The Patient with Ataxia Saf FG Maggs

Total Page:16

File Type:pdf, Size:1020Kb

The Patient with Ataxia Saf FG Maggs 42 Acute Medicine 2014; 13(1): 42-47 Problem-Based Review 42 The Patient with Ataxia saf FG Maggs Abstract In this article we look at the causes of ataxia, and how the patient presenting with ataxia should be managed. One of the difficulties in managing the patient with ataxia is that acute ataxia has many causes, but usually these can be teased out by means of a careful history and examination. Investigations can then be targeted at confirming or disproving the differential diagnosis. Some patients with ataxia need to be managed in hospital, but many can be investigated, and receive therapy, as an outpatient. Keywords Ataxia, Unsteadiness, Coordination, Cerebellum Key points • In the patient presenting with acute ataxia consider cerebellar infarcts, acute intoxication, Miller-Fisher syndrome and Wernicke-Korsakoff syndrome: these diagnoses must not be missed and require urgent management • An MRI scan of the brain is the preferred imaging modality for the cerebellum • Many patients with acute ataxia will need to be admitted, especially if there is a need for ongoing monitoring, or a risk of falls that means the patient would be unsafe at home. However, if an MRI head is normal, and the patient is well, then further investigations could be carried out as an outpatient What is ataxia? (e.g. anticonvulsants). In adults, the most frequent The word ataxia comes from Greek meaning a “lack causes are ischaemic or haemorrhagic strokes in of order”. Ataxia is the manifestation of dysfunction the cerebellum or brain stem, intoxication (such as of the parts of the nervous system that coordinate therapeutic drugs, alcohol, and drugs of abuse), and movement, and is characterised by clumsy and Wernicke-Korsakoff syndrome due to nutritional uncoordinated intentional movement of the limbs, deprivation (usually, but not always, in alcoholic trunk, and cranial muscles. people). Demyelinating lesions such as multiple Ataxia may result from pathology in the sclerosis can also have a rapid onset and, if they cerebellum (cerebellar ataxia), may be due to loss occur in the cerebellum or its connections, present of proprioception as a result of dysfunction of the with acute ataxia. The Miller-Fisher variant form of dorsal columns of the spinal cord (sensory ataxia), Guillain-Barre syndrome should to be considered in or may be due to vestibular dysfunction (vestibular patients presenting with acute ataxia. ataxia). The three types of ataxia have overlapping causes, and therefore can either coexist or occur in Case scenario isolation. A 66 year old retired teacher was referred to the medical take complaining of leg weakness, general malaise and lethargy. What are the causes of ataxia? He described feeling as if his legs could not hold him, and Inherited ataxias may be classified by their mode had to hold onto things to steady himself, but his legs were Fenella G Maggs of inheritance. For example, Wilson’s disease1 not painful, and he did not complain of any numbness or DPhil, MRCP is a recessive gene disorder which results in an sensory loss. Four weeks previously he had been able to play Consultant in Acute inability to properly excrete copper from the body: golf but was now mobile only with two sticks. He described Medicine, Royal United Hospital, Bath accumulation of copper in the nervous system can some weight loss. cause ataxia. Degenerative ataxia is a term used to His past medical history included hypertension, Correspondence: denote ataxia due to cerebellar atrophy of both hypercholesterolaemia and peripheral vascular disease, but F G Maggs genetic and unknown causation. he lived an active and independent life. He was taking Royal United Hospital, The list of acquired causes of ataxia is extensive simvastatin, bendroflumethiazide, felodipine, enalapril Combe Park, Bath. BA1 3NG (Box 1). Age at onset is an important determinant of and aspirin. He was a current smoker, smoking 15 – 20 Email: fgmaggs@doctors. cause. Ataxia of acute onset in a child is most likely to cigarettes per day for 53 years, and drank up to 40 units of net.uk result from acute cerebellitis or may be drug-induced alcohol per week. © 2014 Rila Publications Ltd. Acute Medicine 2014; 13(1): 42-47 43 The Patient with Ataxia Box 1. Causes of acquired ataxia Examples Notes Focal lesions Stroke, tumour, multiple