By Dharmit A. Thakore Finite Element Analysis Using Open Source Software

Total Page:16

File Type:pdf, Size:1020Kb

By Dharmit A. Thakore Finite Element Analysis Using Open Source Software Finite Element Analysis using Open source Software Mesh Deformed shape Von Mises Tresca - by Dharmit A. Thakore Finite Element Analysis with Open Source Software Second Edition Finite Element Analysis with Open Source Software Second Edition Dharmit Thakore, CPEng, RPEQ Moonish Ent. Pty. Ltd. Brisbane, QLD, Australia Moonish Enterprises Pty Ltd GPO Box 1299, Brisbane, QLD 4001, Australia 2014 Credits and Copyright Written by: Dharmit Thakore [email protected] Publisher: Moonish Ent. Pty. Ltd [email protected] http://engineering.moonish.biz Graphic Design / Layout: Lomesha Thakore [email protected] Edition 2 ©2014 Dharmit Thakore No part of this publication may be reproduced, stored or transmitted in any form or by any means, electronic, mechanical or otherwise, without prior written consent from the publisher, except for the inclusion of brief quotations in a review. You may store the pdf on your computer and backups. You may print one copy of this book for your own personal use. Disclaimer: The information contained in this book is based on the author’s experience, knowledge and opinions. The author and publisher will not be held liable for the use or misuse of the information in this book. To My wife, Our beloved son & Open Source Software About the Author Dharmit Thakore is the Director of Moonish Enterprises Pty Ltd at Brisbane, Queensland, Australia. He practices as a Mechanical / Piping Engineer in Queensland. He received his Bachelor’s degree from Birla Vishwakarma Mahavidhyalaya, Vallabh Vidhyanagar, Gujarat, India which was affiliated with Sardar Patel University. He started his engineering career as a young Graduate in Larsen & Toubro – Sargent & Lundy, Vadodara. He came to Australia for further studies and settled here. He received his Registered Professional Engineer in Queensland (RPEQ) recognition early in his career and subsequently obtained his Chartered Professional Engineer (CPEng) as a Mechanical / Piping Engineer. Dharmit has broad interests, which include finite element analysis, design, optimization and Open Source software. He is a member of ASME, Engineers Australia and Board of Professional Engineers in Queensland. Table of Contents Foreword xiii What motivated me to write this book xiii This book is written for xiii This book is not written for xiv What software would you need to follow through xiv What are the steps in Finite Element Analysis xv Study Cases xvii Case 1: Getting to know Salome-Meca xvii Case 2: Editing command (.comm) file xvii Case 3: 1D Finite Element Analysis xviii Case 4: 2D Frame Finite Element Analysis xviii Case 5: Axi-symmetric Finite Element Analysis xviii Case 6: 2D Shell Finite Element Analysis xviii Case 7: Basic 3D Finite Element Analysis xviii Case 8: 3D Finite Element Analysis with Hexahedral Linear Mesh xix Case 9: 3D Finite Element Analysis with Hexahedral Quadratic Mesh xix Case 10: Finite Element Analysis of a Pseudo Assembly xix Case 11: Finite Element Analysis of a 3D Assembly xix Getting to know Salome-Meca 1 Step 1: Purpose of the FE Analysis / Description of the problem 2 Step 2: Input values for the FE analysis 2 Step 3: Model Geometry 3 Step 4: Meshing Geometry 8 Step 5, 6, 7, 8 and 9: Salome-Meca Linear Static Analysis Wizard 12 Step 10: Run the analysis 16 Step 11: Post Processing of the Results 18 Summary 31 PS – Using Efficient to generate command (.comm) file 32 Chapternotes 36 Editing command (.comm) file 39 Step 1: Purpose of the FE Analysis / Description of the problem 40 Step 2: Input values for the FE analysis 40 Step 3: Model Geometry 41 Step 4: