Article Effect of Micromelalopha sieversi (Staudinger) Oviposition Behavior on the Transcriptome of Two Populus Section Aigeiros Clones Li Guo 1,2, Sufang Zhang 1, Fu Liu 1 , Xiangbo Kong 1 and Zhen Zhang 1,* 1 Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China;
[email protected] (L.G.);
[email protected] (S.Z.);
[email protected] (F.L.);
[email protected] (X.K.) 2 School of Biological Science and Engineering, Xingtai University, Xingtai 054001, China * Correspondence:
[email protected]; Tel.: +86-136-7102-2209 Received: 3 September 2020; Accepted: 16 September 2020; Published: 22 September 2020 Abstract: Research Highlights: The molecular mechanisms underlying woody plant resistance upon oviposition by herbivores remain unclear, as studies have focused on herbaceous plants. The effect of oviposition on gene expression in neighboring plants has also not been reported. Elucidating these molecular responses can help cultivate insect-resistant trees. Background and Objectives: Oviposition by herbivorous insects acts as an early warning signal, inducing plant resistance responses. Here, we employed poplar as a model woody plant to elucidate gene expression and the molecular mechanisms underlying plant resistance after oviposition by Micromelalopha sieversi (Staudinger) (Lepidoptera: Notodontidae). Materials and Methods: The differences in gene expression of two Populus section Aigeiros clones (‘108’ (Populus euramericana ‘Guariento’) and ‘111’ × (Populus euramericana ‘Bellotto’)) were analyzed via high-throughput sequencing of oviposited, × neighboring, and control plants. Results: We obtained 304,526,107 reads, with an average length of 300 bp and a total size of 40.77 Gb. Differentially expressed genes (DEGs) in gene ontology terms of biological process, cellular component, and molecular function were mainly enriched in the “cell part”, “catalytic”, and “metabolic process” functions.