sclerosis Cause the type of ataxia corresponding to the site of the lesion Exogenous substances Alcohol, lithium,2 antiepileptic drugs,3 Lithium level over 1.5mEq/L metronidazole,4 benzodiazepines,5 amiodarone,6 recreational drugs,7 Exposure to high levels of methylmercury solvent poisoning,8 methylmercury9 through consumption of fish with high mercury concentrations Radiation poisoning Acute radiation poisoning with an absorbed dose of more than 30 Grays10 Degenerative causes Alcohol, paraneoplasia, normal Paraneoplastic syndromes: ataxia may appear pressure hydrocephalus, high altitude months or years before the cancer is diagnosed. cerebral oedema, Coeliac disease,11 cerebellitis Cerebellitis usually seen in children Nutritional Vitamin B12 deficiency12 Cerebellar and sensory ataxia Vitamin B1 deficiency 13 Often part of Wernicke-Korsakoff syndrome in alcoholic people and other patients who have severe nutritional deficiency Severe vitamin E deficiency14 Occurs in fat malabsorption Infections Chicken pox15 Ataxia may appear in the healing stages of the infection and last for days or weeks. Normally, the ataxia resolves completely over time. Cerebellar abscess Rapid onset of ataxia with headache; can be a complication of middle ear infections HIV infection16 Progressive ataxia that becomes debilitating over several months; many cases of HIV dementia may exhibit ataxia at onset Prion protein disease can have a predominantly ataxic presentation17 Endocrine Hypothyroidism18 Reversible cerebellar ataxia, dementia, peripheral neuropathy, psychosis and coma. Most of the neurological complications improve completely Hyponatraemia19 after thyroid hormone replacement therapy. Peripheral neuropathy Isolated sensory ataxia On examination he appeared well. He was afebrile, with between light-headedness and vertigo, which are blood pressure 130/65, pulse 72 bpm, respiratory rate 21/ often lumped together as a feeling of ‘dizziness’. A min, and oxygen saturations 98% on air. Cardiovascular, history of vertigo, tinnitus, and hearing problems respiratory and abdominal examinations were unremarkable. may indicate a peripheral vestibular problem, Neurological examination revealed proximal muscle wasting while the presence of speech disturbance and visual but no other abnormal neurology. His gait was ataxic but symptoms suggests cerebellar pathology. Explore there were no other cerebellar signs. symptoms that may indicate increased intracranial pressure (e.g. headache, nausea, vomiting) or What are the vital clues from the problems in structures contiguous to the cerebellum history? (e.g. weakness or sensory problems in the limbs or cranial nerve deficits). Presenting complaint The duration of symptoms may give clues as to Precise questions may need to be asked to be sure the underlying cause: strokes usually present with a what the patient is experiencing. Patients will be short history while a degenerative cause may have a likely to describe ataxia as unsteadiness, a lack of prolonged history. In slow-onset, chronic bilateral balance or giddiness. It is important to distinguish cases of vestibular dysfunction, dysequilibrium may © 2014 Rila Publications Ltd. 44 Acute Medicine 2014; 13(1): 42-47 The Patient with Ataxia be the sole presentation, while acute labyrinthitis differentiate cerebellar ataxia from other types of is usually unilateral and associated with prominent incoordination. vertigo, nausea and vomiting. Co-ordination Systemic enquiry / Past medical history • There is uncontrolled tremor of limbs during Evaluate risk factors for cerebrovascular disease such relatively slow but targeted movements as hypertension and hypercholesterolaemia. Ask • There may also be tremor of the head and about falls: many patients with ataxia may be able trunk (titubation)22 to investigated and managed as outpatients, but a • Inspect for limb dysmetria (lack of coordination history of falls may preclude this. Studies examining typified by the undershoot or overshoot falls in patients with ataxia show that 74-93% of of intended position) by testing finger- patients have fallen at least once in the past year and to-nose, and heel-to-shin, movements,22 up to 60% admit to fear of falling.20,21 Ask about dysdiadokokinesia, and heel-tapping symptoms of hypothyroidism. Determine whether • Check for overshooting with the wrist-tapping there has been any weight loss which may suggest an test, in which the patient