.27 ± 42.76 May/18 33.67 ± 67.24 12.60 ± 8.76 183.62 ± 477.66 81.71 ± 307.50 Reference site for B. bagre (A4) Sep /17 3.50 ± 1.50 9.00 ± 10.58 131.75 ± 100.01 73.73 ± 96.08 Dec/17 7.86 ± 4.64 23.71 ± 17.32 45.57 ± 36.00 28.84 ± 28.49 Mar/18 8.67 ± 5.79 7.33 ± 4.64 9.91 ± 4.68 9.24 ± 4.99 May/18 33.82 ± 90.53 9.21 ± 8.31 32.13 ± 31.86 22.97 ± 56.10 404

405 Values given as mean ( ) and standard deviation (± SD). Reaction pattern: Irp1: circulatory

406 disturbances; Irp2: regressive changes; Irp3: progressive changes; Irp4: Inflammation.

407

408 4. Discussion

409 In this study, the most frequent histological alterations in the liver were inflammatory

410 responses (MMCs), hyperplasia and cytoplasmatic vacuolization (lipid cells), which are

411 common responses of fish exposed to degraded aquatic environments. The macroscopic

412 appearance of nodules in tissue regions and the difference in staining between different organs

413 examined show that the liver holds a large amount of fat and this was evidenced by

55

414 microscopic and hepatocellular vacuolization results, characteristic of steatosis. The condition

415 factor of the fish from areas A1, A2 and A3 obtained similar average values.

416 A study carried out on the kidneys of Prochilodus lineatus showed positive correlation

417 between condition factor, water temperature at different periods and the number of

418 melanomacrotic centers (Balamurugan et al., 2012). Monitoring of fish hygiene conditions

419 through fluctuation of the condition factor due to environmental changes has already been

420 reported for feeding (Yan et al., 2015) and breeding cycles (Azevedo et al., 2017).

421 As with the condition factor, hepatosomatic index variation was similar between areas A1, A2

422 and A3 and differed from area A4. Comparing different area samples, the highest values of

423 HSI were measured in areas A1, A2 and A3. The association between effluent release and fish

424 liver size increase has been reported (Galloway et al., 2003) (Saravanan et al., 2011).

425 Phosphatic substances from sanitary effluents and fisheries can cause toxin production, such

426 as microcystins, which can accumulate in fish liver (Deblois et al., 2011) and cause cellular

427 changes. The high number of alterations such as hepatocyte hypertrophy may be related to the

428 toxin presence as a result of the eutrophication process, which is potentiated by the release of

429 high phosphororus levels in water bodies (Van Dyk et al., 2012). The presence of heavy

430 metals in the water, in divergence with the amount permitted under Brazilian legislation

431 (resolution 357/2005) (Conama, Brazil, 2005), has already been reported in the investigated

432 area, that is, in the lower course of the Santo Antônio river (Cantanhêde et al., 2016). A

433 methodology through microbiological analyses and enzymatic responses in bivalves also

434 indicated high levels of contamination in the same region and indicated a risk to human

435 consumption (Ribeiro et al., 2016).

436 Abiotic factors such as temperature, pH, conductivity and dissolved oxygen can change

437 species richness and fish assemblage, which can also be attributed to anthropogenic impacts

56

438 (Carvalho Neta et al., 2014). Similar studies in areas with the same characteristics as in this

439 study have shown lower GSI averages in catfish from potentially contaminated areas and

440 suggest that this decrease may result in abnormal gonad development, late maturation, high

441 levels of atresia and fish intersexuality (Carvalho- Neta and Abreu-Silva, 2010; Carvalho

442 Neta et al., 2014).

443 Similar to the biometric indices, results from microscopic analyses also showed differences

444 between the period and the different sites. Liver index was significantly high in area A2 and

445 high in area A3 compared to fish in areas A1 and A4. This pattern was identified by HSI

446 results as well as microscopy and macroscopic analyses' results. Fish livers from area A2 and

447 A3 were severely affected in terms of liver health, as evaluated in this study.

448 Histopathological results showed a clear and specific difference between the sites accessed,

449 reflecting the pollution level in these systems. Histological change variation associated with

450 the reaction pattern was identified, however, high prevalence of regressive changes in fish

451 suggests that most histological changes in fish from natural environments are regenerative

452 (Van Dyk et al., 2012).

453 The liver plays a number of essential functions for organisms, which increases the concern

454 with bioaccumulation and public health. Its functions include carbohydrate metabolism, lipid

455 storage, synthesis and fatty acid oxidation and glycogen storage, as well as being the main

456 detoxification center (Choi et al., 2018).

457 Inflammatory responses were constituted by macrophage infiltration of hepatic tissue, defense

458 cells with an important role in the immune response to foreign agents, whose function is to

459 remove, by phagocytosis, foreign particles derived from cellular degradation (Passantino et

460 al., 2014; Basilone et al., 2018). MMCs may increase in number and size depending on

461 environmental stress conditions and have been used as a water quality biomarker (Agius and

57

462 Roberts, 2003). A study with Micropterus salmoides showed a significant increase in the

463 number of MMCs in fish from an impacted area when compared to an uninfluenced area

464 (Blazer et al., 1987). In this study, hepatic melanomacrophages of S. herzbergii were observed

465 primarily close to blood vessels and involved in storage, relocation and recycling of iron

466 compounds from sterile or damaged venous red blood cells. The highest number of quantified

467 MMCs/mm² was detected in area A2 organisms and corresponded to the youngest subjects in

468 the study.

469 The number of lipid cells found in the liver of B. bagre was lower in relation to the other three

470 areas evaluated and the values for this same alteration were growing according to the level of

471 impact of the area, A1

472 anthropic pollution gradient observed at the collection sites (Cantanhêde et al., 2016), since

473 the concentration of xenobiotics in the environment increases the incidence of lesions suffered

474 by the liver (Ghisi et al., 2016).

475 Cellular vacuolization is harmful from the moment that cellular metabolism is altered as a

476 result of chemical stress, and may interfere with normal cellular functioning. These

477 substances can cause major damage, such as necrosis. In addition, the accumulation of lipids

478 in the vesicles constitutes a mechanism of cellular response when in the presence of lipophilic

479 chemical agents. In an attempt to immobilize these substances, it prevents their interaction

480 with the other cellular components and, in this case, minimizes its toxic effect (Olivares-

481 Rubio and Vega-López, 2016). These results indicate prolonged physiological disturbances

482 leading to glycogen depletion and lipid accumulation. The association of lipid cells with

483 MMCs has been observed in fish from regions contaminated with xenobiotic mixtures

484 (Triebskorn et al., 2008). Vacuolization and hepatocyte swelling are the most common lesions

485 for nitrogen compounds (dos Santos Silva et al., 2018).

58

486 Histological parameters are generally indicative of irreversible damage as they are involved in

487 high-level biological organization changes. An important impact of effluent exposure at the

488 histological level was observed in this study. The main histological gill changes were

489 hyperplasia, hypertrophy, partial fusion, total fusion and aneurysms. These lesions gradually

490 affect gill functions and are responses for acute and/or chronic exposure to a wide variety of

491 contaminants (Pérez et al., 2018).

492 Hyperplasia was characterized by increased cell proliferation, which may lead to melting

493 lamellae and, more rarely, filaments (Hinton et al., 1992). Lamellar fusions are results of

494 excessive epithelial cell proliferation in filaments and a natural defense mechanism to protect

495 lamellar epithelium from direct contact with toxic agents (Vigário and Sabóia-Morais, 2014).

496 Epithelial elevation, lamellar hyperplasia and fusion are changes resulting from a variety of

497 stressors, such as metals, ammonia, phenolic infections by microorganisms and even

498 ectoparasites (Hinton et al., 1992).

499 Aneurysms are usual results of pillar cell collapse and impairs vascularization integrity with

500 the high volume blood release that pulls the lamellar epithelium out (Hinton and Lauren,

501 1990). The high rate of apoptosis or necrosis found in area A2 fish may be related to potential

502 DNA damage caused by direct exposure to contaminants present in river water (Sales et al.,

503 2017). In teleosteal fish, a significant apoptosis increase has been used as an aquatic

504 environment biomarker after exposure to different types of xenobiotics known to damage

505 aquatic animals' liver and gills (Piechotta et al., 1999).

506 Cellular hypertrophy usually indicates cellular activity increase in and is a very common

507 morphological alteration related to gill damage, leading to epithelium thickening (Almeida

508 and de Oliveira Ribeiro, 2014). Cells respond to stress by adaptive changes that limit or repair

509 damage, preventing cell death (Mosser et al., 1997). Parasite presence, as verified in fish in

59

510 this research, is also dangerous for these animals' respiratory quality (Raine et al., 2017). This

511 may be related to immunodeficiency defense, acid-base problems and even osmoregulation

512 problems (Akaishi et al., 2004).

513 High histopathological index for the gill tissue in individuals from area A2 can be attributed

514 to animals' high exposure to xenobiotics that reach this place, suggesting that these substances

515 undergo an accumulation process there. In addition to the fishery effluents, this site receives

516 agrochemical waste and sewage effluents in natura from riverside communities. In addition,

517 no filtration processes were found for residues resulting from these anthropic activities, so

518 water quality is compromised. This is reflected in health conditions in animals' from this area.

519 In the lower course of the Santo Antônio River there is intense fishing activity (a large

520 number of boats that use fuel) followed by the extraction of shellfish (constantly revolving the

521 mud), in addition to the occupational process along the riverbanks and unrestrained

522 population growth, which seriously interferes with natural systems. There are also erosive

523 processes and leaching, which carry toxic materials into the waterways. The effects of

524 contaminants in the aquatic environment cause serious problems in gill tissues considering the

525 important functionalities of this organ in respiratory processes and osmotic and ionic

526 regulation, which could lead to individuals' deaths (Ghisi et al., 2016).

527 Despite histopathological assessment results, other factors such as pollution level, fish age

528 and sample size should be considered. In this study, fish were collected during the dry and

529 rainy periods. Histopathological differences were identified with seasonal variations. Age

530 determination samples were not performed. However, a macroscopic gonadal analysis was

531 performed and it was found that a large quantity of young fish from the area close to the

532 fishery (A2) showed a high quantity of MMCs in comparison to adult individuals from the A3

60

533 area. However, age determination is strongly recommended as part of a histological protocol

534 standard for assessing fish sanity levels.

