Invasive Plant Species Early Detection in the San Francisco Bay Area Network

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Plant Species Early Detection in the San Francisco Bay Area Network National Park Service U.S. Department of the Interior Natural Resource Program Center Invasive Plant Species Early Detection in the San Francisco Bay Area Network 2007 Annual Report Natural Resource Report NPS/PWR/SFAN/NRTR—2008/135 ON THE COVER Golden Gate National Parks Conservancy employee Elizabeth Speith gathers data Photograph by: Marcus Koenen, NPS Invasive Plant Species Early Detection in the San Francisco Bay Area Network 2007 Annual Report Natural Resource Report NPS/PWR/SFAN/NRTR—2008/135 Andrea Williams and Elizabeth Speith National Park Service San Francisco Bay Area Network Fort Cronkhite Building 1063 San Francisco, CA 94965 July 2008 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resources Technical Reports series is used to disseminate the peer-reviewed results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. Current examples of such reports include the results of research that addresses natural resource management issues; natural resource inventory and monitoring activities; resource assessment reports; scientific literature reviews; and peer reviewed proceedings of technical workshops, conferences, or symposia . Views, statements, findings, conclusions, recommendations and data in this report are solely those of the author(s) and do not necessarily reflect views and policies of the U.S. Department of the Interior, NPS. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Printed copies of reports in these series may be produced in a limited quantity and they are only available as long as the supply lasts. This report is also available from the San Francisco Area I&M Network website ( http://www.nature.nps.gov/im/units/SFAN ) or the Natural Resource Publications Management website (http://www.nature.nps.gov/publications/NRPM ) on the internet, or by sending a request to the address on the back cover. Please cite this publication as: Williams, A. E. and E. Speith. 2008. Invasive plant species early detection in the San Francisco Bay Area Network: 2007 annual report. Natural Resource Technical Report NPS/PWR/SFAN/NRTR—2008/135. National Park Service, Fort Collins, Colorado. NPS D-44, November 2008 ii Contents Page List of Figures................................................................................................................................. v List of Tables .................................................................................................................................. v List of Appendixes........................................................................................................................ vii Executive Summary....................................................................................................................... ix Acknowledgements........................................................................................................................ xi 1.0 Introduction............................................................................................................................... 1 1.1 Background........................................................................................................................... 1 1.2 Objectives ............................................................................................................................. 2 2.0 Methods..................................................................................................................................... 3 2.1 Prioritization ......................................................................................................................... 3 2.1.1 Species ........................................................................................................................... 3 2.1.2 Areas .............................................................................................................................. 3 2.2 Search Areas ......................................................................................................................... 4 2.3 Field Methods ....................................................................................................................... 4 2.4 Trainings ............................................................................................................................... 5 2.5 Analyses/GIS Manipulations ................................................................................................ 6 2.6 Species List Revisions .......................................................................................................... 6 3.0 Results....................................................................................................................................... 7 3.1 Search Effort ......................................................................................................................... 7 3.2 Species Found ....................................................................................................................... 7 3.3 Species List Revisions .......................................................................................................... 8 3.4 Outreach.............................................................................................................................. 14 4.0 Discussion............................................................................................................................... 15 4.1 Collaboration....................................................................................................................... 15 iii Contents (continued Page 6.0 Literature Cited ....................................................................................................................... 17 7.0 Glossary .................................................................................................................................. 