is unable to maintain underlying malignancy. postures against an unexpected displacement Speech Drug history • Evaluate the speech for dysarthria and scanning Several prescription drugs can cause ataxia. Most speech. In scanning speech, the volume of the antiepileptic drugs have cerebellar ataxia as a possible patient’s voice varies from low to high22 adverse effect,3 high lithium levels can lead to ataxia,2 • There may also be slurring of speech and and, in high doses, benzodiazepines can cause short tremor of the voice term ataxia.3 Ask about cannabis ingestion and other Eye movements recreational drugs.7 • Examine eye movements for nystagmus, jerkiness on attempted smooth pursuit, and Social history slowed saccades. Oculomotor palsy can be Alcohol causes reversible cerebellar and vestibular
Recommended publications
  • Multiplex Families with Multiple System Atrophy
    ORIGINAL CONTRIBUTION Multiplex Families With Multiple System Atrophy Kenju Hara, MD, PhD; Yoshio Momose, MD, PhD; Susumu Tokiguchi, MD, PhD; Mitsuteru Shimohata, MD, PhD; Kenshi Terajima, MD, PhD; Osamu Onodera, MD, PhD; Akiyoshi Kakita, MD, PhD; Mitsunori Yamada, MD, PhD; Hitoshi Takahashi, MD, PhD; Motoyuki Hirasawa, MD, PhD; Yoshikuni Mizuno, MD, PhD; Katsuhisa Ogata, MD, PhD; Jun Goto, MD, PhD; Ichiro Kanazawa, MD, PhD; Masatoyo Nishizawa, MD, PhD; Shoji Tsuji, MD, PhD Background: Multiple system atrophy (MSA) has Results: Consanguineous marriage was observed in 1 been considered a sporadic disease, without patterns of of 4 families. Among 8 patients, 1 had definite MSA, 5 inheritance. had probable MSA, and 2 had possible MSA. The most frequent phenotype was MSA with predominant parkin- Objective: To describe the clinical features of 4 multi- sonism, observed in 5 patients. Six patients showed pon- plex families with MSA, including clinical genetic tine atrophy with cross sign or slitlike signal change at aspects. the posterolateral putaminal margin or both on brain mag- netic resonance imaging. Possibilities of hereditary atax- Design: Clinical and genetic study. ias, including SCA1 (ataxin 1, ATXN1), SCA2 (ATXN2), Machado-Joseph disease/SCA3 (ATXN1), SCA6 (ATXN1), Setting: Four departments of neurology in Japan. SCA7 (ATXN7), SCA12 (protein phosphatase 2, regula- tory subunit B, ␤ isoform; PP2R2B), SCA17 (TATA box Patients: Eight patients in 4 families with parkinson- binding protein, TBP) and DRPLA (atrophin 1; ATN1), ism, cerebellar ataxia, and autonomic failure with age at ␣ onset ranging from 58 to 72 years. Two siblings in each were excluded, and no mutations in the -synuclein gene family were affected with these conditions.
    [Show full text]
  • Non-Progressive Congenital Ataxia with Cerebellar Hypoplasia in Three Families
    248 Non-progressive congenital ataxia with cerebellar hypoplasia in three families . No 1.6 Z. YAPICI & M. ERAKSOY . .. I.Y.. \ .~ ---················ No of Neurology, of Child Neuro/ogy, Facu/ty of Turkey Abstract Non-progressive with cerebellar hypoplasia are a rarely seen heterogeneous group ofhereditary cerebellar ataxias. Three sib pairs from three different families with this entity have been reviewed, and differential diagnosis has been di sc ussed. in two of the families, the parents were consanguineous. Walking was delayed in ali the children. Truncal and extremiry were then noticed. Ataxia was severe in one child, moderate in two children, and mild in the remaining revealed horizontal, horizonto-rotatory and/or vertical variable degrees ofmental and pvramidal signs besides truncal and extremity ataxia. In ali the cases, cerebellar hemisphere and vermis were in MRI . During the follow-up period, a gradual clinical improvement was achieved in ali the Condusion: he cu nsidered as recessive in some of the non-progressive ataxic syndromes. are being due to the rarity oflarge pedigrees for genetic studies. Iffurther on and clini cal progression of childhood associated with cerebellar hypoplasia is be a cu mbined of metabolic screening, long-term follow-up and radiological analyses is essential. Key Words: Cerebella r hy poplasia, ataxic syndromes are common during Patients 1 and 2 (first family) childhood. Friedreich 's ataxia and ataxia-telangiectasia Two brothers aged 5 and 7 of unrelated parents arc two best-known examples of such rare syn- presented with a history of slurred speech and diffi- dromes characterized both by their progressive nature culty of gait.
