(COVID-19) How to Wash Your Hands

Total Page:16

File Type:pdf, Size:1020Kb

(COVID-19) How to Wash Your Hands Coronavirus Disease 2019 (COVID-19) How to wash your hands Wash hands for at least 15 seconds 1 2 3 4 Wet hands with Apply soap. Lather soap and rub Rub in between and warm water. hands palm to palm. around fingers. 5 6 7 8 Rub back of each hand Rub fingertips of each Rub each thumb clasped Rinse thoroughly under with palm of other hand. hand in opposite palm. in opposite hand. running water. 9 10 11 Pat hands dry with Turn off water Your hands are now paper towel. using paper towel. clean. COVID-19: How to wash your hands/How to use hand sanitizer 1 of 2 How to use hand sanitizer Rub hands for at least 15 seconds 1 2 3 4 Apply 1 to 2 pumps Rub hands together, Rub in between and Rub back of each hand of product to palms palm to palm. around fingers. with palm of other of dry hands. hand. 5 6 7 8 Rub fingertips of each Rub each thumb Rub hands until Once dry, your hands hand in opposite palm. clasped in opposite product is dry. Do not are clean. hand. use paper towels. Sources: Ontario Agency for Health Protection and Promotion (Public Health Ontario), Provincial Infectious Diseases Advisory Committee. Best practices for hand hygiene in all health care settings [Internet]. 4th ed. Toronto, ON: Queen's Printer for Ontario; 2014. Available from: https://www.publichealthontario.ca/-/media/documents/bp-hand-hygiene.pdf?la=en The information in this document is current as of March 16, 2020. ©Queen’s Printer for Ontario, 2020 COVID-19: How to wash your hands/How to use hand sanitizer 2 of 2 .
Recommended publications
  • Hand Hygiene Solutions
    PRODUCT OVERVIEWS Hand Hygiene Solutions Healing Hands Need Help, Too. Almost 80% of infectious Hand hygiene compliance Product selection matters diseases are transmitted rates are often very low Products containing aloe vera, via touch Outpatient clinics: Studies vitamin E and other emollients One of the most common have shown that hand hygiene can help to soothe and protect modes of transmission is frequency amongst clinic staff hands and even promote hand via the hands of healthcare ranges from 11-50%.2, 3 hygiene compliance.4 professionals.1 Designed for the demanding needs of healthcare professionals, Clorox Healthcare® provides a wide array of hand hygiene solutions formulated for frequent hand hygiene in healthcare settings. References 1. Tierno, P. The Secret Life of Germs. New York, NY, USA: Atria Books, 2001. 2. Kukanich KS, Kaur R, Freeman LC, Powell DA. Evaluation of a hand hygiene campaign in outpatient health care clinics. Am J Nurs. 2013 Mar;113(3):36-42. 3. Thompson D, Bowdey L, Brett M, Cheek, Using medical student observers of infection prevention, hand hygiene, and injection safety in outpatient settings: A cross-sectional survey. J Am J Infect. Control 2016; 44(4):374–380. 4. World Health Organization. WHO Guidelines on Hand Hygiene in Health Care: First Global Patient Safety Challenge Clean Care Is Safer Care. 2009. https://www.ncbi.nlm.nih.gov/books/NBK144051/ (Accessed 22 February 2017) 5. CDC. “Handwashing: Clean Hands Save Lives-Show Me the Science-Why Wash Your Hands?” https://www.cdc.gov/handwashing/why-handwashing.html (Accessed 15 March 2017). Hand hygiene is one of the most effective ways to stop the spread of germs and keep patients, staff and visitors safe.5 Our portfolio of hand hygiene solutions can be used to clean and soothe hands throughout your facility-from reception areas, to patient care areas to break rooms and offices.