535 Results of this study will be useful for monitoring and managing the health of fish

536 populations. It will allow specific liver and branchial lesion identification at a site and infer

537 regional similarities and/or patterns in terms of histological changes of the liver and gill. This

538 study provides a better understanding of health effects related to fish pollution by comparing

539 polluted and relatively natural systems and advances our understanding of the normal range of

540 liver and gill histology for S. herzbergii and B. bagre.

541 Santo Antônio River Basin administrators when making decisions about this body of water

542 should consider these results. Biomonitoring studies are fundamental for the development of

543 public policies that prioritize conservation. There is also a need for more effective inspections

544 of xenobiotic components entering the site and decreasing their environmental quality, which

545 compromises directly and indirectly dependent organisms' quality of life.

546

547 Conclusions

548 This study concluded that between the analyzed catfish species, the taxon Sciades herzbergii

549 is the most suitable for monitoring environmental impacts in transitional areas and estuarine

550 environments through histopathological gill assessment. This was confirmed by acute effects

551 suffered by gills and the high number of lesions demonstrated on individuals inhabiting the

552 potentially impacted area in comparison to the other areas studied.

553 High HSI, the low condition factor of fish in areas A2 and A3, and the high number of lesions

554 caused in the liver of S. herzbergii and their chronic effects prove that the species is a good

555 biomonitor for monitoring environmental impacts in areas of transition and estuarine

556 environments.

61

557

558 Acknowledgements

559 I would like to thank the employees of LABOAQ.

560

561 Funding

562 This work was supported by Maranhão State Research Foundation - FAPEMA (Fundação de

563 Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Estado do Maranhão)

564 (Grant number: BM-02175/17).

565

566 References

567 Agius, C., Roberts, R.J., 2003. Melano-macrophage centres and their role in fish pathology.

568 J. Fish Dis. https://doi.org/10.1046/j.1365-2761.2003.00485.x

569 Akaishi, F.M., de Assis, H.C.S., Jakobi, S.C.G., Eiras-Stofella, D.R., St-Jean, S.D.,

570 Courtenay, S.C., Lima, E.F., Wagener, a L.R., Scofield, a L., Ribeiro, C. a O., 2004.

571 Morphological and neurotoxicological findings in tropical freshwater fish (Astyanax

572 sp.) after waterborne and acute exposure to water soluble fraction (WSF) of crude

573 oil. Arch. Environ. Contam. Toxicol. https://doi.org/10.1007/s00244-003-2260-1

574 Almeida, E.A. De, de Oliveira Ribeiro, C.A., 2014. Pollution and Fish Health in

575 Tropical Ecosystems, Pollution and Fish Health in Tropical Ecosystems.

576 Au, D.W.T., 2004. The application of histo-cytopathological biomarkers in marine pollution

577 monitoring: A review. Mar. Pollut. Bull.

578 https://doi.org/10.1016/j.marpolbul.2004.02.032

62

579 Azevedo, J.W. de J., de Castro, A.C.L., Silva, M.H.L., 2017. Length-weight relation,

580 condition factor and gonadosomatic index of the whitemouth croaker,

581 Micropogonias furnieri (Desmarest, 1823) (: Sciaenidae), caught in

582 Lençóis Bay, state of Maranhão, eastern Amazon, Brazil. Brazilian J. Oceanogr. 65,

583 1–8. https://doi.org/10.1590/S1679-87592017110506501

584 Balamurugan, S., Deivasigamani, B., Kumaran, S., Sakthivel, M., Rajsekar, T.,

585 Priyadharsini, P., 2012. Melanomacrophage centers aggregation in P. lineatus spleen

586 as bio-indicator of environmental change. Asian Pacific J. Trop. Dis.

587 https://doi.org/10.1016/S2222- 1808(12)60235-7

588 Basilone, G., Gargano, A., Corriero, A., Zupa, R., Santamaria, N., Mangano, S., Ferreri,

589 R., Pulizzi, M., Mazzola, S., Bonanno, A., Passantino, L., 2018. Liver

590 melanomacrophage centres and CYP1A expression as response biomarkers to

591 environmental pollution in European anchovy (Engraulis encrasicolus) from the

592 western Mediterranean Sea. Mar. Pollut. Bull.

593 https://doi.org/10.1016/j.marpolbul.2018.04.028

594 Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P., Wahli, T., 1999. Histopathology

595 in fish: Proposal for a protocol to assess aquatic pollution. J. Fish Dis. 22, 25–34.

596 https://doi.org/10.1046/j.1365-2761.1999.00134.x

597 Blazer, V.S., Wolke, R.E., Brown, J., Powell, C.A., 1987. Piscine macrophage aggregate

598 parameters as health monitors: effect of age, sex, relative weight, season and site

599 quality in largemouth bass (Micropterus salmoides). Aquat. Toxicol.

600 https://doi.org/10.1016/0166-445X(87)90012-9

601 Brasil - Ministério do Meio Ambiente - Conselho Nacional do Meio Ambiente (2005).

602 Resolução n° 357, de 17 de março de 2005. Diário Oficial Da União, Brasília.

63

603 http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459 (accessed 05 August

604 2018).

605 Brown-Peterson, N.J., Wyanski, D.M., Saborido-Rey, F., Macewicz, B.J., Lowerre-

606 Barbieri, S.K., 2011. A Standardized Terminology for Describing Reproductive

607 Development in Fishes. Mar. Coast. Fish. 3, 52–70.

608 https://doi.org/10.1080/19425120.2011.555724

609 Cantanhêde, S.M., da Silva Castro, G., Pereira, N.J., de Pinho Campos, J.S., da Silva, J.,

610 Tchaicka, L., Neta, R.N.F.C., de Souza Torres, J.R., Santos, D.M.S., 2016.

611 Evaluation of environmental quality of two estuaries in Ilha do Maranhão, Brazil,

612 using histological and genotoxic biomarkers in Centropomus undecimalis (Pisces,

613 Centropomidae). Environ. Sci. Pollut. Res. 23, 21058–21069.

614 https://doi.org/10.1007/s11356-016-7294-9

615 Cantanhêde, S.M., Medeiros, A.M., Ferreira, F.S., Ferreira, J.R.C., Alves, L.M.C., Cutrim,

616 M.V.J., Santos, D.M.S., 2014. Uso de biomarcador histopatológico em brânquias de

617 Centropomus undecimalis (Bloch, 1972) na avaliação da qualidade da água do

618 Parque Ecológico Laguna da Jansen, São Luís-MA. Arq. Bras. Med. Vet. e Zootec.

619 66, 593–601. https://doi.org/10.1590/1678-41626348

620 Carvalho Neta, R.N.F., Sousa, D.B.P., de Almeida, Z. da S., Santos, D.M.S., Tchaicka,

621 L., 2014. A histopathological and biometric comparison between catfish (Pisces,

622 Ariidae) from a harbor and a protected area, Brazil. Aquat. Biosyst. 10, 12.

623 https://doi.org/10.1186/s12999-014-0012-5

624 Carvalho-Neta, R.N.F., Abreu-Silva, A.L., 2010. Sciades herzbergii oxidative stress

625 biomarkers: An in situ study of an estuarine ecosystem (S??o Marcos‟ Bay,

64

626 Maranh??o, Brazil). Brazilian J. Oceanogr. 58, 11–17.

627 https://doi.org/10.1590/S167987592010000800003

628 Carvalho-Neta, R.N.F., Abreu-Silva, A.L., 2013. Glutathione S-Transferase as biomarker

629 in Sciades herzbergii (Siluriformes: Ariidae) for environmental monitoring: the

630 case study of São Marcos Bay, Maranhão, Brazil. Lat. Am. J. Aquat. 41, 217–225.

631 https://doi.org/10.3856/vol41-issue2-fulltext-2

632 Carvalho-Neta, R.N.F., Torres, A.R., Abreu-Silva, A.L., 2012. Biomarkers in catfish

633 Sciades herzbergii (teleostei: ariidae) from polluted and non-polluted areas (São

634 Marcos‟ Bay, Northeastern Brazil). Appl. Biochem. Biotechnol. 166, 1314–1327.

635 https://doi.org/10.1007/s12010-011-9519-1

636 Choi, E., Alsop, D., Wilson, J.Y., 2018. The effects of chronic acetaminophen exposure

637 on the kidney, gill and liver in rainbow trout (Oncorhynchus mykiss). Aquat.

638 Toxicol. https://doi.org/10.1016/j.aquatox.2018.02.007

639 Cobea (2018). Proteção e Bem Estar de Animais de Laboratório. Availabl in:

640 (accessed in 17 May 2018).

641 Deblois, C.P., Giani, A., Bird, D.F., 2011. Experimental model of microcystin

642 accumulation in the liver of Oreochromis niloticus exposed subchronically to a

643 toxic bloom of Microcystis sp. Aquat. Toxicol.

644 https://doi.org/10.1016/j.aquatox.2011.02.006

645 Dos Santos Silva, M.J., da Costa, F.F.B., Leme, F.P., Takata, R., Costa, D.C., Mattioli,

646 C.C., Luz, R.K., Miranda-Filho, K.C., 2018. Biological responses of Neotropical

647 freshwater fish Lophiosilurus alexandri exposed to ammonia and nitrite. Sci. Total

648 Environ. https://doi.org/10.1016/j.scitotenv.2017.10.157

65

649 Facey, D.E., Blazer, V.S., Gasper, M.M., Turcotte, C.L., 2005. Using fish biomarkers

650 to monitor improvements in environmental quality. J. Aquat. Anim. Health.

651 https://doi.org/10.1577/H04-055.1

652 FAO, 2018. The State of World Fisheries and Aquaculture Meeting the

653 Sustainable Development Goals, Food and Agriculture Organization of the

654 United Nations. https://doi.org/10.1364/OE.17.003331

655 Galloway, B.J., Munkittrick, K.R., Currie, S., Gray, M.A., Curry, R.A., Wood,

656 C.S., 2003.Examination of the responses of slimy sculpin (Cottus cognatus)

657 and white sucker (Catostomus commersoni) collected on the saint john

658 river (Canada) downstream of pulp mill, paper mill, and sewage

659 discharges. Environ. Toxicol. Chem. https://doi.org/10.1897/02-181

660 Garcia-Santos, S., Monteiro, S.M., Carrola, J., Fontainhas-Fernandes, A., 2007.

661 Alterações histológicas em brânquias de tilápia nilotica Oreochromis

662 niloticus causadas pelo cádmio. Arq. Bras. Med. Vet. e Zootec.