Meshing Geometry 43 Step 5, 6, 7, 8 and 9: Salome-Meca Linear Static Analysis Wizard 45 Step 8 and 9 again: Manual editing of command (.comm) file 47 Step 10: Running the analysis 52 Step 11: Post Processing of the Results 53 Summary 55 PS – Using Efficient to generate command (.comm) file 56 Chapter notes 60 1D Finite Element Analysis 61 Step 1: Purpose of the FE Analysis / Description of the problem 62 Step 2: Input values for the FE analysis 63 Step 3: Model Geometry 64 Step 4: Meshing Geometry 67 Step 5, 6, 7, 8 and 9: Creating command (.comm) file with Eficas 70 Step 10: Run the analysis 82 Step 11: Post Processing of the Results 84 Result 85 Summary 85 PS – Using Efficient to generate command (.comm) file 86 Chapter notes 91 2D Frame Finite Element Analysis 93 Step 1: Purpose of the FE Analysis / Description of the problem 94 Step 2: Input values for the FE analysis 94 Step 3: Model Geometry 95 Step 4: Meshing Geometry 99 Step 5, 6, 7, 8 and 9: Creating command (.comm) file by using a template 102 Step 10: Run the analysis 105 Step 11: Post Processing of the Results 106 Summary 107 PS – Using Efficient to generate command (.comm) file 108 Chapter notes 113 Axi-Symmetric Finite Element analysis 115 Step 1: Purpose of the FE Analysis / Description of the problem 116 Step 2: Input values for the FE analysis 116 Step 3: Model Geometry 117 Step 4: Meshing of Geometry 120 Step 5, 6, 7, 8 and 9: Salome-Meca Linear Static Analysis Wizard 128 Step 10: Running the analysis 130 Step 11: Post Processing of the Results 131 Summary 143 PS – Using Efficient to generate command (.comm) file 144 Chapter notes 148 2D Shell Finite Element analysis 149 Step 1: Purpose of the FE Analysis / Description of the problem 150 Step 2: Input values for the FE analysis 150 Step 3: Model Geometry 151 Step 4: Meshing Geometry 153 Step 5, 6, 7, 8 and 9: Writing command (.comm) file by hand 156 Step 10: Run the analysis 161 Step 11: Post Processing of the Results 163 Result 167 Summary 167 PS – Using Efficient to generate command (.comm) file 168 Chapter notes 173 Basic 3D Finite Element Analysis 175 Step 1: Purpose of the FE Analysis / Description of the problem 176 Step 2: Input values for the FE analysis 176 Step 3: Model Geometry 177 Step 4: Meshing Geometry 179 Step 8 and 9 again: Manual editing of command (.comm) file 184 Step 10: Run the analysis 185 Step 11: Post Processing of the Results 186 Step 4 again: Meshing Geometry 188 Step 5, 6, 7, 8, 9 and 10 again: Salome-Meca Linear Static Analysis Wizard 189 Step 11 again: Post Processing of the Results 190 Summary 190 PS – Using Efficient to generate command (.comm) file 191 Chapter notes 194 3D Finite Element Analysis with Hexahedral Linear Mesh 195 Step1: Description of the problem 196 Step 2: Input values for the FE analysis 196 Step 3: Model Geometry 197 Step 4: Meshing Geometry 201 Step 5, 6, 7, 8 and 9: Salome-Meca Linear Static Analysis Wizard 204 Step 10: Run the analysis 208 Step 11: Post Processing of the Results 209 Summary 215 PS – Using Efficient to generate command (.comm) file 216 3D Finite Element Analysis with Hexahedral Quadratic Mesh 221 Step1: Description of the problem 222 Step 2: Input values for the FE analysis 222 Step 3: Model Geometry 223 Step 4: Meshing Geometry 240 Step 5, 6, 7, 8 and 9: Efficient Wizard 246 Step 10: Run the analysis 261 Step 11: Post Processing of the Results 262 Summary 267 Chapter notes 268 Finite Element Analysis of Pseudo Assembly 269 Step 1: Description of the problem 270 Step 2: Input values for the FE analysis 270 Step 3: Model Geometry 271 Step 4: Meshing Geometry 277 Step 5, 6, 7, 8 and 9: Efficient Wizard to generate command (.comm) file 280 Step 10: Run the analysis 284 Step 11: Post Processing of the Results 285 Summary 289 