    [Show full text]
  • Comprehensive Systematic Review: Treatment of Cerebellar Motor Dysfunction and Ataxia
    Comprehensive systematic review: Treatment of cerebellar motor dysfunction and ataxia Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology Theresa A. Zesiewicz, MD1; George Wilmot, MD2; Sheng-Han Kuo, MD3; Susan Perlman, MD4; Patricia E. Greenstein, MB, BCh5; Sarah H. Ying, MD6; Tetsuo Ashizawa, MD7; S.H. Subramony, MD8; Jeremy D. Schmahmann, MD9; K.P. Figueroa10; Hidehiro Mizusawa, MD11; Ludger Schöls, MD12; Jessica D. Shaw, MPH1; Richard M. Dubinsky, MD, MPH13; Melissa J. Armstrong, MD, MSc8; Gary S. Gronseth, MD13; Kelly L. Sullivan, PhD14 1) Department of Neurology, University of South Florida, Tampa 2) Department of Neurology, Emory University, Atlanta, GA 3) Department of Neurology, Columbia University, New York, NY 4) Department of Neurology, University of California, Los Angeles 5) Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 6) Shire, Lexington, MA, and the Johns Hopkins University School of Medicine, Baltimore, MD 7) Department of Neurology, Houston Methodist Research Institute, TX 8) Department of Neurology, University of Florida College of Medicine, Gainesville 9) Department of Neurology, Massachusetts General Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 10) Department of Neurology, University of Utah, Salt Lake City 11) National Center of Neurology and Psychiatry, Tokyo, Japan 12) Department of Neurology and Hertie-Institute for Clinical Brain Research, Tübingen, Germany 13) Department of Neurology, University of Kansas Medical Center, Kansas City 14) Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro Address correspondence and reprint requests to American Academy of Neurology: [email protected] Title character count: 71 Abstract word count: 254 Manuscript word count: 7,891 Approved by the Guideline Development, Dissemination, and Implementation Subcommittee on October 22, 2016; by the Practice Committee on October 2, 2017; and by the AAN Institute Board of Directors on December 5, 2017.
    [Show full text]
  • Ataxia in Children: Early Recognition and Clinical Evaluation Piero Pavone1,6*, Andrea D
    Pavone et al. Italian Journal of Pediatrics (2017) 43:6 DOI 10.1186/s13052-016-0325-9 REVIEW Open Access Ataxia in children: early recognition and clinical evaluation Piero Pavone1,6*, Andrea D. Praticò2,3, Vito Pavone4, Riccardo Lubrano5, Raffaele Falsaperla1, Renata Rizzo2 and Martino Ruggieri2 Abstract Background: Ataxia is a sign of different disorders involving any level of the nervous system and consisting of impaired coordination of movement and balance. It is mainly caused by dysfunction of the complex circuitry connecting the basal ganglia, cerebellum and cerebral cortex. A careful history, physical examination and some characteristic maneuvers are useful for the diagnosis of ataxia. Some of the causes of ataxia point toward a benign course, but some cases of ataxia can be severe and particularly frightening. Methods: Here, we describe the primary clinical ways of detecting ataxia, a sign not easily recognizable in children. We also report on the main disorders that cause ataxia in children. Results: The causal events are distinguished and reported according to the course of the disorder: acute, intermittent, chronic-non-progressive and chronic-progressive. Conclusions: Molecular research in the field of ataxia in children is rapidly expanding; on the contrary no similar results have been attained in the field of the treatment since most of the congenital forms remain fully untreatable. Rapid recognition and clinical evaluation of ataxia in children remains of great relevance for therapeutic results and prognostic counseling. Keywords: Ataxia, Diagnostic maneuvers, Acute cerebellitis, Cerebellar syndrome, Cerebellar malformations Background Clinical signs in cerebellar ataxic patients are related to Ataxia in children is a common clinical sign of various impaired localization.