663 https://doi.org/10.1590/S0102- 09352007000200017

664 Ghisi, N.C., Oliveira, E.C., Mendonça Mota, T.F., Vanzetto, G. V., Roque, A.A., Godinho,

665 J.P., Bettim, F.L., Silva de Assis, H.C. da, Prioli, A.J., 2016. Integrated biomarker

666 response in catfish Hypostomus ancistroides by multivariate analysis in the Pirapó

667 River, southern Brazil. Chemosphere 161, 69–79.

668 https://doi.org/10.1016/j.chemosphere.2016.06.113

669 Hinton, D.E., Lauren, D.J., 1990. Liver structural alterations accompanying chronic

670 toxicity in fishes: potential biomarkers of exposure. In: McCarthy, J.F., Shugart,

671 L.R. (Eds.), Biomarkers of Environmental Contamination. CRC Press, Boca Raton,

672 USA, pp. 17-57.

66

673 Hinton, E.D., Baumann, P.C., Gardner, G.R., Hawkins, W.E., D., J.H., Murchelano, J.D.,

674 Okihiro, M.S., 1992. Histopathological biomarkers. In: Al, H.et (Ed.), Biomarkers,

675 Biochemical, Physiological and Histological Markers of Anthropogenic Stress. Lewis

676 Publishers, London, pp. 155-189.

677 IBGE, 2016. Prod. Pec. munic., Rio de Janeiro, v. 44, p.1-51,

678 2016.https://biblioteca.ibge.gov.br/visualizacao/periodicos/84/ppm_2016_v44_br

679 .pdf (accessed 24/08/2018).

680 Mosser, D.D., Caron, a W., Bourget, L., Denis-Larose, C., Massie, B., 1997. Role of the

681 human heat shock protein hsp70 in protection against stress-induced apoptosis.

682 Mol. Cell. Biol. https://doi.org/10.1128/MCB.17.9.5317

683 Olivares-Rubio, H.F., Vega-López, A., 2016. Fatty acid metabolism in fish species as

684 a biomarker for environmental monitoring. Environ. Pollut. 218, 297–312.

685 https://doi.org/10.1016/j.envpol.2016.07.005

686 Olurin, K.B., Mbaka, G.O., Agbato, O.A., 2016. Histopathological effect of sublethal

687 concentration of aluminum phosphide (phostoxin) on Clarias gariepinus

688 juveniles. Pesqui. Vet. Bras. 36, 574–580. https://doi.org/10.1590/S0100-

689 736X2016000700002

690 Passantino, L., Santamaria, N., Zupa, R., Pousis, C., Garofalo, R., Cianciotta, A., Jirillo, E.,

691 Acone, F., Corriero, A., 2014. Liver melanomacrophage centres as indicators of

692 Atlantic bluefin tuna, Thunnus thynnus L. well-being. J. Fish Dis. 37, 241–250.

693 https://doi.org/10.1111/jfd.12102

694 Pérez, M.R., Rossi, A.S., Bacchetta, C., Elorriaga, Y., Carriquiriborde, P., Cazenave, J.,

695 2018. In situ evaluation of the toxicological impact of a wastewater effluent on the

67

696 fish Prochilodus lineatus: biochemical and histological assessment. Ecol. Indic.

697 https://doi.org/10.1016/j.ecolind.2017.09.004

698 Piechotta, G., Lacorn, M., Lang, T., Kammann, U., Simat, T., Jenke, H.S., Steinhart, H.,

699 1999. Apoptosis in dab (Limanda limanda) as possible new biomarker for

700 anthropogenic stress. Ecotoxicol. Environ. Saf.

701 https://doi.org/10.1006/eesa.1998.1725

702 Raine, J.C., Pietrock, M., Willner, K., Chung, K., Turcotte, D., Parrott, J.L.,

703 2017.Parasitological Analysis and Gill Histopathology of Pearl Dace (Semotilus

704 Margarita) and Brook Stickleback (Culaea Inconstans) Collected from the Athabasca

705 Oil Sands Area (Canada). Bull. Environ. Contam. Toxicol.

706 https://doi.org/10.1007/s00128-017- 2078-6

707 Ribeiro, E.B., Bastos, L.S., Galeno, L.S., Mendes, R.S., Garino, F., Carvalho-Neta,

708 R.N.F., Costa, F.N., 2016. Integrated assessment of biomarker responses and

709 microbiological analysis of oysters from São Luís Island, Brazil. Mar. Pollut.

710 Bull. 113, 182–186. https://doi.org/10.1016/j.marpolbul.2016.09.013

711 Ryan, P.D., Hammer, Ø., Harper, D.A., 2001. PAST: PALEONTOLOGICAL STATISTICS

712 SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS.

713 Palaeontol. Electron. 178kb. T. Harper. Geol. Museum.

714 https://doi.org/10.1016/j.bcp.2008.05.025

715 Sales, C.F., Santos, K.P.E. dos, Rizzo, E., Ribeiro, R.I.M. de A., Santos, H.B. dos, Thomé,

716 R.G., 2017. Proliferation, survival and cell death in fish gills remodeling: From

717 injury to recovery. Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2017.07.001

718 Saravanan, M., Prabhu Kumar, K., Ramesh, M., 2011. Haematological and biochemical

719 responses of freshwater teleost fish Cyprinus carpio (Actinopterygii:

68

720 Cypriniformes) during acute and chronic sublethal exposure to lindane. Pestic.

721 Biochem. Physiol. https://doi.org/10.1016/j.pestbp.2011.04.002

722 Sardi, A.E., Renaud, P.E., da Cunha Lana, P., Camus, L., 2016. Baseline levels of

723 oxidative stress biomarkers in species from a subtropical estuarine system

724 (Paranaguá Bay, southern Brazil). Mar. Pollut. Bull.

725 https://doi.org/10.1016/j.marpolbul.2016.08.014

726 Sousa, D.B.P., Almeida, Z. da S. de, Carvalho-Neta, R.N.F., 2013. Integrated analysis of

727 two biomarkers in Sciades herzbergii ( Ariidae , Siluriformes ), to assess the

728 environmental impact at São Marcos ‟ Bay, Maranhao, Brazil. Lat. Am. J. Aquat.

729 Res. 41, 305–312. https://doi.org/10.3856/vol41-issue2-fulltext-9

730 Sousa, D.B.P., Almeida, Z.S., Carvalho-Neta, R.N.F., 2013. Biomarcadores histológicos

731 em duas espécies de bagres estuarinos da Costa Maranhense, Brasil. Arq. Bras.

732 Med. Vet. e Zootec. 65, 369–376. https://doi.org/10.1590/S0102-

733 09352013000200011

734 Triebskorn, R., Telcean, I., Casper, H., Farkas, A., Sandu, C., Stan, G., Colârescu, O.,

735 Dori, T., Köhler, H.R., 2008. Monitoring pollution in River Mureş, Romania, part

736 II: Metal accumulation and histopathology in fish. Environ. Monit. Assess.

737 https://doi.org/10.1007/s10661-007-9886-9

738 Van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and

739 biomarkers in environmental risk assessment: A review. Environ. Toxicol.

740 Pharmacol. https://doi.org/10.1016/S1382-6689(02)00126-6

741 Van Dyk, J.C., Cochrane, M.J., Wagenaar, G.M., 2012. Liver histopathology of the

742 sharptooth catfish Clarias gariepinus as a biomarker of aquatic pollution.

743 Chemosphere 87, 301–311. https://doi.org/10.1016/j.chemosphere.2011.12.002

69

744 Vazzoler, A. E. M. Biologia e reprodução de peixes teleósteos: teoria e prática. Maringá:

745 Eduem Press, 1996, 169 p.

746 Vigário, A.F., Sabóia-Morais, S.M.T., 2014. Effects of the 2,4-D herbicide on gills

747 epithelia and liver of the fish Poecilia vivipara. Pesqui. Vet. Bras.

748 https://doi.org/10.1590/S0100- 736X2014000600005

749 Vrana, B., Allan, I.J., Greenwood, R., Mills, G.A., Dominiak, E., Svensson, K., Knutsson,

750 J., Morrison, G., 2005. Passive sampling techniques for monitoring pollutants in

751 water. TrAC - Trends Anal. Chem. https://doi.org/10.1016/j.trac.2005.06.006

752 Yan, G.J., He, X.K., Cao, Z.D., Fu, S.J., 2015. Effects of fasting and feeding on the fast-

753 start swimming performance of southern catfish Silurus meridionalis. J. Fish Biol.

754 https://doi.org/10.1111/jfb.12595

755 Zhang, H., Pan, L., Tao, Y., 2014. Toxicity assessment of environmental pollutant

756 phenanthrene in clam Venerupis philippinarum using oxidative stress biomarkers.

757 Environ. Toxicol. Pharmacol. 37, 697–704.

758 https://doi.org/10.1016/j.etap.2014.01.018

70

1 Article 2: Aggregation of hepatic melanomacrophage centers in S. herzbergii (Pisces,

2 Ariidae) as indicators of environmental change and well-being

3 Este artigo será submetido à revista Chemosphere. ISSN: 0045-6535. Fator de impacto: 4.427.

4 Qualis A1 (2018) para a área Zoologia/Recursos pesqueiros.

5 Hellon Cunha Viana a, Simone Karla Lima e Silva b, Marianna Basso Jorge c, Débora Martins

6 Silva Santos d, Raimunda Nonata Fortes Carvalho Neta d.

7 a Master Student in Aquatic Resources and Fisheries (PPGRAP) by State University of

8 Maranhão (UEMA), Campus Paulo VI, São Luis, Maranhão, Brazil.

9 b Master in Biodiversity and Conservation by Federal University of Maranhão (UFMA), São

10 Luis, Maranhão, Brazil.

11 c Department of Oceanography and Limnology, Federal University of Maranhão (UFMA),

12 São Luis, Maranhão, Brazil.

13 d Department of Chemistry and Biology, State University of Maranhão (UEMA), Campus

14 Paulo VI, São Luis, Maranhão, Brazil.

15 Corresponding author: Hellon Cunha Viana¹. Email: [email protected], phonenumber:

16 +55 98 983109904

17 „Declarations of interests: none‟

18

19

20

21

71

22 Abstract

23 Melanomacrophage centers (MMCs) in fish liver is an indicator of environmental and stress

24 condition because they are involved in xenobiotic biotransformation. This project aimed to

25 assess the MMC number in the liver of young and adult Sciades herzbergii individuals from

26 areas with different contamination levels. Fish were captures at three points (reference point -

27 A1, potentially impacted point - A2 and contaminated point - A3), using cages (manzuá)

28 during receding tide in São José bay (Maranhão, Brazil), in four samplings. Livers were

29 immediately dissected and the samples underwent the basic histology procedure. 5μm

30 sections were stained with hematoxylin-eosin. Results indicated that the livers from adult

31 individuals in area A2 (260.50 ± 161.50 MMCs/mm²) had a higher number of MMCs when

32 compared to adult individuals in the A3 area (60.00 ± 30.10 MMCs/mm²). Young individuals

33 showed considerable values at points A1 (100.00 ± 0.00) and A2 (95.33 ± 33.00), compared

34 to young at point A3 (49.00 ± 0.00). These high values are unexpected for young individuals.