Chapter notes 290 Finite Element Analysis of 3D Assembly 291 Step 1: Description of the problem 292 Step 2: Input values for the FE analysis 292 Step 3: Model Geometry 293 Step 4: Meshing Geometry 299 Step 5, 6, 7, 8 and 9: Creating command (.comm) file by using a template 302 Step 10: Run the analysis 306 Step 11: Post Processing of the Results 312 Summary 315 PS – Using Efficient to generate command (.comm) file 316 Chapter notes 324 What will be covered in Volume 2 a Parametric Modelling in Salome for Geometry and Mesh generation a Editing and Generating Mesh in Salome’s Mesh Module a Combining element types in a single FE Analysis a Non Linear Material Analysis a Sliding Contact instead of Glued a Modal Analysis b Thermal Analysis b Volume 2 Book Promotion - 35% Off b Appendix A c Other sources of information c Appendix B d Installing Software required for this book d Ubuntu 12.04 Configuration d Salome-Meca 2013.2 installation f Efficient Install h Foreword Foreword During my university life, I had taken Computer Aided Design (CAD) and Finite Element Analysis (FEA) as my elective subjects. As a young university student, I was fascinated by the power of computers and the help that they provide to obtain results that are easy to understand for a complex simulation. Going from Drawing boards, pencils and erasers to CAD with everything on the computer, having multiple revisions of the same drawing and the powerful undo and redo functionality were one of the journeys that I will never forget. At that time, our university was having education version of AutoCAD® (I won’t tell the version of AutoCAD as that will reveal my age ) for drafting and Solid Edge® for Finite Element Analysis. The only problem was that outside university we were on our own. We even didn’t have student versions of those software to use at home. What motivated me to write this book It was not until 2006 that I was introduced to the world of Linux, Ubuntu (in particular) and Open Source Software.
Recommended publications
  • English Translation of the German by Tom Hammond
    Richard Strauss Susan Bullock Sally Burgess John Graham-Hall John Wegner Philharmonia Orchestra Sir Charles Mackerras CHAN 3157(2) (1864 –1949) © Lebrecht Music & Arts Library Photo Music © Lebrecht Richard Strauss Salome Opera in one act Libretto by the composer after Hedwig Lachmann’s German translation of Oscar Wilde’s play of the same name, English translation of the German by Tom Hammond Richard Strauss 3 Herod Antipas, Tetrarch of Judea John Graham-Hall tenor COMPACT DISC ONE Time Page Herodias, his wife Sally Burgess mezzo-soprano Salome, Herod’s stepdaughter Susan Bullock soprano Scene One Jokanaan (John the Baptist) John Wegner baritone 1 ‘How fair the royal Princess Salome looks tonight’ 2:43 [p. 94] Narraboth, Captain of the Guard Andrew Rees tenor Narraboth, Page, First Soldier, Second Soldier Herodias’s page Rebecca de Pont Davies mezzo-soprano 2 ‘After me shall come another’ 2:41 [p. 95] Jokanaan, Second Soldier, First Soldier, Cappadocian, Narraboth, Page First Jew Anton Rich tenor Second Jew Wynne Evans tenor Scene Two Third Jew Colin Judson tenor 3 ‘I will not stay there. I cannot stay there’ 2:09 [p. 96] Fourth Jew Alasdair Elliott tenor Salome, Page, Jokanaan Fifth Jew Jeremy White bass 4 ‘Who spoke then, who was that calling out?’ 3:51 [p. 96] First Nazarene Michael Druiett bass Salome, Second Soldier, Narraboth, Slave, First Soldier, Jokanaan, Page Second Nazarene Robert Parry tenor 5 ‘You will do this for me, Narraboth’ 3:21 [p. 98] First Soldier Graeme Broadbent bass Salome, Narraboth Second Soldier Alan Ewing bass Cappadocian Roger Begley bass Scene Three Slave Gerald Strainer tenor 6 ‘Where is he, he, whose sins are now without number?’ 5:07 [p.