    [Show full text]
  • Full Text (PDF)
    RESIDENT & FELLOW SECTION Clinical Reasoning: Section Editor An 82-year-old man with worsening gait John J. Millichap, MD Sheena Chew, MD SECTION 1 neck and left leg cramps. He denied bowel or bladder Ivana Vodopivec, MD, An 82-year-old man with hypothyroidism presented symptoms. PhD with difficulty walking. The patient was previously healthy, playing com- Aaron L. Berkowitz, MD, One year prior to presentation, he noticed that his petitive sports at the national level into his late 70s. PhD legs occasionally “froze” when initiating walking. His His only medication was levothyroxine. gait progressively worsened over the year. He devel- oped balance difficulty, tripping and falling twice Question for consideration: Correspondence to without loss of consciousness. In the 4 months prior Dr. Chew: to presentation, he started using a cane, a rolling 1. What examination findings would help to localize [email protected] walker, then a wheelchair. He reported occasional the etiology of his abnormal gait? GO TO SECTION 2 From the Department of Neurology, Brigham and Women’s Hospital (S.C., I.V., A.L.B.), and Department of Neurology, Massachusetts General Hospital (S.C.), Harvard Medical School, Boston. Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article. e246 © 2017 American Academy of Neurology ª 2017 American Academy of Neurology. Unauthorized reproduction of this article is prohibited. SECTION 2 arm dysdiadochokinesia and right leg dysmetria, but The neurologic basis of gait spans the entire neuraxis, no left-sided or truncal ataxia.
    [Show full text]
  • ATAXIA TELANGIECTASIA Recommendations for Diagnosis and Treatment
    STRATEGIC COMMITTEE AND STUDY GROUP ON IMMUNODEFICIENCIES ITALIAN ASSOCIATION OF PAEDIATRIC HAEMATOLOGY AND ONCOLOGY ATAXIA TELANGIECTASIA Recommendations for diagnosis and treatment Final version June 2007 Coordinator AIEOP Strategic Committee and A. Plebani Study Group on Immunodeficiencies: Paediatric Clinic Brescia Scientific Committee: A.G. Ugazio (Rome) I. Quinti (Rome) D. De Mattia (Bari) F. Locatelli (Pavia) L.D. Notarangelo (Brescia) A. Pession (Bologna) MC. Pietrogrande (Milan) C. Pignata (Naples) P. Rossi (Rome) PA. Tovo (Turin) C. Azzari (Florence) M. Aricò (Palermo) Head: M. Fiorilli (Rome) Document preparation: M. Fiorilli (Rome) L. Chessa (Rome) V. Leuzzi (Rome) M. Duse (Rome) A. Plebani (Brescia) A. Soresina (Brescia) Data Review Committee: M. Fiorilli (Rome) A. Soresina (Brescia) R. Rondelli (Bologna) Data Collection-Management-Statistical AIEOP-FONOP Operative Centre Analysis: c/o Sant’Orsola-Malpighi Hospital Via Massarenti 11 (pad. 13) 40138 Bologna 2 AIEOP SCSGI PARTICIPATING CENTRES 0901 ANCONA Clinica Pediatrica Prof. Coppa Ospedale dei Bambini “G. Salesi” Prof. P.Pierani Via F. Corridoni 11 60123 ANCONA Tel.071/5962360 Fax 071/36363 e-mail: [email protected] 1308 BARI Dipart. Biomedicina dell’Età Prof. D. De Mattia Evolutiva Dr. B. Martire Clinica Pediatrica I P.zza G. Cesare 11 70124 BARI Tel. 080/5478973 - 5542867 Fax 080/5592290 e-mail: [email protected] [email protected] 1307 BARI Clinica Pediatrica III Prof. L. Armenio Università di Bari Dr. F. Cardinale P.zza Giulio Cesare 11 70124 BARI Tel. 080/5426802 Fax 080/5478911 e-mail: [email protected] 1306 BARI Dip.di Scienze Biomediche e Prof. F. Dammacco Oncologia umana Prof.
    [Show full text]
  • Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias
    International Journal of Molecular Sciences Review Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias Giacomo Garone 1,2 , Alessandro Capuano 2 , Lorena Travaglini 3,4 , Federica Graziola 2,5 , Fabrizia Stregapede 4,6, Ginevra Zanni 3,4, Federico Vigevano 7, Enrico Bertini 3,4 and Francesco Nicita 3,4,* 1 University Hospital Pediatric Department, IRCCS Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, 00165 Rome, Italy; [email protected] 2 Movement Disorders Clinic, Neurology Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] (A.C.); [email protected] (F.G.) 3 Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] (L.T.); [email protected] (G.Z.); [email protected] (E.B.) 4 Laboratory of Molecular Medicine, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] 5 Department of Neuroscience, University of Rome Tor Vergata, 00133 Rome, Italy 6 Department of Sciences, University of Roma Tre, 00146 Rome, Italy 7 Neurology Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +0039-06-68592105 Received: 30 April 2020; Accepted: 13 May 2020; Published: 20 May 2020 Abstract: Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs).