35 The average MMC number showed a correlation with the more intense rainy period. The

36 variation in the number of melanomacrophage centers for monitoring fish healthiness

37 conditions was shown to be a good environmental change indicator. The use of hepatic

38 MMCs as a biomarker for exposure to environmental pollutants, in particular material from

39 fishery systems, such as ammonia and nitrite, is confirmed by this study.

40 Keywords: Biomonitoring, Biomarker, Sciades herzbergii, melanomacrophage center.

41

42

43

44

72

45 1. Introduction

46 Melanomacrophage centers (MMCs) consist of macrophages, such as phagocytic cells and

47 fragments, mainly erythrocytes and pigments, such as melanin, hemosiderin and lipofuscin,

48 located in the reticuloendothelial liver tissue, kidney and pancreas (Agius and Roberts, 2003).

49 MMCs are found in several vertebrates such as reptiles (Johnson et al., 1999; Domiciano et

50 al., 2017) amphibians (Franco-Belussi et al., 2013, Franco-Belussi and de Oliveira, 2016, Wu

51 et al., 2017) and fish (Mela et al., 2013; Sales et al., 2017). The number of melanomacrophage

52 centers, their size and distribution varies according to species, organ, age, nutritional level and

53 stress conditions (Fishelson, 2006). The function of the MMCs is to destroy, detoxify or

54 recycle foreign materials (Van der Oost et al., 2003).

55 Fish liver is considered a good indicator for environmental condition, stress condition, since it

56 controls several vital functions in these animals' physiology, both in anabolism and

57 catabolism, and xenobiotic metabolism (Passantino et al., 2014). In this context, liver

58 histopathology can be used as an appropriate methodology for the detection of fish exposure

59 to various environmental organic pollutants (ammonia, nitrite) (Faccioli et al., 2014).

60 Sciades herzbergii is a species of catfish distributed on the South American continent, the

61 Caribbean, Atlantic rivers and estuaries from Colombia to Brazil (Marceniuk, 2005). Adults

62 of this species occur in estuaries with turbid waters, mangroves, low river courses, tolerate

63 salinity changes and are found in shallow coastal regions (da Silva et al., 2016). Its fishing is

64 carried out mainly by small-scale and subsistence fishing communities. Due to low cost in

65 markets and fairs, its fishing is intense and occurs all year round at São Luis Island river

66 mouths.

67 Next to these areas is the low course of the Santo Antônio River, where a massive fishery

68 network is settling up and launching effluents without any previous treatment, in areas where

73

69 heavy fishing takes place. Concern increases in the rainy period when fishery water is

70 constantly drained, preventing collapse or exceeding the acceptable water level. There are

71 some studies with this species in aquatic contamination biomonitoring programs in nearby

72 and similar regions (Carvalho-Neta et al., 2012; Débora Batista Pinheiro Sousa et al., 2013;

73 DBP Sousa et al., 2013; Carvalho-Neta et al., 2014). However, the approach based on MMCs

74 in S. herzbergii liver to evaluate anthropic impact is unknown in the state of Maranhão. This

75 work aimed to validate hepatic MMCs in S. herzbergii as biomarkers environmental pollutant

76 exposure, in particular fishery effluents in São José Bay (Maranhão, Brazil).

77

78 2. Materials and Methods

79 2.1 Study area

80 Four collections were carried out, (1st - September 2017, 2nd - December 2017, 3rd - March

81 2018 and 4th - May 2018). S. herzbergii samples were collected at three sampling points

82 between the Santo Antônio River mouth and São José Bay. The most distant area of the coast

83 was considered as a reference point (A1 - 2°27'47.58 "S 44° 2'45.42"W), because it has

84 theoretically less contact with domestic effluents discharged into the water bodies. A second

85 area was considered the impacted point (A2 - 2° 29'36.54 "S 44° 3'34.38" W), located in the

86 channel of the Santo Antônio river, near the stream that receives fishery effluents. In addition,

87 a third point, located at Port of Viera, in São José de Ribamar, was considered a contaminated

88 point (A3 - 2° 33'18.36 "S 44° 3'10.02" W), as domestic effluent discharge without any

89 treatment in their waters has been verified over years (Fig. 1). Shipments left the Port of Pau

90 Deitado and the boat used was a motorized biana.

74

91

92 Figure 1 Geographic location of sampling points. A1 – reference, A2 – impacted and A3 –

93 contaminated.

94

95 2.2 Licensing and ethics declaration

96 The capture of fish was authorized by the Ethics Committee of Maranhão State University

97 (number 064/2017-2018 CRMV-MA) and met the guidelines of the Brazilian College for

98 Animal Experimentation (SBCAL/COBEA, 2018).

99

100 2.3 Tissue Processing and Histopathology

101 For basic histological analysis and MMC identification, the fish were dissected and liver

102 samples were set 10% formaldehyde, subsequently dehydrated in increasing alcohol

103 concentrations and embedded in paraffin. Liver sections of liver (5 μm) were stained with

75

104 hematoxylin-eosin (H&E) (Merck) for liver structure description and slide reading was done

105 with the aid of light microscopy (ZEISS). Evisceration was performed for macroscopic

106 identification of maturational stages, where: I - Immature, II - In development, III - Able to

107 spawn, IV - Regression and V - Regeneration (Brown-Peterson et al., 2011).

108

109 2.4 Melanomacrophage Center Quantification (MMCs)

110 A quantitative analysis of MMC aggregation was performed on hepatic tissue sections of the

111 fish. Each digital field was photographed using Zen Imaging Axiovision 4.8 software

112 mounted on the optical microscope with the 4X, 10X and 40X lenses. MMC aggregation was

113 identified through image analysis in the ImageJ software and randomly quantified the number

114 of MMCs per mm2. Each section was removed from the liver's central region and it was

115 possible to measure the whole organ.

116

117 2.5 Condition factor

118 Condition factor (K) is a quantitative indicator of the individual‟s degree of healthiness or

119 well-being. It is used to indicate variations in population density and food conditions. The

120 value reflects recent nutritional conditions and/or reserve expenditures on metabolic activities,

121 allowing relationships with environmental conditions and species' behavioral aspects

122 (Vazzoler, 1996).

123 K was estimated for each individual and their average obtained for each period, according to

124 the expression: K = Wt/Ltb x 100, where: Wt = total weight, Lt = total length and b =

125 weight/length angular coefficient.

126

76

127 2.6 Statistical analysis

128 The average number of MMC/mm2 was compared between sites using the Kruskal-Wallis

129 test. For variables with a significant test result, comparisons between pairs among different

130 sites were made using the non-parametric Mann-Whitney U test, controlling Type I error

131 between tests by Bonferroni adjustment. Statistical differences were considered significant

132 when p <0.05. Data was checked for normality using the Kolmogorov-Smirnov or Shapiro-

133 Wilk tests. Statistical analyses were performed using the software PAlaeontological STatistics

134 (PAST), version 1.0.0.0 (Ryan et al., 2001) and statistical significance was accepted for p ≤

135 0.05. Results were expressed by average and standard error. An ANOVA and Tukey test were

136 performed for different sampled sites and condition factor.

137

138 3. Results

139 A total of 73 individuals (12 young and 10 adults at point A1, 16 young and 4 adults at point

140 A2 and 7 young and 24 adults at point A3) were collected. Young and adults in the A1 area

141 showed a similar percentage in relation to the number of specimens, with a slight numerical

142 advantage compared to the young. In relation to area A2, the difference reached 80% in

143 relation to young and 20% of adults. In the A3 area, the adult presence (77%) predominated in

144 relation to young people (23%) (Table 1). Adult fish at point A1 were the largest on average

145 total length, both young (28.01 ± 3.05) and adults (36.95 ± 2.43). The adults at point A2 had

146 an average length of 31.28 ± 2.72 and young presented the lowest total length averages (26.01

147 ± 8.92) of the entire collection. At point A3, average adult length was 29.94 ± 4.02 and young

148 26.76 ± 2.27.

149

150

77

151 Table 1. Average length and percentage of young and adults of S. herzbergii from different

152 sampled locations.

MATURATIONAL STAGES (%) TOTAL GROUP SITES T. LENGTH (cm) I II III IV V (%) YOUNG A1 28.01 ± 3.05 41 14 55

ADULT A1 36.95 ± 2.43 36 9 - 45

YOUNG A2 26.01 ± 8.92 45 35 80

ADULT A2 31.28 ± 2.72 20 20

YOUNG A3 26.76 ± 2.27 16 7 23

ADULT A3 29.94 ± 4.02 35 32 10 77 153

154 Values givens as mean ( ) and standard deviation (±SD). Reference area (A1); impacted area

155 (A2); contaminated area (A3). Maturational stages: I - Immature, II - In development, III -

156 Able to spawn, IV - Regression and V – Regeneration.

157

158 3.1 Histopathology

159 Histological appearance of the normal liver of S. herzbergii is shown in Fig. 2E, Fig. 2F.

160 Hepatic parenchyma is composed of the central lobular vein (CLV) surrounded by hepatocyte

161 cords and sinusoid capillaries. The hepatocyte presented a polygonal shape with a spherical

162 and centralized nucleus (Passantino et al., 2014). The hepatic parenchyma was homogenous

163 with hepatocytes of polygonal forms containing a spherical nucleus; hepatic cytoplasm

164 showed to be weakly basophilic and with presence of lipid cells in small and large vacuoles

165 (Fig. 2A). Hepatocytes were organized as branched and anastomosed cords arrayed by

166 sinusoid networks. The melanomacrophage centers in the hepatic parenchyma, which are

167 composed of cell and pigment aggregation, contain iron ions, lipofuscin and ceroids (Fig. 2B).