19 iv Figures Page Figure 1. Tiered levels of data collection........................................................................................ 4 Tables Page Table 1. Number of occurrences and species list revisions for GOGA based largely on 2006- 2007 field results. Percentages based on 66 subwatersheds searched. Changes in bold. ............... 9 v Appendixes Page Appendix A. Maps showing prioritized subwatersheds. .............................................................. 21 Appendix B: List of priority invasive species by park (2007)...................................................... 25 Golden Gate, Muir Woods, Presidio and Fort Point: Priority 1 Species .................................. 25 Golden Gate, Muir Woods, Presidio and Fort Point: Priority 2 Species .................................. 26 Golden Gate, Muir Woods, Presidio and Fort Point: Priority 3 Species .................................. 27 Golden Gate, Muir Woods, Presidio and Fort Point: Priority 4 Species .................................. 28 Golden Gate, Muir Woods, Presidio and Fort Point: Priority 5 Species .................................. 29 Appendix C. Maps showing survey results................................................................................... 31 vii Executive Summary Parks need to know where incipient populations of highly invasive plants are becoming established, and protect the most critical areas from invasion. This year was the first full field season of testing the early detection protocol. The methods detailed in this report focus on surveying road- and trail-side in priority areas using volunteers, and is based on the SFAN I&M Network’s Early Detection Monitoring of Invasive Plant Species in the San Francisco Bay Area Network: A Volunteer-Based Approach (Williams et al. 2008 in review). The Golden Gate National Recreation Area (GOGA) contains 38 subwatersheds deemed at high risk of invasion and/or harm to significant biological resources, of which 33 subwatershed were within the boundaries actively managed by the park. Searches were conducted by teams of two or three along the prioritized trails and roads in these subwatersheds looking for up to 83 plant species ranked as having the greatest risk for invasion in these areas. One thousand and one high- priority plant populations were mapped in the park. Of 66 subwatersheds searched, 45 were found to contain the highest priority species. Twenty-eight of these subwatersheds were deemed at high risk for invasion. Maps were created of all areas surveyed in the GOGA and priority plant species found. Based on results, the species list was modified to better reflect actual population levels within the park. Volunteers played a pivotal role in the implementation
Recommended publications
  • Catalogue2013 Web.Pdf
    bwfp British Wild Flower Plants www.wildflowers.co.uk Plants for Trade Plants for Home Specialist Species Wildflower Seed Green Roof Plants Over 350 species Scan here to of British native buy online plants 25th Anniversary Year Finding Us British Wild Flower Plants Burlingham Gardens 31 Main Road North Burlingham Norfolk NR13 4TA Phone / Fax: (01603) 716615 Email: [email protected] Website: http://www.wildflowers.co.uk Twitter: @WildflowersUK Nursery Opening Times Monday to Thursday: 10.00am - 4.00pm Friday: 10.00am - 2.30pm Please note that we are no longer open at weekends or Bank Holidays. Catalogue Contents Contact & Contents Page 02 About Us Page 03 Mixed Trays Pages 04-05 Reed Beds Page 06 Green Roofs Page 07 Wildflower Seeds Page 08 Planting Guide Pages 09-10 Attracting Wildlife Page 11 Rabbit-Proof Plants Page 12 List of Plants Pages 13-50 Scientific Name Look Up Pages 51-58 Terms & Conditions Page 59 www.wildflowers.co.uk 2 Tel/Fax:(01603)716615 About Us Welcome.... About Our Plants We are a family-run nursery, situated in Norfolk on a Our species are available most of the year in: six acre site. We currently stock over 350 species of 3 native plants and supply to all sectors of the industry Plugs: Young plants in 55cm cells with good rootstock. on a trade and retail basis. We are the largest grower of native plants in the UK and possibly Europe. Provenance Our species are drawn from either our own seed collections or from known provenance native sources. We comply with the Flora Locale Code of Practice.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Wild Plants of Round Valley Regional Preserve Common Name Version
    Wild Plants of Round Valley Regional Preserve Common Name Version A Photographic Guide Sorted by Form, Color and Family with Habitat Descriptions and Identification Notes Photographs and text by Wilde Legard District Botanist, East Bay Regional Park District New Revised and Expanded Edition - Includes the latest scientific names, habitat descriptions and identification notes Decimal Inches .1 .2 .3 .4 .5 .6 .7 .8 .9 1 .5 2 .5 3 .5 4 .5 5 .5 6 .5 7 .5 8 .5 9 1/8 1/4 1/2 3/4 1 1/2 2 1/2 3 1/2 4 1/2 5 1/2 6 1/2 7 1/2 8 1/2 9 English Inches Notes: A Photographic Guide to the Wild Plants of Round Valley Regional Preserve More than 2,000 species of native and naturalized plants grow wild in the San Francisco Bay Area. Most are very difficult to identify without the help of good illustrations. This is designed to be a simple, color photo guide to help you identify some of these plants. This guide is published electronically in Adobe Acrobat® format so that it can easily be updated as additional photographs become available. You have permission to freely download, distribute and print this guide for individual use. Photographs are © 2014 Wilde Legard, all rights reserved. In this guide, the included plants are sorted first by form (Ferns & Fern-like, Grasses & Grass-like, Herbaceous, Woody), then by most common flower color, and finally by similar looking flowers (grouped by genus within each family). Each photograph has the following information, separated by '-': COMMON NAME According to The Jepson Manual: Vascular Plants of California, Second Edition (JM2) and other references (not standardized).