    [Show full text]
  • Optimization Design by Coupling Computational Fluid Dynamics and Genetic Algorithm 125
    DOI: 10.5772/intechopen.72316 Provisional chapter Chapter 5 Optimization Design by Coupling Computational Fluid OptimizationDynamics and Design Genetic by Algorithm Coupling Computational Fluid Dynamics and Genetic Algorithm Jong-Taek Oh and Nguyen Ba Chien Jong-TaekAdditional information Oh and is availableNguyen at Bathe endChien of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.72316 Abstract Nowadays, optimal design of equipment is one of the most practical issues in modem industry. Due to the requirements of deploying time, reliability, and design cost, bet- ter approaches than the conventional ones like experimental procedures are required. Moreover, the rapid development of computing power in recent decades opens a chance for researchers to employ calculation tools in complex configurations. In this chapter, we demonstrate a kind of modern optimization method by coupling computational fluid dynamics (CFD) and genetic algorithms (GAs). The brief introduction of GAs and CFD package OpenFOAM will be performed. The advantage of this approach as well as the difficulty that we must tackle will be analyzed. In addition, this chapter performs a study case in which an automated procedure to optimize the flow distribution in a manifold is established. The design point is accomplished by balancing the liquid-phase flow rate at each outlet, and the controlled parameter is a dimension of baffle between each chan- nel. Using this methodology, we finally find a set of results improving the distribution of flow. Keywords: computational fluid dynamics, VOF, optimization, OpenFOAM, genetic algorithm, open sourced 1. Introduction Computational fluid dynamics (CFD)-based optimization approach has been growing rap- idly in the past decades.
    [Show full text]
  • OCCT V.6.5.4 Release Notes
    Open CASCADE Technology & Products Products Version6. features, Highlights Technology CASCADE Open Overview , so applications linked against a previous version must berecompiled to run with this Version 6. Open CASCADE Technology & Products Technology Open CASCADE improvements and bug fixes over 6 Universal locale global current on independent made export / Import TKOpenGl libraries support plotter and viewer 2D obsolete of Removal Accelerated text visualization management texture of Redesign R and XCode Cocoa API with native visualization X, Mac OS On of support Official New automated testing system testing New automated and 3D graphics 2D both to way render unified the become input parameters and results and generation of data for bug rep bug for data of generation and results and parameters input . 0 efactored is binary incompatible withtheprevious versions CMake build scripts build CMake is nowis link Open CASCADE Open Boolean operations algorithm operations Boolean andProducts Mac OS X and Products Products and www. www. ed at build time, not at run time run at not time, build at ed opencascad Release Notes Notes Release opencascade M , Windows 8 and Visual Studio 2012 Studio Visual , and Windows 8 maintenance ; use of FTGL library is dropped FTGL of library ; use in version or e .co Release .org 6. m releas . Possibility to enable automatic check of of check automatic enable to Possibility . 6 . 0 ver. 6. ver. Technology is a Copyright © 2013 by OPEN CASCADE Page Copyright OPEN CASCADE 2013by © e 6. minor 5. 5 of . release, which includes 6 OpenCASCADE Technology . 0 4 project files files project ort . 3Dviewer over libraries 1 2 5 of 0 32 new 6 and and .
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]
  • GPUSPH User Guide
    GPUSPH User Guide version 5.0 — October 2016 Contents 1 Introduction 2 2 Anatomy of a project apart from the use of SALOME 2 3 Setting up and running the simulation without using the user in- terface 3 3.1 Case Examples .............................. 6 3.1.1 Framework setup ......................... 8 3.1.2 Generic simulation parameters .................. 11 3.1.3 SPH parameters .......................... 12 3.1.4 Physical parameters ....................... 13 3.1.5 Results parameters ........................ 14 3.2 Building and initializing the particle system .............. 14 4 Running your simulation 18 5 Setting up and running the simulation with the SALOME user in- terface 18 5.1 Preparing the geometry in GEOM .................... 18 5.2 Generating the mesh (optional) ..................... 20 5.3 Generating particle files with the Particle preprocessor ........ 21 5.4 Setting up and running the simulation with the GPUSPH solver ... 21 6 Visualizing the results 22 1 1 Introduction There are two ways to set up cases for GPUSPH: coding a Case file, or using the SALOME module GPUSPH solver. When coding the case file, it is possible to create the geometrical elements using built-in functions of GPUSPH (only for particle-type boundary conditions at the moment) or to read particle files generated by the Particle Preprocessor module of SALOME. Creating a case by hand corresponds to the creation of a new cusource file, with the associated header (e.g. MyCase.cu and MyCase.h), placing them under src/problems/user. This folder does not exist by default in GPUSPH, but it is recognised as a place to be scanned for case sources.