168 Aadipose metaplasia and tumor presence was also observed, as there was no sign of mitosis or

169 necrosis, it was not possible to indicate benignity, this psamomatous body was found in

170 hepatopancreas tissue (Fig. 2C). The hepatopancreas are the main digestive enzyme supply

78

171 sites, which in carnivorous fish, have higher lipase activity when compared to omnivorous

172 and herbivorous species. On the other hand, bile, secreted by hepatocytes, can enter the

173 proximal part of the intestine or be stored in the gallbladder, with the function of facilitating

174 digestion and absorption of lipids and lipophilic substances, such as fat soluble vitamins (A,

175 D, E and K) (Arantes et al., 2016). Hepatocytes were thus observed in the bile duct

176 epithelium, both in young and adult individuals (Fig. 2D).

177

79

178 Figure 2 Photomicrograph of the liver of S. herzbergii sampled at three different points of the

179 São José bay - MA. (A) H&E staining of a section of the liver showing lipid components. (B)

180 Melanomacrophage center presence. (C) Lipid cells, psamomatous body in hepatopancreas

181 tissue and MMCs. (D) antibodies surrounding the hepatocyte cytoplasm as well as the bile

182 duct epithelium. (E, F) The histological appearance of normal liver. Asterisk:

183 melanomacrophage center; m: macrophages; lp: lipid cells; s: sinusoids; pb: psamomatous

184 body; bd: bile duct.

185

186 3.2 MMC quantitative analysis

187 The number of melanomacrophage centers (MMCs/mm²) in young and adult S. herzbergii

188 livers at three capture sites (Fig. 3). The MMC number was significantly low in livers of area

189 youth A3 (P< 0.05) compared to youth from areas A2 and A1.

1200

1000

800

600

(µm²mm²) 400

200 Melanomacrophage centers Melanomacrophage 0 Reference Impacted Contaminated Young Adult 190

191 Figure 3 Number of melanomacrophage centers (MMCs/mm²) (standard error) in young and

192 adult S. herzbergii livers at the three capture sites. Asterisk (*) indicates a significant statistic

193 difference comparing the reference and impacted areas.

194

80

195 3.3 Condition factor and melanomacrophage centers

196 The S. herzbergii condition factor ranged from 1.0387 to 0.9672 for area A1 (Fig. 4B). K

197 ranged from 1.0432 to 0.9700 in area A2 (Fig. 4D) and decreased from 1.0433 to 0.9800 in

198 area A3 (Fig. 4F). The ANOVA did not show significant values for the different sampling

199 points and the fish condition factor. The condition factor of each fish was examined and the

200 monthly average indicated that in at least two different times of the year, fish were in good

201 condition. A total of 5-8 fish were randomly selected for histological analyses at each point

202 and each season. The melanomacrophage center aggregation was lower in adults from area

203 A3 (30.50 ± 12.60 MMCs/mm²) in May 2018 (Fig. 4E) and higher in area A2 adults (260.50

204 ± 161.50 MMCs/ mm²) in March 2018 (Fig. 4C). In young individuals, a greater

205 quantification of melanomacrophage centers was observed in areas A1 (100.00 ± 0.00) (Fig.

206 4A) and A2 (95.33 ± 33.00) (Fig. 4C), in March and May 2018, respectively. Observations of

207 the average number of MMC aggregates showed a difference in the periods sampled for areas

208 A1 and A2, showing correlation with the period of more intense rains. For area A3, the

209 average number of MMCs showed constancy throughout the sampled period.

81

210

211 Figure 4 Number of melanomacrophage centers (MMCs/mm²) during the sample period.

212

213 4. Discussion

214 The large amount of MMCs between young and adult individuals indicates that the

215 aggregation of hepatic melanomacrophage centers in S. herzbergii can be used as an indicator

216 for environmental change and well-being. This strong proliferation of MMCs in young

217 individuals caught in areas close to fisheries (A2) may indicate damage to organisms' health

218 status because of a higher degree of environmental contamination.

219 Histological analysis of the liver of S. herzbergii allowed the identification of both free and

220 grouped melanomacrophages, mainly near blood vessels. The data found in this study

82

221 confirms and amplifies available information about fish MMCs of fish that are considered

222 catabolism residues of several compounds (Ribeiro et al., 2011). Lipofuscin and ceroid are

223 consecutive products of the same oxidation process, derived from a cell membrane rupture or

224 lipid metabolism rupture, and increase with age. These pigments can accumulate in fish

225 exhibiting a wide variety of pathological conditions, including nutritional deficiencies,

226 bacterial and viral diseases, and disorders caused by toxic material (Agius, 1979). Stress itself

227 can increase macrophage-like cells and increase red cell degradation (Peters and Schwarzer,

228 1985). Therefore, in the presence of environmental pollution, which may be responsible for

229 increased cell damage, increased phagocytic activity could be expected, with consequent

230 increase in MMCs.

231 Hepatic S. herzbergii melanomacrophages are involved in the activity of storing, relocating,

232 and recycling iron compounds from sterile or damaged venous red blood cells. In this study,

233 the highest number of MMCs was detected in organisms from area A2 (1833) and correspond

234 to the youngest individuals in the study. This fish group also exhibited the highest average

235 MMCs/mm² compared to other areas. It presented a similar number (1630) to area A3 and

236 three times more than area A1 (617). These results are in conflict with literature data because

237 a strong correlation between fish aging - hence tissue degeneration - and increase in the

238 number and size of MMCs have been demonstrated in different species‟ liver and kidney

239 (Agius, 1980). In this case, it is likely that the environment in question is undergoing a

240 contamination process and mainly young individuals. In addition to these physiological

241 changes related to aging, an increase in the MMC number was also demonstrated in liver,

242 spleen and kidney of fish stressed due to a polluted environment (Agius and Roberts, 2003).

243 As a result, the role of these aggregates as biomarkers for the effects due to environmental

244 exposure to polluting chemical substances has been extensively documented in freshwater and

245 marine teleosts (Passantino et al., 2005; Mela et al., 2007; Pascoli et al., 2011; Van Dyk et al.,

83

246 2012; Passantino et al., 2014; Zhang et al., 2014; Arantes et al., 2016; Basilone et al., 2018)

247 and in the case of the fish from the environments evaluated in this study.

248 There is little research on the environmental situation of the Santo Antônio River basin, where

249 its low course is the target of our investigation. It is known that there is irregular occupational

250 movement, followed by accelerated urban occupation in mangroves and gallery forest areas,

251 favoring the destruction of flora and fauna, and consequently diminishing the region's water

252 system quality. The upper and middle course is totally impacted by disorderly occupation and

253 leaching processes added to the release of in natura sewage.

254 The presence of heavy metals (iron, mercury, aluminum, lead and cadmium), not complying

255 Brazilian legislation (resolution 357/2005) (Conama, Brazil 2005), has already been observed

256 in the area investigated in recent studies (Cantanhêde et al., 2016). In addition, microbial

257 bivalve contamination was associated with high levels of microbiological contamination,

258 especially in the period of the most intense rains and high risk for human consumption

259 (Ribeiro et al., 2016).

260 The low course is considered preserved, however, it is possible to observe similar

261 occupational characteristics in the middle and upper reaches of the river. Growing fishery

262 activity and also the scarcity of documented material on contamination by organic material

263 coming from fishery systems in the region studied, makes this work an unprecedented

264 investigation in this context. In similar regions, where there is already an intense and well-

265 documented fishery system, it is possible to affirm that effluents from these systems, when

266 released without previous treatment, increase phosphorus and nitrogen levels present in fish

267 feed. There is also a greater introduction of organic matter in the periods of expenditure,

268 which causes a decrease of dissolved oxygen in the water, essential for aquatic life

269 maintenance (Simões et al., 2007).

84

270 The variation in the number of melanomacrophage centers to monitor fish healthiness

271 conditions has been shown to be a good indicator of environmental changes (Balamurugan et

272 al., 2012). MMC aggregation was high in March and May of 2018 (rainy period). It is likely

273 due to environmental changes in that particular area. These results show the effectiveness of

274 MMC use as an indicator of fish exposure to environmental pollution and confirm, through

275 the high number of MMCs found in young S. herzbergii individuals, that areas close to

276 fisheries are suffering from exposure to organic compounds of anthropic origin higher than

277 the other groups of fish studied.

278 Observations showed that the liver of young S. herzbergii individuals possessed unexpectedly

279 large amount of melanomagnetic centers compared to adult fish, being a potential indicator of

280 environmental changes indicative of fishery system impacts in the northeastern Amazon area.

281 Through these observations, in-depth studies on young and adults of S. herzbergii are

282 suggested to obtain useful information for the evaluation of fish welfare and/or risk to human

283 health.

284

285 Conclusions

286 In conclusion, this study confirms the importance of the use of hepatic MMCs as exposure

287 biomarkers to environmental pollutants, in particular fishery system effluents. MMCs in S.

288 herzbergii showed differences in the individuals from analyzed environments, being able to

289 differentiate areas with different environmental impact levels.

290

291 Acknowledgements

292 I would like to thank the employees of LABOAQ.

293

85

294 Funding

295 This work was supported by Maranhão State Research Foundation - FAPEMA (Fundação de

296 Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Estado do Maranhão)

297 (Grant number: BM-02175/17).

298

299 References

300 Agius, C., 1979. The role of melano‐ macrophage centres in iron storage in normal and

301 diseased fish. J. Fish Dis. https://doi.org/10.1111/j.1365-2761.1979.tb00175.x

302 Agius, C., 1980. Phylogenetic development of melano–macrophage centres in fish. J.

303 Zool. https://doi.org/10.1111/j.1469-7998.1980.tb01446.x

304 Agius, C., Roberts, R.J., 2003. Melano-macrophage centres and their role in fish

305 pathology. J. Fish Dis. https://doi.org/10.1046/j.1365-2761.2003.00485.x

306 Arantes, F.P., Savassi, L.A., Santos, H.B., Gomes, M.V.T., Bazzoli, N., 2016.

307 Bioaccumulation of mercury, cadmium, zinc, chromium, and lead in muscle, liver,

308 and spleen tissues of a large commercially valuable catfish species from Brazil. An.