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Centranthus Ruber (L.) DC., RED VALERIAN. Perennial Herb, Several
    Centranthus ruber (L.) DC., RED VALERIAN. Perennial herb, several-stemmed at base, decumbent or ascending to erect, to 100+ cm tall; shoots arising from base relatively unbranched, with long internodes, with leaves appearing tufted at nodes having leaves on unexpanded axillary shoots, glabrous, glaucous. Stems: cylindric, to 10 mm diameter, fused bases of upper cauline leaves forming ledges across each node, somewhat woody; hollow, pith wide. Leaves: opposite decussate, simple, petiolate (lower leaves) and sessile (upper leaves), without stipules; petiole channeled, to 40 mm long, somewhat indistinct from blade, expanded at base; blade elliptic or lanceolate (typical cauline leaves) to ovate (cauline leaves subtending reproductive shoots), 30–200 × 20–70 mm, reduced on lateral branches, long-tapered at base, entire, acuminate (typical leaves) to tail-like (caudate, cauline leaves) at tip, pinnately veined with midrib raised on lower surface, bluish green. Inflorescence: panicle of cymes (thyrse), terminal (axillary), domed, 35−70 mm across, with 2 or more orders of opposite decussate lateral branching and many flowers in a somewhat dense cluster, the second and third order forks with a terminal flower, ultimate branchlets somewhat 1-sided, bracteate, essentially glabrous; central axis with several−10 nodes; bracts at the lowest node 2 (= 1 subtending each main branch), bases fused across node, leaflike, ovate, 3−4 mm long, midvein slightly raised on lower surface; first internode 10+ mm long, decreasing upward; bracts subtending lateral branches and larger branchlets oblong or narrowly triangular to narrowly spatulate, 1−3 mm long, bases fused across node, with some short glandular hairs on margins; bractlet subtending flower awl-shaped, 1−2 mm long increasing in fruit, usually abscised before fruit matures; pedicel absent.
    [Show full text]
  • Centranthus Trinervis (Viv.) Bég
    CENTRANTHUS TRINERVIS - CBNC Centranthus trinervis (Viv.) Bég. Nom d’espèce ● Centranthus trinervis (Viv.) Bég. (+ synonymes) ● Centranthus nervosus Moris ● Valeriana trinervis Viv. Taxonomie ● Ordre : Dipsacales ● Famille : CAPRIFOLIACEAE Noms communs ● Français : Centrante trinervé Description ● Plante vivace, glabre et glauque, en touffes, à souche épaisse. Tiges de 20 à 40 cm, dressées, striées, creuses. Feuilles opposées, entières, oblongues-ovales, à plusieurs nervures divergentes. Inflorescence en panicule corymbiforme. Fleurs à corolle petite (2 à 5 mm), blanche à rosée, à éperon très petit, réduit à une bosse plus courte que l'ovaire. Fruits de 2-3 mm, glabres, surmontés de soies plumeuses. ● Type biologique : Hémicryptophyte. Photos 1 CENTRANTHUS TRINERVIS - CBNC Biologie ● Période de floraison : avril-juin. ● Période de fructification : mai-juin. ● Pollinisation : par les insectes. ● Stratégie de dispersion : Les semences sont disséminées par le vent (anémochorie) grâce aux pappus plumeux présents sur les fruits. N éanmoins, certains akènes n’en possèdent pas, la dissémination se fait alors à proximité ou en contrebas des pieds- mères (barochorie). Ecologie ● Etage de végétation : thermoméditerranéen ● Milieu : La plante croit dans les fissures et sur les replats de falaises granitiques très abruptes, en exposition nord-est et nord- ouest, entre 150 et 200 m d’altitude. ● Habitat : 8220.20 : Falaises siliceuses thermophiles de Corse. ● Substrat : Granite Photos d’habitat 2 CENTRANTHUS TRINERVIS - CBNC 3 CENTRANTHUS TRINERVIS - CBNC Distribution L’espèce est endémique stricte de Corse. Les populations sardes, historiquement rattachées à C. trinervis, sont bien séparées géographiquement et écologiquement et ont été individualisées sous l'appellation Centranthus amazonum Fridl. (A. Fridlender, A. Raynal-Roques, 1998). Ce taxon est extrêmement localisé, puisque la totalité de la population connue se résume à une seule station comprenant de 100 à 145 individus, implantés sur les falaises granitiques du Massif de la Trinité (commune de Bonifacio).