    [Show full text]
  • Globalization and Infectious Diseases: a Review of the Linkages
    TDR/STR/SEB/ST/04.2 SPECIAL TOPICS NO.3 Globalization and infectious diseases: A review of the linkages Social, Economic and Behavioural (SEB) Research UNICEF/UNDP/World Bank/WHO Special Programme for Research & Training in Tropical Diseases (TDR) The "Special Topics in Social, Economic and Behavioural (SEB) Research" series are peer-reviewed publications commissioned by the TDR Steering Committee for Social, Economic and Behavioural Research. For further information please contact: Dr Johannes Sommerfeld Manager Steering Committee for Social, Economic and Behavioural Research (SEB) UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) World Health Organization 20, Avenue Appia CH-1211 Geneva 27 Switzerland E-mail: [email protected] TDR/STR/SEB/ST/04.2 Globalization and infectious diseases: A review of the linkages Lance Saker,1 MSc MRCP Kelley Lee,1 MPA, MA, D.Phil. Barbara Cannito,1 MSc Anna Gilmore,2 MBBS, DTM&H, MSc, MFPHM Diarmid Campbell-Lendrum,1 D.Phil. 1 Centre on Global Change and Health London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK 2 European Centre on Health of Societies in Transition (ECOHOST) London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK TDR/STR/SEB/ST/04.2 Copyright © World Health Organization on behalf of the Special Programme for Research and Training in Tropical Diseases 2004 All rights reserved. The use of content from this health information product for all non-commercial education, training and information purposes is encouraged, including translation, quotation and reproduction, in any medium, but the content must not be changed and full acknowledgement of the source must be clearly stated.
    [Show full text]
  • Environmental Sanitation and Water Borne Diseases
    ENVIRONMENTAL SANITATION AND WATER BORNE DISEASES Dr.Harpreet Singh MD, DM (Gastroenterology) COMPONENTS OF ENVIRNOMENTAL SANITATION • WATER SANITATION • FOOD AND MILK SANITATION • EXCRETA DISPOSAL • SEWAGE DISPOSAL • REFUSE DISPOSAL • VECTOR AND VERMIN CONTROL • HOUSING • AIR SANITATION WATER SANITATION WATER ANALYSIS CONSISTS OF: • PHYSICAL • CHEMICAL • RADIOLOGICAL • BIOLOGICAL • BACTERIOLOGICAL WATER SANITATION • PUBLIC WATER SUPPLY MUST BE- – SAFE – REASONABLY SOFT – PLENTIFUL – CHEAP WATER SANITATION • HOUSEHOLD TREATMENT OF WATER – BOILING, i.e., beyond 2 minutes – CHLORINATION- 1-5ppm – IODINE TREATMENT- 10 drops per gallon – FILTRATION – AERATION What is a Water-Borne Disease? • “Pathogenic microbes that can be directly spread through contaminated water.” -CDC • Humans contract waterborne infections by contact with contaminated water or food. • May result from human actions, such as improper disposal of sewage wastes, or extreme weather events like storms and hurricanes. Climate Change Promotes Water-borne Disease • Rainfall: transport and disseminates infectious agents • Flooding: sewage treatment plants overflow; water sources contaminated • Sea level rise: enhances risk of severe flooding • Higher temperatures: Increases growth and prolongs survival rates of infectious agents • Drought: increases concentrations of pathogens, impedes hygiene Water Quantity and Quality Issues IPCC, 2007a Burden of Waterborne Disease • 1.8 million deaths (4 million cases) in 2004 due to gastroenteritis (WHO) – 88% due to unsafe water and poor sanitation Prüss-Üstün et al., 2008 Burden of Diarrheal Diseases • Diarrheal diseases are vastly underestimated – 211 million cases estimated in the US annually (Mead et al., 1999) Reported cases Actual cases > 38 x reported cases Diarrheal Disease Pathways Prüss-Üstün et al., 2008 CHOLERA Cholera • Found in water or food Global Prevalence of Cholera (WHO) sources contaminated by feces from an infected person • Transmitted by contaminated food, water • Prevalence increases with increasing temperature and rainfall amounts V.