309 Acad. Bras. Cienc. 88, 137–147. https://doi.org/10.1590/0001- 3765201620140434

310 Balamurugan, S., Deivasigamani, B., Kumaran, S., Sakthivel, M., Rajsekar, T.,

311 Priyadharsini, P., 2012. Melanomacrophage centers aggregation in P. lineatus

312 spleen as bio-indicator of environmental change. Asian Pacific J. Trop. Dis.

313 https://doi.org/10.1016/S2222-1808(12)60235-7

314 Basilone, G., Gargano, A., Corriero, A., Zupa, R., Santamaria, N., Mangano, S., Ferreri, R.,

315 Pulizzi, M., Mazzola, S., Bonanno, A., Passantino, L., 2018. Liver

316 melanomacrophage centres and CYP1A expression as response biomarkers to

317 environmental pollution in European anchovy (Engraulis encrasicolus) from the

86

318 western Mediterranean Sea. Mar. Pollut. Bull.

319 https://doi.org/10.1016/j.marpolbul.2018.04.028

320 Brasil - Ministério do Meio Ambiente - Conselho Nacional do Meio Ambiente (2005).

321 Resolução n° 357, de 17 de março de 2005. Diário Oficial Da União, Brasília.

322 http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459(accessed05/08/20

323 18).

324 Brown-Peterson, N.J., Wyanski, D.M., Saborido-Rey, F., Macewicz, B.J., Lowerre-

325 Barbieri, S.K., 2011. A Standardized Terminology for Describing Reproductive

326 Development in Fishes. Mar. Coast. Fish. 3, 52–70.

327 https://doi.org/10.1080/19425120.2011.555724

328 Cantanhêde, S.M., da Silva Castro, G., Pereira, N.J., de Pinho Campos, J.S., da Silva, J.,

329 Tchaicka, L., Neta, R.N.F.C., de Souza Torres, J.R., Santos, D.M.S., 2016.

330 Evaluation of environmental quality of two estuaries in Ilha do Maranhão, Brazil,

331 using histological and genotoxic biomarkers in Centropomus undecimalis (Pisces,

332 Centropomidae). Environ. Sci. Pollut. Res. 23, 21058–21069.

333 https://doi.org/10.1007/s11356-016-7294-9

334 Carvalho Neta, R.N.F., Sousa, D.B.P., de Almeida, Z. da S., Santos, D.M.S., Tchaicka, L.,

335 2014. A histopathological and biometric comparison between catfish (Pisces,

336 Ariidae) from a harbor and a protected area, Brazil. Aquat. Biosyst. 10, 12.

337 https://doi.org/10.1186/s12999-014-0012-5

338 Carvalho-Neta, R.N.F., Torres, A.R., Abreu-Silva, A.L., 2012. Biomarkers in catfish

339 Sciades herzbergii (teleostei: ariidae) from polluted and non-polluted areas (São

340 Marcos‟ Bay, Northeastern Brazil). Appl. Biochem. Biotechnol. 166, 1314–1327.

341 https://doi.org/10.1007/s12010-011-9519-1

87

342 Cobea (2018). Proteção e Bem Estar de Animais de Laboratório. Availabl in:

343 (accessed in 17 May 2018).

344 da Silva, W.C., Marceniuk, A.P., Sales, J.B.L., Araripe, J., 2016. Early Pleistocene lineages

345 of Bagre bagre (Linnaeus, 1766) (Siluriformes: Ariidae), from the Atlantic coast of

346 South America, with insights into the demography and biogeography of the species.

347 Neotrop. Ichthyol. https://doi.org/10.1590/1982-0224-20150184

348 Domiciano, I.G., Domit, C., Bracarense, A.P.F.R.L., 2017. The green turtle Chelonia

349 mydas as a marine and coastal environmental sentinels: Anthropogenic activities

350 and diseases. Semin. Agrar. https://doi.org/10.5433/1679-0359.2017v38n5p3417

351 Faccioli, C.K., Chedid, R.A., Bombonato, M.T.S., Vicentini, C.A., Vicentini, I.B.F.,

352 2014. Morphology and Histochemistry of the Liver of Carnivorous Fish

353 Hemisorubim platyrhynchos. Int. J. Morphol. https://doi.org/10.4067/S0717-

354 95022014000200055

355 Fishelson, L., 2006. Cytomorphological alterations of the thymus, spleen, head-kidney, and

356 liver in cardinal fish (Apogonidae, Teleostei) as bioindicators of stress. J. Morphol.

357 https://doi.org/10.1002/jmor.10385

358 Franco-Belussi, L., Castrucci, A.M. de L., de Oliveira, C., 2013. Responses of melanocytes

359 and melanomacrophages of Eupemphix nattereri (Anura: Leiuperidae) to Nle4, D-

360 Phe7-α-melanocyte stimulating hormone and lipopolysaccharides. Zoology.

361 https://doi.org/10.1016/j.zool.2013.06.003

362 Franco-Belussi, L., de Oliveira, C., 2016. The spleen of Physalaemus nattereri

363 (Amphibia: Anura): morphology, melanomacrophage pigment compounds and

364 responses to α-melanocyte stimulating hormone. Ital. J. Zool.

365 https://doi.org/10.1080/11250003.2016.1194488

88

366 Johnson, J.C., Schwiesow, T., Ekwall, A.K., Christiansen, J.L., 1999. Reptilian

367 melanomacrophages function under conditions of hypothermia: Observations on

368 phagocytic behavior. Pigment Cell Res. https://doi.org/10.1111/j.1600-

369 0749.1999.tb00521.x

370 Marceniuk, A.P., 2005. Chave para identificação das espécies de bagres marinhos

371 (Siluriformes, Ariidae) da costa brasileira. B. Inst. Pesca.

372 Mela, M., Guiloski, I.C., Doria, H.B., Randi, M.A.F., De Oliveira Ribeiro, C.A., Pereira,

373 L., Maraschi, A.C., Prodocimo, V., Freire, C.A., Silva de Assis, H.C., 2013.

374 Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen).

375 Ecotoxicol. Environ. Saf. https://doi.org/10.1016/j.ecoenv.2013.03.026

376 Mela, M., Randi, M.A.F., Ventura, D.F., Carvalho, C.E.V., Pelletier, E., Oliveira Ribeiro,

377 C.A., 2007. Effects of dietary methylmercury on liver and kidney histology in the

378 neotropical fish Hoplias malabaricus. Ecotoxicol. Environ. Saf.

379 https://doi.org/10.1016/j.ecoenv.2006.11.013

380 Pascoli, F., Negrato, E., Di Giancamillo, A., Bertotto, D., Domeneghini, C., Simontacchi,

381 C., Mutinelli, F., Radaelli, G., 2011. Evaluation of oxidative stress biomarkers in

382 Zosterisessor ophiocephalus from the Venice Lagoon, Italy. Aquat. Toxicol.

383 https://doi.org/10.1016/j.aquatox.2010.12.003

384 Passantino, L., Cianciotta, A., Jirillo, F., Carrassi, M., Jirillo, E., Passantino, G.F.,

385 2005.Lymphoreticular system in fish: Erythrocyte-mediated immunomodulation of

386 macrophages contributes to the formation of melanomacrophage

387 centers.Immunopharmacol. Immunotoxicol. https://doi.org/10.1081/IPH-51766

388 Passantino, L., Santamaria, N., Zupa, R., Pousis, C., Garofalo, R., Cianciotta, A., Jirillo, E.,

389 Acone, F., Corriero, A., 2014. Liver melanomacrophage centres as indicators of

89

390 Atlantic bluefin tuna, Thunnus thynnus L. well-being. J. Fish Dis. 37, 241–250.

391 https://doi.org/10.1111/jfd.12102

392 Peters, G., Schwarzer, R., 1985. Changes in hemopoietic tissue of rainbow trout under

393 influence of stress. Dis. Aquat. Organ. https://doi.org/10.3354/dao001001

394 Ribeiro, E.B., Bastos, L.S., Galeno, L.S., Mendes, R.S., Garino, F., Carvalho-Neta, R.N.F.,

395 Costa, F.N., 2016. Integrated assessment of biomarker responses and microbiological

396 analysis of oysters from São Luís Island, Brazil. Mar. Pollut. Bull. 113, 182–186.

397 https://doi.org/10.1016/j.marpolbul.2016.09.013

398 Ribeiro, H.J., Procópio, M.S., Gomes, J.M.M., Vieira, F.O., Russo, R.C., Balzuweit, K.,

399 Chiarini-Garcia, H., Santana Castro, A.C., Rizzo, E., Corrêa, J.D., 2011. Functional

400 dissimilarity of melanomacrophage centres in the liver and spleen from females of

401 the teleost fish Prochilodus argenteus. Cell Tissue Res.

402 https://doi.org/10.1007/s00441-011-1286-3

403 Ryan, P.D., Hammer, Ø., Harper, D.A., 2001. PAST: PALEONTOLOGICAL

404 STATISTICS SOFTWARE PACKAGE FOR EDUCATION AND DATA

405 ANALYSIS. Palaeontol. Electron. 178kb. T. Harper. Geol. Museum.

406 https://doi.org/10.1016/j.bcp.2008.05.025

407 Sales, C.F., Silva, R.F., Amaral, M.G.C., Domingos, F.F.T., Ribeiro, R.I.M.A., Thomé,

408 R.G., Santos, H.B., 2017. Comparative histology in the liver and spleen of three

409 species of freshwater teleost. Neotrop. Ichthyol. https://doi.org/10.1590/1982- 0224-

410 20160041

411 Simões, F.D.S., Yabe, M.J.D.S., Moreira, A.B., Bisinoti, M.C., 2007. Avaliação do efeito da

412 piscicultura em sistemas aquáticos em assis e Cândido Mota, São Paulo, por

90

413 indicador de qualidade da água e análise estatítica multivariada. Quim. Nova 30,

414 1834–1841. https://doi.org/10.1590/S0100-40422007000800008

415 Sousa, D.B.P., Almeida, Z. da S. de, Carvalho-Neta, R.N.F., 2013. Integrated analysis of

416 two biomarkers in Sciades herzbergii ( Ariidae , Siluriformes ), to assess the

417 environmental impact at São Marcos ‟ Bay, Maranhao, Brazil. Lat. Am. J. Aquat.