    [Show full text]
  • Phylogeny and Phylogenetic Taxonomy of Dipsacales, with Special Reference to Sinadoxa and Tetradoxa (Adoxaceae)
    PHYLOGENY AND PHYLOGENETIC TAXONOMY OF DIPSACALES, WITH SPECIAL REFERENCE TO SINADOXA AND TETRADOXA (ADOXACEAE) MICHAEL J. DONOGHUE,1 TORSTEN ERIKSSON,2 PATRICK A. REEVES,3 AND RICHARD G. OLMSTEAD 3 Abstract. To further clarify phylogenetic relationships within Dipsacales,we analyzed new and previously pub- lished rbcL sequences, alone and in combination with morphological data. We also examined relationships within Adoxaceae using rbcL and nuclear ribosomal internal transcribed spacer (ITS) sequences. We conclude from these analyses that Dipsacales comprise two major lineages:Adoxaceae and Caprifoliaceae (sensu Judd et al.,1994), which both contain elements of traditional Caprifoliaceae.Within Adoxaceae, the following relation- ships are strongly supported: (Viburnum (Sambucus (Sinadoxa (Tetradoxa, Adoxa)))). Combined analyses of C ap ri foliaceae yield the fo l l ow i n g : ( C ap ri folieae (Diervilleae (Linnaeeae (Morinaceae (Dipsacaceae (Triplostegia,Valerianaceae)))))). On the basis of these results we provide phylogenetic definitions for the names of several major clades. Within Adoxaceae, Adoxina refers to the clade including Sinadoxa, Tetradoxa, and Adoxa.This lineage is marked by herbaceous habit, reduction in the number of perianth parts,nectaries of mul- ticellular hairs on the perianth,and bifid stamens. The clade including Morinaceae,Valerianaceae, Triplostegia, and Dipsacaceae is here named Valerina. Probable synapomorphies include herbaceousness,presence of an epi- calyx (lost or modified in Valerianaceae), reduced endosperm,and distinctive chemistry, including production of monoterpenoids. The clade containing Valerina plus Linnaeeae we name Linnina. This lineage is distinguished by reduction to four (or fewer) stamens, by abortion of two of the three carpels,and possibly by supernumerary inflorescences bracts. Keywords: Adoxaceae, Caprifoliaceae, Dipsacales, ITS, morphological characters, phylogeny, phylogenetic taxonomy, phylogenetic nomenclature, rbcL, Sinadoxa, Tetradoxa.