    [Show full text]
  • Ethanol Rins and Hand Sanitizer
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY NATIONAL VEHICLE AND FUEL EMISSIONS LABORATORY 2565 PLYMOUTH ROAD ANN ARBOR, MICHIGAN 48105-2498 OFFICE OF AIR AND RADIATION May 11, 2020 Re: Ethanol RINs and Hand Sanitizer Production for EP3 Pathway Ethanol Facilities during the COVID-19 Public Health Emergency Dear Ethanol Producers: EPA administers the Renewable Fuel Standard (RFS) program, including determining what volumes of fuel ethanol qualify for tradable credits (RINs) under the program. In 2014, as part of the RFS Program in 40 C.F.R. Part 80, we created the Efficient Producer Petition Process (EP3) as a streamlined process for corn starch and grain sorghum ethanol producers to demonstrate that their fuel satisfies the lifecycle greenhouse gas (GHG) reduction requirements to qualify for RINs. Consistent with 40 C.F.R. § 80.1416, over 80 dry mill ethanol plants in the United States have been approved for EP3 pathways. Given the current 2019 coronavirus disease (COVID-19), we understand that some consumers and health care professionals are currently experiencing difficulties accessing alcohol-based hand sanitizers. To enhance the availability of hand sanitizer products, the Food and Drug Administration (FDA) has issued a number of temporary policies, including temporary guidance for producers of alcohol for hand sanitizer.1 Based on input from industry, we understand fuel ethanol facilities can quickly and significantly enhance the availability of alcohol suitable for hand sanitizer production. Ethanol production through an EP3 pathway is limited to 200-proof ethanol, whereas alcohol suitable for use as an ingredient in hand sanitizer (hand sanitizer alcohol) is commonly produced as 190-proof ethanol.
    [Show full text]
  • Environmental Health
    Environmental "ealth In Minnesota '·' ! .\ " ' Strengthening Pabllc Healtll Leadership In Environmental Health Il Il I j fml Minnesota · lIDJ Department of Health lli&ilhl ~==~-:.i:.ltft -------- Janaary199J '.~ • - " . Environmental Health In Minnesota ­ Strengthening Public Health Leadership In Environmental Health A Report of the Environmental Health Work Group of the State Community Health Services Advisory Committee Approved December 4, 1992 Published by the ., ,f Minnesota Department of Health Environmental Health In Minnesota ­ Strengthening Public Health Leadership In Environmental Health Table of Contents Introduction . i Work Group charge and membership . ii Part I Background and Recommendations . 1 Contributions of Public Health In Environmental Health and Protection . 3 State Roles In Environmental Health . 6 Local Roles In Environmental Health . 7 Recommendations . 10 Part II Framework For Deciding How to Organize Environmental Services . 13 Keeping a Public Health Perspective In Environmental Health and Protection . 23 Part Ill Profile of Environmental Health In Minnesota . 25 Profile of State Environmental Health . 25 Profile of Local Environmental Health . 26 Current Organization of Local Environmental Health Programs . 31 Part IV Related Documents MACHA Position Paper Current Roles and Challenges of Local Health Departments In Environmental Health, NACHO Directory of State Environmental Health Programs (published separately) Cover art by Kathy Marschall Minnesota Department of Health ) Community Health Seroices Division \ ' ···~ )' Environmental Health In Minnesota + i Introduction Environmental heal.th has been an integral part of the public health mission for over a century. With the rest of public health, environmental health shares a basis In science and a focus on protecting and promoting the health of the public. In the past twenty years an explosion of environmental laws has given greater visibility to .
    [Show full text]
  • Guidelines for the Management of Sexually Transmitted Infections
    GUIDELINES FOR THE MANAGEMENT OF SEXUALLY TRANSMITTED INFECTIONS World Health Organization GUIDELINES FOR THE MANAGEMENT OF SEXUALLY TRANSMITTED INFECTIONS WHO Library Cataloguing-in-Publication Data World Health Organization. Guidelines for the management of sexually transmitted infections. 1.Sexually transmitted diseases - diagnosis 2.Sexually transmitted diseases - therapy 3.Anti-infective agents - therapeutic use 4.Practice guidelines I.Expert Consultation on Improving the Management of Sexually Transmitted Infections (2001 : Geneva, Switzerland) ISBN 92 4 154626 3 (NLM classifi cation: WC 142) © World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specifi c companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Page 1 the Public Health Benefits of Sanitation Interventions
    The Public Health Benefits of Sanitation Interventions EPAR Brief No. 104 Jacob Lipson, Professor Leigh Anderson & Professor Susan Bolton Prepared for the Water & Sanitation Team of the Bill & Melinda Gates Foundation Evans School Policy Analysis and Research (EPAR) Professor Leigh Anderson, PI and Lead Faculty Associate Professor Mary Kay Gugerty, Lead Faculty December 10, 2010 Introduction Limited sanitation infrastructure, poor hygienic practices, and unsafe drinking water negatively affect the health of millions of people in the developing world. Using sanitation interventions to interrupt disease pathways can significantly improve public health.1 Sanitation interventions primarily benefit public health by reducing the prevalence of enteric pathogenic illnesses, which cause diarrhea. Health benefits are realized and accrue to the direct recipients of sanitation interventions and also to their neighbors and others in their communities. In a report to the United Nations Development Programme (UNDP), Hutton et al. (2006) estimate that the cost- benefit ratio of sanitation interventions in all developing countries worldwide is 11.2.2 This literature review summarizes the risks of inadequate sanitation to public health and presents the empirical evidence on the public health benefits of complete, intermediate and multiple factor sanitation interventions. The sanitation literature frequently uses inconsistent terminology to describe sanitation infrastructure, technologies and intervention types. Where feasible, we report study results using the original terminology of the authors, while also using consistent terminology to facilitate comparisons across studies. In this review and in much of the literature, sanitation interventions are defined as improvements which provide public or household fecal disposal facilities, and/or improve community fecal disposal and treatment methods.3,4 Sanitation interventions are distinct from water interventions, which focus on increasing access to clean water or improving water quality at drinking water sources or points of use.