418 Res. 41, 305–312. https://doi.org/10.3856/vol41-issue2-fulltext-9

419 Sousa, D.B.P., Almeida, Z.S., Carvalho-Neta, R.N.F., 2013. Biomarcadores histológicos

420 em duas espécies de bagres estuarinos da Costa Maranhense, Brasil. Arq. Bras.

421 Med. Vet. e Zootec. 65, 369–376. https://doi.org/10.1590/S0102-

422 09352013000200011

423 Van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and

424 biomarkers in environmental risk assessment: A review. Environ. Toxicol.

425 Pharmacol. https://doi.org/10.1016/S1382-6689(02)00126-6

426 Van Dyk, J.C., Cochrane, M.J., Wagenaar, G.M., 2012. Liver histopathology of the

427 sharptooth catfish Clarias gariepinus as a biomarker of aquatic pollution.

428 Chemosphere 87, 301–311. https://doi.org/10.1016/j.chemosphere.2011.12.002

429 Vazzoler, A. E. M. Biologia e reprodução de peixes teleósteos: teoria e prática. Maringá:

430 Eduem Press, 1996, 169 p.

431 Wu, C., Zhang, Y., Chai, L., Wang, H., 2017. Histological changes, lipid metabolism and

432 oxidative stress in the liver of Bufo gargarizans exposed to cadmium concentrations.

433 Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.03.131

434 Zhang, H., Pan, L., Tao, Y., 2014. Toxicity assessment of environmental pollutant

435 phenanthrene in clam Venerupis philippinarum using oxidative stress biomarkers.

436 Environ. Toxicol. Pharmacol. https://doi.org/10.1016/j.etap.2014.01.018

110

6 CRONOGRAMA

Meses de 2017 Meses de 2018 Meses de 2019 Atividade mar abr Mai jun jul ago set out nov dez jan fev mar abr mai jun jul ago set out nov dez jan fev mar Levantamento X X X X X X X X X X X X X X X X X X bibliográfico Coleta das X X X X espécies Análise do X X X X X X X X material Redaçãobiológico dos X X X X X X X X X X X X X X resultados Qualificação X

Seminário II X

Defesa da X Dissertação Relatório X parcial Relatório X final

X - Executado X - Em execução

111

7 CONSIDERAÇÕES FINAIS Foi confirmada a importância do uso de MMCs hepáticas como biomarcadores de exposição a poluentes ambientais, em particular efluentes oriundos de sistemas de piscicultura. O número de MMCs em S. herbergii mostraram diferenças nos ambientes analisados, indicando que a espécie pode acumular altas concentrações de poluentes, que podem comprometer suas funções biológicas, representando também uma fonte de alimento inseguro para os seres humanos.

O elevado HSI, o baixo fator de condição dos peixes nas áreas contaminada e impactada e o elevado número de lesões causadas no fígado e seus efeitos crônicos em indivíduos que habitam a área potencialmente impactada em comparação as demais áreas estudadas, comprova que o S. herzbergii é uma espécie biomonitora de impactos ambientais em áreas de transição e ambientes estuarinos.

As principais histopatologias em brânquias foram hiperplasia, hipertrofia, fusão parcial, fusão total e aneurismas. O presente estudo concluiu que a espécie S. herzbergii é boa para o monitoramento de impactos ambientais em áreas de transição e ambientes estuarinos através da avaliação histopatológica das brânquias. Isso foi confirmado através dos efeitos agudos sofridos pelo órgão e o elevado número de lesões demonstradas em indivíduos que habitam a área potencialmente impactada.

REFERÊNCIAS

ABSOLON, B. A.; ANDREATA, J. V. Variação espacial dos bagres (Siluriformes, ariidae) coletados na baía da ribeira, angra dos reis, rio de janeiro e prováveis influências da temperatura e da salinidade. Revista em Agronegocio e Meio Ambiente, v. 2, n. 2, p. 155–165, 2009.

ADAMS, S. M. et al. Assessing recovery in a stream ecosystem: Applying multiple chemical and biological endpoints. Ecological Applications, 2002.

AELION, C. M. et al. Soil metal concentrations and toxicity: Associations with distances to industrial facilities and implications for human health. Science of the Total Environment, 2009.

112

AGIUS, C.; ROBERTS, R. J. Melano-macrophage centres and their role in fish pathologyJournal of Fish Diseases, 2003.

AKAISHI, F. M. et al. Morphological and neurotoxicological findings in tropical freshwater fish (Astyanax sp.) after waterborne and acute exposure to water soluble fraction (WSF) of crude oil. Archives of environmental contamination and toxicology, 2004.

AMORIM, L. C. A. Os biomarcadores e sua aplicação na avaliação da exposição aos agentes químicos ambientais. Revista Brasileira de Epidemiologia, 2003.

ARAÚJO, F. G. Distribuição, abundância relativa e movimentos sazonais de bagres marinhos (Siluriformes, Ariidae) no estuário da Lagoa dos Patos (RS), Brasil. Revista Brasileira de Zoologia, 1988.

ARELLANO, J. M.; STORCH, V.; SARASQUETE, C. Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicology and environmental safety, v. 44, n. 1, p. 62–72, 1999.

AZEVEDO, J. W. DE J.; DE CASTRO, A. C. L.; SILVA, M. H. L. Length-weight relation, condition factor and gonadosomatic index of the whitemouth croaker, Micropogonias furnieri (Desmarest, 1823) (Actinopterygii: Sciaenidae), caught in Lençóis Bay, state of Maranhão, eastern Amazon, Brazil. Brazilian Journal of Oceanography, v. 65, n. 1, p. 1–8, 2017.

AZEVEDO, A. A. C. G. DE et al. Distribuição espacial e temporal da biomassa fitoplanctônica e variáveis ambientais no Golfão Maranhense, Brasil. Acta Botanica Brasilica, v. 22, n. 3, p. 870–877, 2008.

BERNET, D. et al. Histopathology in fish: Proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, v. 22, n. 1, p. 25–34, 1999.

BROWN-PETERSON, N. J. et al. A Standardized Terminology for Describing Reproductive Development in Fishes. Marine and Coastal Fisheries, v. 3, n. 1, p. 52– 70, 2011.

113

BUSS, D. F.; BAPTISTA, D. F.; NESSIMIAN, J. L. Bases conceituais para a aplicação de biomonitoramento em programas de avaliação da qualidade da água de rios. Cadernos de Saúde Pública, 2003.

CAIRNS, J.; VAN DER SCHALIE, W. H. Biological monitoring part I-Early warning systemsWater Research, 1980.

CANTANHÊDE, S. M. et al. Uso de biomarcador histopatológico em brânquias de Centropomus undecimalis (Bloch, 1972) na avaliação da qualidade da água do Parque Ecológico Laguna da Jansen, São Luís-MA. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, v. 66, n. 2, p. 593–601, 2014.

CARVALHO NETA, R. N. F. et al. A histopathological and biometric comparison between catfish (Pisces, Ariidae) from a harbor and a protected area, Brazil. Aquatic Biosystems, v. 10, n. 1, p. 12, 2014.

CARVALHO-NETA, R. N. F.; ABREU-SILVA, A. L. Glutathione S-Transferase as biomarker in Sciades herzbergii (Siluriformes: Ariidae) for environmental monitoring: the case study of São Marcos Bay, Maranhão, Brazil. Lat. Am. J. Aquat., v. 41, n. 2, p. 217–225, 2013.

CARVALHO-NETA, R. N. F.; ABREU-SILVA, A. L. Sciades herzbergii oxidative stress biomarkers: An in situ study of an estuarine ecosystem (Sao Marcos‟ Bay, Maranhao, Brazil). Brazilian Journal of Oceanography, v. 58, n. SPEC. ISSUE, p. 11– 17, 2010.

CARVALHO-NETA, R. N. F.; CASTRO, A. C. L. Diversidade das assembléias de peixes estuarinos da ilha dos Caranguejos, Maranhão. Arquivos de Ciencias do Mar, v. 41, n. 1, p. 48–57, 2008.

CARVALHO-NETA, R. N. F.; TORRES, A. R.; ABREU-SILVA, A. L. Biomarkers in catfish Sciades herzbergii (teleostei: ariidae) from polluted and non-polluted areas (São Marcos‟ Bay, Northeastern Brazil). Applied Biochemistry and Biotechnology, v. 166, n. 5, p. 1314–1327, 2012.

114

CASTRO, B. M.; MIRANDA, L. B. de. Physical oceanography of the western atlantic continental shelf located between 4 N and 34 S coastal segment (4, W). In: ROBINSON, A. R.; BRINK, K. H. (Eds.). The Sea. Oxford, Chapter 8, V 11. John Wiley & Sons Inc., 1998. p. 209-251.

CENGIZ, E. I.; UNLU, E. Sublethal effects of commercial deltamethrin on the structure of the gill, liver and gut tissues of mosquitofish, Gambusia affinis: A microscopic study. Environmental Toxicology and Pharmacology, 2006.

CERVIGÓN, F.; CIPRIANI, R.; FISHER, W.; GARIBALDI, L.; HENDRICKX, M.; LEMUS, A. J.; MÁRQUEZ, R.; POUTIERS, J. M.; ROBAINA, G.; RODRÍGUEZ, B. Fichas FAO de identificación de especies para los fines de la pesca. Guía de campo de las especies comerciales marinas y de aquas salobres de la costa septentrional de Sur América. FAO, Rome. 1992, 513 p.

COUTINHO, P. N; MORAIS, J. O. Distribuição de sedimentos na Baia do São Jose, Estado do Maranhao (Brasil). Arq. Cien. Mar, 1976.

DA SILVA, W. C. et al. Early Pleistocene lineages of Bagre bagre (Linnaeus, 1766) (Siluriformes: Ariidae), from the Atlantic coast of South America, with insights into the demography and biogeography of the species. Neotropical Ichthyology, 2016.