    [Show full text]
  • How Often to Divide Perennials Phone: (208) 292-2525 FAX: (208) 292-2670 E-Mail: [email protected] Web: Uidaho.Edu/Kootenai
    958 South Lochsa St Post Falls, ID 83854 How Often to Divide Perennials Phone: (208) 292-2525 FAX: (208) 292-2670 E-mail: [email protected] Web: uidaho.edu/kootenai Some perennials need division frequently, while others do better if left undisturbed. The list below illustrates how often to divide many common perennials. These recommendations assume suitable growing conditions and overall healthy plants. Plants that need division every 1-3 years Plants that need division every 4-5 years Achillea – yarrow Armeria – sea thrift Anchusa – bugloss Astilbe – astilbe Anthemis – hardy marguerite Campanula – bellflower Artemisia – wormwood Centaurea – perennial cornflower Aster – aster Chelone – turtlehead Delphinium – Delphinium Coreopsis – tickseed Iris – bearded iris Dicentra exima – fern leaf bleeding heart Monarda – bee balm Echinacea – coneflower Phlox – phlox Erigeron – fleabane Physostegia – false dragonhead Heuchera – coral bells Primula – primrose Liatris – blazing-star Lilium – true lilies Plants that need division every 6-10 years Rudbeckia – black-eyed-Susan or do not like to be disturbed Scabiosa – pincushion flower Alchemilla – lady’s mantle Solidago – goldenrod Brunnera – Siberian bugloss Stachys – lamb’s ears Cimicifuga – snakeroot Veronica – speedwell Echinops – globe thistle Epimedium – bishop’s hat Plants that need division only every 10 Geranium – hardy geranium or more years Hemerocallis – daylily Aconitum – monkshood Hosta – hosta Anenome – anenome, windflower Iberis – candytuft Aruncus – goat’s beard Iris – Siberian iris
    [Show full text]
  • Pollinators and Nectar Producing Plants
    Pollinators and Nectar Producing Plants A pollinator is any animal that acts as an agent for distributing pollen from plant to plant. Pollinators ensure full harvests and seed production from many agricultural crops and provide for healthy plants grown in backyards, community gardens, and rural and urban areas. Populations of insect pollinators such as butterflies and bees have declined dramatically in recent years. Even though we'd all be in trouble without pollinators, many people ignore their value and at worst eradicate them with indiscriminate pesticide application and habitat destruction. Pollinators are worth protecting for their own sakes, but we would do well to remember that these creatures facilitate reproduction in 90% of the world's flowering plants, and that--on average--one in every three bites of food we humans take comes courtesy of an animal pollinator. When people think of pollination, many focus on bees. In many cases the use of insecticides for pest control has had the unwelcome side effect of killing the bees necessary for pollinating crops. Such environmental stresses plus several species of parasitic mites devastated honeybee populations in the United States beginning in the 1980s, making it necessary for farmers to rent bees from keepers throughout the U.S. in order to get their crops pollinated and greatly affecting the pollination of plants in the wild. Bees are the principal pollinators, but there are other important pollinators as well. These include other insects such as flies, moths, butterflies, wasps, and even some beetles. They also include hummingbirds and bats. Creating an enjoyable and environmentally friendly backyard habitat helps support all valuable pollinators.
    [Show full text]
  • Alien Flora of Europe: Species Diversity, Temporal Trends, Geographical Patterns and Research Needs
    Preslia 80: 101–149, 2008 101 Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs Zavlečená flóra Evropy: druhová diverzita, časové trendy, zákonitosti geografického rozšíření a oblasti budoucího výzkumu Philip W. L a m b d o n1,2#, Petr P y š e k3,4*, Corina B a s n o u5, Martin H e j d a3,4, Margari- taArianoutsou6, Franz E s s l7, Vojtěch J a r o š í k4,3, Jan P e r g l3, Marten W i n t e r8, Paulina A n a s t a s i u9, Pavlos A n d r i opoulos6, Ioannis B a z o s6, Giuseppe Brundu10, Laura C e l e s t i - G r a p o w11, Philippe C h a s s o t12, Pinelopi D e l i p e t - rou13, Melanie J o s e f s s o n14, Salit K a r k15, Stefan K l o t z8, Yannis K o k k o r i s6, Ingolf K ü h n8, Hélia M a r c h a n t e16, Irena P e r g l o v á3, Joan P i n o5, Montserrat Vilà17, Andreas Z i k o s6, David R o y1 & Philip E. H u l m e18 1Centre for Ecology and Hydrology, Hill of Brathens, Banchory, Aberdeenshire AB31 4BW, Scotland, e-mail; [email protected], [email protected]; 2Kew Herbarium, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, United Kingdom; 3Institute of Bot- any, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic, e-mail: [email protected], [email protected], [email protected], [email protected]; 4Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 01 Praha 2, Czech Republic; e-mail: [email protected]; 5Center for Ecological Research and Forestry Applications, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, e-mail: [email protected], [email protected]; 6University of Athens, Faculty of Biology, Department of Ecology & Systematics, 15784 Athens, Greece, e-mail: [email protected], [email protected], [email protected], [email protected], [email protected]; 7Federal Environment Agency, Department of Nature Conservation, Spittelauer Lände 5, 1090 Vienna, Austria, e-mail: [email protected]; 8Helmholtz Centre for Environmental Research – UFZ, Department of Community Ecology, Theodor-Lieser- Str.