    [Show full text]
  • ENU Mutagenesis Identifies Mice Modeling Warburg Micro Syndrome
    Experimental Neurology 267 (2015) 143–151 Contents lists available at ScienceDirect Experimental Neurology journal homepage: www.elsevier.com/locate/yexnr Regular Article ENU mutagenesis identifies mice modeling Warburg Micro Syndrome with sensory axon degeneration caused by a deletion in Rab18 Chih-Ya Cheng a, Jaw-Ching Wu a,b,c,Jin-WuTsaid,e, Fang-Shin Nian d,Pei-ChunWue,f, Lung-Sen Kao e,f, Ming-Ji Fann e,f, Shih-Jen Tsai g,h, Ying-Jay Liou g,h,Chin-YinTaii, Chen-Jee Hong d,g,h,⁎ a Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan b Institute of Clinical Medicine and Cancer Research Center, National Yang-Ming University, Taipei, Taiwan c Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan d Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan e Brain Research Center, National Yang-Ming University, Taipei, Taiwan f Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan g Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan h Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan i Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan article info abstract Article history: Mutations in the gene of RAB18, a member of Ras superfamily of small G-proteins, cause Warburg Micro Syn- Received 21 December 2014 drome (WARBM) which is characterized by defective neurodevelopmental and ophthalmological phenotypes. Accepted 5 March 2015 Despite loss of Rab18 had been reported to induce disruption of the endoplasmic reticulum structure and neuro- Available online 13 March 2015 nal cytoskeleton organization, parts of the pathogenic mechanism caused by RAB18 mutation remain unclear.
    [Show full text]
  • Clinical Consequences of Cerebellar Dysfunction on Cognition and Affect Jeremy D
    Review Desmond and Fiez – Neuroimaging of the cerebellum coordination and anticipatory control, in The Cerebellum and Cognition 77 Bloedel, J.R. and Bracha, V. (1997) Duality of cerebellar motor and (International Review of Neurobiology) (Vol. 41) (Schmahmann, J., cognitive functions, in The Cerebellum and Cognition (International ed.), pp. 575–598, Academic Press Review of Neurobiology) (Vol. 41) (Schmahmann, J., ed.), pp. 613–634, 73 Allen, G. et al. (1997) Attentional activation of the cerebellum Academic Press independent of motor involvement Science 275, 1940–1943 78 Talairach, J. and Tournoux, P.A. (1988) A Co-Planar Stereotaxic Atlas Of 74 Thach, W.T. (1997) Context-response linkage, in The Cerebellum The Human Brain, Thieme and Cognition (International Review of Neurobiology) (Vol. 41) 79 Schmahmann, J. et al. (1996) An MRI atlas of the human cerebellum in (Schmahmann, J., ed.), pp. 599–611, Academic Press Talairach space: second annual conference on functional mapping of 75 Parsons, L.M. and Fox, P.T. (1997) Sensory and cognitive functions, in the human brain, Boston NeuroImage 3, S122 The Cerebellum and Cognition (International Review of Neurobiology) 80 Larsell, O. and Jansen, J. (1972) The Human Cerebellum, Cerebellar (Vol. 41) (Schmahmann, J., ed.), pp. 255–271, Academic Press Connections, And Cerebellar Cortex, Univerity of Minnesota Press 76 Paulin, M.G. (1997) Neural representations of moving systems, in The 81 Brookhart, J.M. (1960) The cerebellum, in Handbook of Physiology: Cerebellum and Cognition (International Review of Neurobiology) Section 1: Neurophysiology (Vol. 2) (Field, J., Magoun, H. W. and Hall, (Vol. 41) (Schmahmann, J., ed.), pp. 515–533, Academic Press V.