    [Show full text]
  • Water, Sanitation and Hygiene (WASH)
    July 2018 About Water, Sanitation and UNICEF The United Nations Children’s Fund (UNICEF) Hygiene (WASH) works in more than 190 countries and territories to put children first. UNICEF WASH and Children has helped save more Globally, 2.3 billion people lack access to basic children’s lives than sanitation services and 844 million people lack any other humanitarian organization, by providing access to clean drinking water. The lack of health care and immuni­ these basic necessities isn’t just inconvenient zations, safe water and — it’s lethal. sanitation, nutrition, education, emergency relief Over 800 children die every day — about 1 and more. UNICEF USA supports UNICEF’s work every 2 minutes — from diarrhea due to unsafe through fundraising, drinking water, poor sanitation, or poor advocacy and education in hygiene. Suffering and death from diseases the United States. Together, like pneumonia, trachoma, scabies, skin we are working toward the and eye infections, cholera and dysentery day when no children die from preventable causes could be prevented by scaling up access and every child has a safe to adequate water supply and sanitation and healthy childhood. facilities and eliminating open defecation. For more information, visit unicefusa.org. Ensuring access to water and sanitation in UNICEF has helped schools can also help reduce the number of increase school children who miss out on their education — enrollment in Malawi through the provision especially girls. Scaling up access to WASH of safe drinking water. also supports efforts to protect vulnerable © UNICEF/UN040976/RICH children from violence, exploitation and abuse, since women and girls bear the heaviest Today, UNICEF has WASH programs in 113 burden in water collection, often undertaking countries to promote the survival, protection long, unsafe journeys to collect water.
    [Show full text]
  • Hand Hygiene: Clean Hands for Healthcare Personnel
    Core Concepts for Hand Hygiene: Clean Hands for Healthcare Personnel 1 Presenter Russ Olmsted, MPH, CIC Director, Infection Prevention & Control Trinity Health, Livonia, MI Contributions by Heather M. Gilmartin, NP, PhD, CIC Denver VA Medical Center University of Colorado Laraine Washer, MD University of Michigan Health System 2 Learning Objectives • Outline the importance of effective hand hygiene for protection of healthcare personnel and patients • Describe proper hand hygiene techniques, including when various techniques should be used 3 Why is Hand Hygiene Important? • The microbes that cause healthcare-associated infections (HAIs) can be transmitted on the hands of healthcare personnel • Hand hygiene is one of the MOST important ways to prevent the spread of infection 1 out of every 25 patients has • Too often healthcare personnel do a healthcare-associated not clean their hands infection – In fact, missed opportunities for hand hygiene can be as high as 50% (Chassin MR, Jt Comm J Qual Patient Saf, 2015; Yanke E, Am J Infect Control, 2015; Magill SS, N Engl J Med, 2014) 4 Environmental Surfaces Can Look Clean but… • Bacteria can survive for days on patient care equipment and other surfaces like bed rails, IV pumps, etc. • It is important to use hand hygiene after touching these surfaces and at exit, even if you only touched environmental surfaces Boyce JM, Am J Infect Control, 2002; WHO Guidelines on Hand Hygiene in Health Care, WHO, 2009 5 Hands Make Multidrug-Resistant Organisms (MDROs) and Other Microbes Mobile (Image from CDC, Vital Signs: MMWR, 2016) 6 When Should You Clean Your Hands? 1. Before touching a patient 2.