    [Show full text]
  • Greek Island Odyssey Holiday Report 2013
    Greek Island Odyssey Holiday Report 2013 Day 1: Saturday 20th April As our plane came in to land at Rhodes airport the wildlife spotting began! We had a good view of a female Marsh Harrier and Little Egret over the nearby river. Then, on the drive to the hotel, we saw a Wood Sandpiper on the same river by the road bridge. Upon our arrival in the medieval old town Andy and Denise made a quick foray into the moat and town and found Starred Agamas, Oertzen’s Rock Lizards, a Dahl’s Whip Snake and Large Wall Brown butterflies. It was late evening by then and so we sat at a local taverna for our first traditional Greek mezedes meal and discussed plans for the week ahead over a civilized glass of wine. Day 2: Sunday 21st April After a hearty breakfast at the hotel we set off on our first Anatolian Worm Lizard full day of exploration. Our first stop was the archaeological park at Monte Smith. After parking the car and with lots of butterflies flying around us, it was hard to know just what to look at first. Andy diverted our attention, announcing that he had found an Anatolian Worm Lizard, a strange creature looking more like a worm than a lizard and which is found in Turkey and Greece. On Rhodes it is recorded only in the northern parts of the island. Lesser Fiery Copper We then moved on to watch the butterflies. The first two we identified were male and female Lesser Fiery Coppers, soon followed by Eastern Bath White, and Clouded yellow.
    [Show full text]
  • Duplications and Expression of DIVARICATA-Like Genes in Dipsacales
    Duplications and Expression of DIVARICATA-Like Genes in Dipsacales Dianella G. Howarth* and Michael J. Donoghue *Department of Biological Sciences, St. John’s University, Queens, NY; and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT The genetics underlying flower symmetry shifts between radial and bilateral symmetry has been intensively studied in the model Antirrhinum majus. Understanding the conservation or diversification of this genetic pathway in other plants is of special interest in understanding angiosperm evolution and ecology. Evidence from Antirrhinum indicates that TCP and MYB transcription factors, especially CYCLOIDEA (CYC), DICHOTOMA (DICH), DIVARICATA (DIV), and RADIALIS (RAD) play a role in specifying dorsal identity (CYC, DICH, and RAD) and ventral identity (DIV) in the corolla and androecium of monosymmetric (bilateral) flowers. Previous data indicate that the ECE clade of TCP genes (including CYC and DICH) underwent two duplication events around the diversification of the core eudicots. In this study, we examined the duplication events within Dipsacales, which contains both radially and bilaterally symmetrical flowered species. Additionally, we report here the phylogenetic relationships of the DIV-like genes across core eudicots. Like TCP genes, we found three core eudicot clades of DIV-like genes, with duplications occurring around the diversification of the core eudicots, which we name DIV1, DIV2, and DIV3. The Antirrhinum genes, DIVARICATA and its sister DVL1, fall into the DIV1 clade. We also found additional duplications within these clades in Dipsacales. Specifically, the Caprifoliaceae (bilaterally symmetrical clade) duplicated independently in each of the three core eudicot DIV clades. Downloaded from Using reverse transcription polymerase chain reaction (rtPCR), we showed that most of these copies are expressed across floral tissues in the Dipsacales species Heptacodium miconioides.
    [Show full text]