    [Show full text]
  • Alternative Pre-Processing Tools for Elmer
    Alternative pre-processing tools for Elmer ElmerTeam CSC – IT Center for Science, Finland CSC, 2018 Mesh generation capabilities of Elmer suite • ElmerGrid onative generation of simple structured meshes • ElmerGUI oplugins for tetgen, netgen and ElmerGrid • No geometry generation tools to speak about • No capability for multibody Delaunay meshing • Limited control over mesh quality and density • Complex meshes must be created by other tools! Open Source software for Computational Engineering Open source software in computational engineering • Academicly rooted stuff is top notch oLinear algebra, solver libraries oPetSc, Trilinos, OpenFOAM, LibMesh++, … • CAD and mesh generation not that competitive oOpenCASCADE legacy software oMesh generators netgen, tetgen, Gmsh are clearly academic oAlso for OpenFOAM there is development of commercial preprocessing tools • Users may need to build their own workflows from the most suitable tools oAlso in combination with commerial software Open Source Mesh Generation Software for Elmer • ElmerGrid: native to Elmer • Gmsh oSimple structured mesh generation oIncludes geometry definition tools oSimple mesh manipulation oElmerGUI/ElmerGrid can read the format oUsable via ElmerGUI msh format • ElmerMesh2D • SALOME oObsolite 2D Delaunay mesh generator oElmerGrid can read the unv format usable via the old ElmerFront written by SALOME oPreliminary version for direct interface to • Netgen Elmer oCan write linear meshes in Elmer format oUsable also as ElmerGUI plug-in • FreeCAD • Tetgen oOpen source community
    [Show full text]
  • SALOME 7.2.0 Release Notes
    SALOME : The Open Source Integration Platform for Numerical Simulation SALOME 7.2.0 Major release announcement May 2013 GENERAL INFORMATION CEA/DEN, EDF R&D and OPEN CASCADE are pleased to announce SALOME version 7.2.0. It is a major release that contains the results of planned major and minor improvements and bug fixes against SALOME version 6.6.0 released in December 2012. SALOME Platform SALOME Platform Copyright © 2001- 2013. All rights reserved. Page 1 of 32 SALOME : The Open Source Integration Platform for Numerical Simulation Table of Contents GENERAL INFORMATION ........................................................................................................................1 NEW FEATURES AND IMPROVEMENTS ................................................................................................3 PREREQUISITES CHANGES .................................................................................................................................3 License restrictions......................................................................................................................................4 MAJOR CHANGES ..............................................................................................................................................5 Removal of med v2.1 support .....................................................................................................................5 Removal of MEDMEM API..........................................................................................................................5
    [Show full text]
  • Development of a Support Tool to Predict Manufacturability of Deep- Drawing Parts
    INTERNATIONAL DESIGN CONFERENCE - DESIGN 2016 Dubrovnik - Croatia, May 16 - 19, 2016. DEVELOPMENT OF A SUPPORT TOOL TO PREDICT MANUFACTURABILITY OF DEEP- DRAWING PARTS D. Goller, S. Schreyer, B. Alber-Laukant, F. Rieg and W. Volk Keywords: process analysis, deep drawing, geometric modeling kernel, feasibility analysis 1. Introduction There are several different approaches to develop new products. A popular example is the product development process (PDP) by Pahl/Beitz [Feldhusen and Grote 2013]. The development engineer always benefits from detailed knowledge from later stages of the PDP, like process knowledge. Most likely this information is not available at these early stages, so it could be transferred from similar cases, which already have completed this stage, or the information can be generated by fast but preferably accurate estimations. The main goal of the collaborative research centre FORPRO², supported by the Bavarian research foundation (Bayerische Forschungsstiftung - BFS), is the optimization of simulation based development by knowledge transfer. One aspect of before mentioned optimization is the development of a software tool to predict the manufacturability of deep drawing parts. This can be achieved by process simulation by means of finite element analysis, but getting reliable output is usually extremely time-consuming and requires detailed process knowledge. Especially in early stages of the development process, a fast prediction on basis of non-detailed data is more expedient. There is already an approach to create a fast assumption of the manufacturability by using One-Step- solvers, which are already available in commercial solutions as for intance Autoform-OneStepforCatia [AutoForm 2015] and Altair HyperForm [Altair Engineering Inc.