DE PAUW, N.; VANHOOREN, G. Method for biological quality assessment of watercourses in Belgium. Hydrobiologia, 1983.

DHN – DIRETORIA DE HIDROGRAFIA E NAVEGAÇÃO. Cartas de correntes de maré – proximidades da baía de São Marcos e portos de São Luís e Itaqui. p. 27, 1972.

DOMINGOS, F. X. V. et al. Anthropic Impact Evaluation of Two Brazilian Estuaries Trough Biomarkers in Fish. Journal of the Brazilian Society of Ecotoxicology, v. 4, n. 1–3, p. 21–30, 2009.

DOS SANTOS SILVA, M. J. et al. Biological responses of Neotropical freshwater fish Lophiosilurus alexandri exposed to ammonia and nitrite. Science of the Total Environment, 2018.

115

ERKMEN, B.; KOLANKAYA, D. Effects of water quality on epithelial morphology in the gill of Capoeta tinca living in two tributaries of Kizilirmak River, Turkey. Bulletin of Environmental Contamination and Toxicology, 2000.

EWELL, W. S. et al. Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environmental Toxicology and Chemistry, 1986.

FEITOSA, A. C. 1996. Dinâmica dos processos geomorfológicos na área costeira a nordeste da Ilha do Maranhão. 1996. 250 f. Tese de Doutorado – Pós graduação em Geografia, Universidade Estadual Paulista.

FEITOSA, A. C. Evolução Morfogenética do Litoral Norte da Ilha do Maranhão. Rio Claro, ICGE-UNESP, 1989. 196 f. Dissertação de Mestrado. Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista.

FERREIRA, M. J. Impactos ambientais recentes na área da Bacia do rio Santo Antônio, Paço do Lumiar – MA. 2003. 43 f. Monografia (Licenciatura em Geografia) – Curso de Geografia, Universidade Federal do Maranhão.

FIGUEIREDO, J. L. MENEZES, N. A. Manual de peixes marinhos do sudeste do Brasil: II Teleostei (1). São Paulo, Museu de Zoologia da Universidade de São Paulo, 1978.

FONTAÍNHAS-FERNANDES, A. et al. Gill histopathological alterations in Nile tilapia, oreochromis niloticus exposed to treated sewage water. Brazilian Archives of Biology and Technology, 2008.

FROESE, R. & PAULY, D. (Editors). 2018. FishBase. World Wide Web electronic publication. Available in Accessed in 21 april 2018.

GARCIA-SANTOS, S. et al. Alterações histológicas em brânquias de tilápia nilotica Oreochromis niloticus causadas pelo cádmio. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 2007.

GERHARDT, A. Bioindicator Species and Their Use in Biomonitoring. In: HILARY, I.; INYANG, J.; DANIELS, L. (Eds.) Environmental monitoring. v. 2. Paris: Encyclopedia of Life Support Systems (EOLSS), 2009. 77-123p.

116

GOLDSTEIN, B. et al. Biological markers in environmental health research. Environmental Health Perspectives, 1987.

GOSS, G. G. et al. Gill morphology and acid-base regulation in freshwater fishes. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 1998.

HIBIYA T. An Atlas of Fish Histology. Normal and pathological features. Tokyo, Japan, Kodanska Ltd., 1982.

HUGHES, G. M. An introduction to the study of gills. In: HOULIHAN, D. F.; RANKIN, J. C.; SHUTTLEWORTH, T. J. Gills. Cambridge: Cambridge University Press, 1982. p. 1-24.

JESUS, T. B.; CARVALHO, C. E. V. Utilização de biomarcadores em peixes como ferramenta para avaliação de contaminação ambiental por mercúrio (Hg). Oecologia Brasiliensis, 2008.

JOHNSON, R. K.; WIEDERHOLM, T. & ROSENBERG, D. M., 1993. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In: Freshwater Biomonitoring and Benthic Macroinvertebrates (D. M. Rosenberg & V. H. Resh, ed.), pp. 40-158, New York: Chapman & Hall.

Köppen, W. 1948. Climatologia: com um estúdio de los climas de la tierra. Publications In: Climatology. Laboratory of Climatology, New Gersey. 104p.

LINS ET AL. Uso de peixes como biomarcadores para monitoramento ambiental aquático. Rev. Acad., Ciênc. Agrár Ambient, v. 8, n. 4, p. 469–484, 2010.

LODGE, D. M. Biological invasions: Lessons for ecologyTrends in Ecology and Evolution, 1993.

MARCENIUK, A. P. Chave para identificação das espécies de bagres marinhos (Siluriformes, Ariidae) da costa brasileira. B. Inst. Pesca, 2005.

117

MARCENIUK, A. P. Revalidação de arenatus e Cathorops agassizii (Siluriformes, Ariidae), bagres marinhos das regiões norte e nordeste da América do Sul. Iheringia. Série Zoologia, 2007.

MARCENIUK, A. P., R. BETANCUR, T. GIARRIZZO, F. L. FREDOU & S. KNUDSEN. 2015. Bagre bagre. The IUCN Red List of Threatened Species, 2015, e.T190228A1945010. Available from: http://dx.doi.org/10.2305/IUCN.UK.2015- 2.RLTS. T190228A19450.en. (16 November 2018).

MATTHEWS, R. A. et al. Biological monitoring. Part IIA-receiving system functional methods, relationships and indicesWater Research, 1982.

METCALFE, J. L. Biological water quality assessment of running waters based on macroinvertebrate communities: History and present status in Europe. Environmental Pollution, 1989.

MINISTÉRIO DO MEIO AMBIENTE. Secretaria de Recursos Hídricos. Plano Nacional de Recursos Hídricos: panorama e estado dos recursos hídricos do Brasil. Volume I. Brasília, 2006.

MOCHEL, F. R. 1997. Mangroves on São Luís Island, Maranhão, Brazil.In: Kjerfve, B., Lacerda, L. D. and Diop, H. S (eds.) Mangrove Ecosystem Studies in Latin America and Africa, UNESCO, Paris. pp. 145- 154.

NUGEO. Núcleo Geoambiental. Programa de Planejamento e Gestão Territorial. Bacias Hidrográficas: subsídios para o planejamento e gestão territorial. UEMA. 2011.

PEDROZO, M. DE F. M. et al. Ecotoxicologia e avaliação de risco do petróleo. [s.l: s.n.].

PÉREZ, M. R. et al. In situ evaluation of the toxicological impact of a wastewater effluent on the fish Prochilodus lineatus: biochemical and histological assessment. Ecological Indicators, 2018.

PRATT, J. M.; COLER, R. A. A procedure for the routine biological evaluation of urban runoff in small rivers. Water Research, 1976.

118

RASKOVIC, B. et al. Histological methods in the assessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences, Belgrade, 2011.

REIS, A. B. et al. The influence of the aquatic environment in tanks sequetially interconnected with PVC pipes on the gill epithelium and lamellas of tilapia (Oreochromis niloticus). Pesquisa Veterinaria Brasileira, 2009.

REYNOLDSON, T. B.; METCALFE-SMITH, J. L. An overview of the assessment of aquatic ecosystem health using benthic invertebrates. JOURNAL OF AQUATIC ECOSYSTEM HEALTH, 1992.

RIMMER, M. A. Reproductive cycle of the fork-tailed catfish arius graeffei kner & steindachner (Pisces: Ariidae) from the clarence river, new south wales. Marine and Freshwater Research, 1985.

ROQUES, J. A. C. et al. The impact of elevated water nitrite concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822). Aquaculture Research, 2015.

RYAN, P. D.; HAMMER, Ø.; HARPER, D. A. PAST: PALEONTOLOGICAL STATISTICS SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS. Palaeontologia Electronica 178kb. T. Harper. Geological Museum, 2001.

SALES, C. F. et al. Comparative histology in the liver and spleen of three species of freshwater teleost. Neotropical Ichthyology, 2017.

SANTOS, D. M. S. et al. Microbiological water quality and gill histopathology of fish from fish farming in Itapecuru-Mirim County, Maranhão State. Acta Scientiarum. Biological Sciences, v. 34, n. 2, p. 199–205, 2012.

SIMÕES, F. D. S. et al. Avaliação do efeito da piscicultura em sistemas aquáticos em assis e Cândido Mota, São Paulo, por indicador de qualidade da água e análise estatítica multivariada. Quimica Nova, 2007.

SOUSA, D. B. P.; ALMEIDA, Z. DA S. DE; CARVALHO-NETA, R. N. F. Integrated analysis of two biomarkers in Sciades herzbergii ( Ariidae , Siluriformes ), to assess the

119 environmental impact at São Marcos ‟ Bay, Maranhao, Brazil. Latin American Journal of Aquatic Research, v. 41, n. 2, p. 305–312, 2013a.

SOUSA, D. B. P.; ALMEIDA, Z. S.; CARVALHO-NETA, R. N. F. Biomarcadores histológicos em duas espécies de bagres estuarinos da Costa Maranhense, Brasil. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, v. 65, n. 2, p. 369–376, 2013b.

TEH, S. J.; ADAMS, S. M.; HINTON, D. E. Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. Aquatic Toxicology, 1997.

TEIXEIRA, S. G.; SOUZA FILHO, P. W. M. Mapeamento de ambientes costeiros tropicais (Golf??o Maranhense, Brasil) utilizando imagens de sensores remotos orbitais. Revista Brasileira de Geofisica, v. 27, n. SUPPL. 1, p. 69–82, 2009.

VAN DER OOST, R.; BEYER, J.; VERMEULEN, N. P. E. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 2003.

VAZZOLER, A. E. M. Biologia e reprodução de peixes teleósteos: teoria e prática. Maringá: Eduem Press, 1996, 169 p.

VICENTINI, C. A. et al. Morphological Study of the Liver in the Teleost Oreochromis niloticus. Int.J.Morphology, 2005.

WEBB, J. F. Atlas of Fish Histology. The Quarterly Review of Biology, 2009.

WORLD HEALTH ORGANIZATION – WHO. Biological monitoring of chemical exposure in the workplace. Geneva: ONU, 1996. v.1-2.

WORLD HEALTH ORGANIZATION (WHO). Biomarkers in Risk Assessment: Validity and Validation. Environmental Health Criteria. Geneva: World Health Organization, 2001. 238.

ZELIKOFF, J. T. Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: Predictive value for mammals? Toxicology. Anais...1998.