    [Show full text]
  • Acute Or Recurrent Ataxia
    Stephen Nelson, MD, PhD, FAAP Section Head, Pediatric Neurology Assoc Prof of Pediatrics, Neurology, Neurosurgery and Psychiatry Tulane University School of Medicine ACUTE ATAXIA IN CHILDREN Disclosures . No financial disclosures . My opinions Based on experience and literature . Images May be copyrighted, from variety of sources Used under Fair Use law for educators Defining Ataxia . From the Greek “a taxis” Lack of order . Disturbance in fine control of posture and movement . Can result from cerebellar, sensory or vestibular problems Defining Ataxia . Not attributable to weakness or involuntary movements: Chorea, dystonia, myoclonus, tremor Distinguish between ataxic and “clumsy” . From impairment of one or both: Spatial pattern of muscle activity Timing of muscle activity Brainstem anatomy Cerebellar function/Ataxia . Vestibulocerebellum (flocculonodular lobe) Balance, reflexive head/eye movements . Spinocerebellum (vermis, paravermis) Posture and limb movements . Cerebrocerebellum Movement planning and motor learning Cerebellar Anatomy (Function) Vestibulocerellum - Archicerebellum . Abnormal gate Abasia - wide based, lurching, staggering Alcohol impairs cerebellum . Titubations – Trunk/head tremor -Vermis lesions . Tandem gait Fall or deviate toward lesion - Hemisphere lesions Vestibulocerellum . Ocular dysmetria Saccades over/undershoot target Jerky saccadic movements during smooth pursuit . Nystagmus with peripheral gaze Slow toward primary, fast toward target Horizontal or vertical May change direction Does
    [Show full text]
  • The Items on This Localization Slide Have Been Part of the Extended Matching Section on the Shelf Exam in the Past
    PowerPoint 3: Slide 1: The items on this localization slide have been part of the extended matching section on the shelf exam in the past. Who knows how often they repeat the extended matching sections, but as a general rule of thumb, if you know this stuff, it won’t be on there, but if you don’t go over it, it will show up on the shelf exam. - If you have a lesion involving the caudate nucleus, you have to think about something like Huntington’s disease or Wilson’s disease. - If they have a lesion in the cerebellar hemisphere, the patient could have ataxia or dyscoordination of the limbs. - If you have a cerebellar vermis lesion it can cause truncal ataxia. - Cerebral peduncle can cause hemiplegia. - Medial lemniscus can cause contralateral decreased vibration and proprioception. - Medial longitudinal fasciculus can cause internuclear ophthalmoplegia, where the patient has difficulty adducting their eye, so if they have internuclear ophthalmoplegia on the right they are able to abduct their right eye but when they try to adduct their right eye it is slower in adduction compared to the unaffected eye. - Medullary pyramid lesions can call hemiparesis. - A pontine lesion can have a pontine lacunar infarct syndrome such as hemiparesis, ataxia, or dysarthria-clumsy hand syndrome, and you can also see 1 ½ syndrome. - Subthalamic nucleus is associated with hemiballismus. - With a thalamic lesion, we often think about sensory involvement, like thalamic pain syndrome, but you can also get a whole host of other neurological symptoms including weakness, memory loss, and visuospatial difficulty. Slide 2: The information on this slide has been a part of the extended matching section on the shelf exam in the past as well.
    [Show full text]
  • Medical Student + Survival Skills
    https://t.me/MBS_MedicalBooksStore Medical Student + Survival Skills History Taking and Communication Skills Medical Student + Survival Skills History Taking and Communication Skills Philip Jevon RN BSc(Hons) PGCE Academy Manager/Tutor Walsall Teaching Academy, Manor Hospital, Walsall, UK Steve Odogwu FRCS Consultant, General Surgery, Senior Academy Tutor Walsall Teaching Academy, Manor Hospital, Walsall, UK Consulting Editors Jonathan Pepper BMedSci BM BS FRCOG MD FAcadMEd Consultant Obstetrics and Gynaecology, Head of Academy Walsall Healthcare NHS Trust, Manor Hospital, Walsall, UK Jamie Coleman MBChB MD MA(Med Ed) FRCP FBPhS Professor in Clinical Pharmacology and Medical Education / MBChB Deputy Programme Director School of Medicine, University of Birmingham, Birmingham, UK 0004265133.INDDChapter No.: 7 Title 3 Name: Jevon3 03/07/2019 1:01:46 PM This edition first published 2020 © 2020 by John Wiley & Sons Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of Philip Jevon and Steve Odogwu to be identified as the authors in this work has been asserted in accordance with law. Registered Office(s) John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Office 9600 Garsington Road, Oxford, OX4 2DQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.
    [Show full text]