    [Show full text]
  • Salome9 the Open Source Integration Platform for Numerical Simulation Salome9 Platform
    salome-platform.org SALOME9 THE OPEN SOURCE INTEGRATION PLATFORM FOR NUMERICAL SIMULATION SALOME9 PLATFORM The SALOME platform is an open source software framework for the integration of numerical solvers in various scientific domains. CEA and EDF are using SALOME to perform a wide range of simulations, which are typically related to industrial equipment in power plants (nuclear power plants, wind turbines, dams…). Some primary concerns are the design of new-generation reactor types, nuclear fuel management and transport, material ageing for the life-cycle management of equipment, and the reliability and safety of the nuclear facilities. To address these challenges, SALOME is integrating a CAD/CAE modeling tool, industrial mesh generators, and advanced 3D visualization features. KEY FEatuRES MODEL OF SERVICE AND SUPPORT In order to accurately simulate complex DEVELOPMENT OPEN CASCADE provides a whole industrial systems, scientists and engi- The SALOME platform is actively deve- range of services around SALOME for neers need to integrate domain specific loped by CEA and EDF, two key players professional end-users, such as technical solvers regarding material science, solid in the French energy industry, and with support and specific training. mechanics, structural dynamics, fluid the support of the Capgemini subsidiary The “à-la-carte” support program is par- physics, thermohydraulics, nuclear phy- OPEN CASCADE, one of the leaders ticularly suited for universities and aca- sics, radiations or electromagnetism. The in software development for scienti- demic organizations, as well as industrial SALOME platform provides one single fic computing. This 15 years old par- companies: Figure 1: Screenshots of the public web site of SALOME simulation environment for all these tnership provides the SALOME project Helpdesk and technical support for (www.salome-plateform.org) fields.
    [Show full text]
  • Simulation Modelling for Computer Aided Design of Secondary Aerodynamic Wing Surfaces Aleksandr A
    Advances in Systems Science and Application (2015) Vol.15 No.4 338-350 Simulation Modelling for Computer Aided Design of Secondary Aerodynamic Wing Surfaces Aleksandr A. Gorbunov, Aleksej D. Pripadchev, Irina S. Bykova and Valerij V. Elagin Federal State Educational Government-financed Institution of Higher Professional Education, Orenburg State University, Orenburg region, Russia Abstract The simulation modelling technique of secondary aerodynamic wing surface of the long-haul aircraft using a high-precision mathematical simulation in the aerody- namics and hydrodynamics computer programme has been formulated in the present article. The method proposed is based on the modern methods in the field of computer-aided design of aircraft using CATIA three-dimensional sim- ulation and simulation modelling in SALOME environment. The use of high- precision mathematical simulation in computer-aided design of secondary aero- dynamic wing surfaces allows us to determine the aerodynamic characteristics of the secondary aerodynamic surface of the model developed and to verify the previous results of the project definition. Keywords Secondary aerodynamic surfaces; High-precision computer mathemat- ical simulation; Simulation model; A long-haul aircraft; Synthesis; Design au- tomation; Project procedures; Three-dimensional modelling 1 Introduction Building the new long-haul aircraft (A/C) with improved performance character- istics and enhancing the currently used aircraft is effected in various ways. One of them is improving its aerodynamics depending largely on the A/C look. In our view, the most rational way to improve the aerodynamic characteristics of the A/C is to install the secondary aerodynamic surfaces (SAS) at the wingtip. The use of SAS reduces the induced drag of the aircraft, enhances the effective wing aspect-ratio and ascensional power at the wingtip, improves A/C longitu- dinal/transverse stability, reduces specific fuel consumption, cuts takeoff run and landing roll of the aircraft.
    [Show full text]
  • Ph.D. in Mechanical Engineering with Dissertation in Intelligent Energetic Systems Program
    A proposal for the Doctor of Philosophy Degree in Mechanical Engineering with Dissertation in Intelligent Energetic Systems at the New Mexico Institute of Mining and Technology October 2015 1 Executive Summary ............................................................................................................... 4 A Purpose of the Program ................................................................................................... 5 A.1 The Primary Purpose of the Proposed Program ....................................................... 5 A.2 Consistency of the Proposed Program with the Role and Scope of the Institution .. 6 A.3 Priority of the Institution for the Proposed Program ................................................ 7 A.4 Curriculum ............................................................................................................... 8 B Justification for the Program ......................................................................................... 11 B.1 State and Regional Need ........................................................................................ 11 B.2 Duplication ............................................................................................................. 13 B.3 Inter-Institutional Collaboration and Cooperation ................................................. 16 C Clientele and Projected Enrollment............................................................................... 21 C.1 Clientele ................................................................................................................
    [Show full text]
  • Ssc-475 Guidelines for Evaluation of Marine Finite
    NTIS #PB2019-###### SSC-475 GUIDELINES FOR EVALUATION OF MARINE FINITE ELEMENT ANALYSES Editors: Dr. E.D. Wang, Mr. J.S. Bone, Dr. M. Ma, and Mr. A. Dinovitzer This document has been approved for public release and sale; its distribution is unlimited. SHIP STRUCTURE COMMITTEE 2019 SHIP STRUCTURE COMMITTEE RDML Richard Timme RADM Lorin Selby U. S. Coast Guard Assistant Commandant Chief Engineer and Deputy Commander for Prevention Policy (CG-5P) For Naval Systems Engineering (SEA05) Co-Chair, Ship Structure Committee Co-Chair, Ship Structure Committee Mr. Jeffrey Lantz Mr. Derek Novak Director, Commercial Regulations and Standards (CG-5PS) Senior Vice President, Engineering & Technology U.S. Coast Guard American Bureau of Shipping Mr. H. Paul Cojeen Dr. John MacKay Society of Naval Architects and Marine Engineers Head, Warship Performance, DGSTCO Defence Research & Development Canada - Atlantic Mr. Kevin Kohlmann Mr. Luc Tremblay Director, Office of Safety Executive Director, Domestic Vessel Regulatory Oversight Maritime Administration and Boating Safety, Transport Canada Mr. Albert Curry Mr. Eric Duncan Deputy Assistant Commandant for Engineering and Group Director, Ship Integrity and Performance Engineering Logistics (CG-4D) (SEA 05P) U.S. Coast Guard Naval Sea Systems Command Mr. Neil Lichtenstein Dr. Thomas Fu Deputy Director N7x, Engineering Directorate Director, Ship Systems and Engineering Research Division Military Sealift Command Office of Naval Research SHIP STRUCTURE SUB-COMMITTEE UNITED STATES COAST GUARD (CVE) AMERICAN BUREAU OF SHIPPING CAPT Robert Compher Mr. Daniel LaMere Mr. Jaideep Sirkar Ms. Christina Wang Mr. Charles Rawson SOCIETY OF NAVAL ARCHITECTS AND MARINE DEFENCE RESEARCH & DEVELOPMENT CANADA ENGINEERS ATLANTIC Mr. Frederick Ashcroft Dr. Malcolm Smith Dr.
    [Show full text]