    [Show full text]
  • FDA Warns That Vapors from Alcohol-Based Hand Sanitizers Can Have Side Effects Apply Hand Sanitizer in a Well-Ventilated Area
    FDA warns that vapors from alcohol-based hand sanitizers can have side effects Apply hand sanitizer in a well-ventilated area 6-16-2021 FDA Drug Safety Communication What safety concern is FDA announcing? The U.S. Food and Drug Administration (FDA) is warning that symptoms such as headache, nausea, and dizziness can occur after applying alcohol-based hand sanitizers to the skin. These symptoms are likely to have occurred because of vapors from the hand sanitizer, potentially from exposure in enclosed spaces or places with poor air circulation. We have received increasing reports of these side effects since the start of the COVID-19 pandemic. Most people experienced minor or minimal effects; however, some cases required treatment by a health care professional. What is FDA doing? We are continuing to monitor reports of adverse events that occur with hand sanitizers. At this time, we are not making any changes to the Drug Facts label for hand sanitizers but will inform the public if additional information becomes available. What are hand sanitizers and how can they help me? Hand sanitizers are over-the-counter (OTC) drug products that can help consumers reduce bacteria on their hands. However, the best way to prevent the spread of infections and decrease the risk of getting sick is by washing your hands with plain soap and water, advises the Centers for Disease Control and Prevention (CDC). Washing hands often with soap and water for at least 20 seconds is essential, especially after going to the restroom; before eating; and after coughing, sneezing, or blowing one’s nose.
    [Show full text]
  • Controlling Chemical Exposure Industrial Hygiene Fact Sheets
    Controlling Chemical Exposure Industrial Hygiene Fact Sheets Concise guidance on 16 components of industrial hygiene controls New Jersey Department of Health and Senior Services Division of Epidemiology, Environmental and Occupational Health Occupational Health Service PO Box 360 Trenton, NJ 08625-0360 609-984-1863 October 2000 James E. McGreevey Clifton R. Lacy, M.D. Governor Commissioner Written by: Eileen Senn, MS, CIH Occupational Health Surveillance Program James S. Blumenstock Senior Assistant Commissioner Public Health Protection and Prevention Programs Eddy Bresnitz, MD, MS State Epidemiologist/Assistant Commissioner Division of Epidemiology, Environmental and Occupational Health Kathleen O’Leary, MS Director Occupational Health Service David Valiante, MS, CIH Acting Program Manager Occupational Health Surveillance Program Funding: This project was supported in part by a cooperative agreement from the U.S. Department of Health and Human Services, National Institute for Occupational Safety and Health (NIOSH). Reproduction: The NJDHSS encourages the copying and distribution of all or parts of this booklet. All materials are in the public domain and may be reproduced or copied without permission. Cita- tion as to the source is appreciated. This document is available on the Internet at: www.state.nj.us/health/eoh/survweb/ihfs.pdf Citation: Senn, E., Controlling Chemical Exposure; Industrial Hygiene Fact Sheets, Trenton, NJ: New Jersey Department of Health and Senior Services, October 2000. Table of Contents Methods for Controlling
    [Show full text]
  • David A. Sterling, Phd, CIH, ROH, FAIHA CURRICULUM VITA
    David A. Sterling, PhD, CIH, ROH, FAIHA CURRICULUM VITA Work Address and Contact Information School of Public Health University of North Texas Health Science Center 3500 Camp Bowie Blvd Fort Worth, TX 76107 phone: (817) 735-5098 email: [email protected] https://www.unthsc.edu/school-of-public-health/dr-david-sterling/ EDUCATION Degrees Ph.D. Environmental and Occupational Health Science, June 1986, The University of Texas School of Public Health, Houston, Texas. M.Sc. Environmental Health Science/Industrial Hygiene. August 1982, University of Cincinnati College of Medicine, Institute of Environmental Health, Kettering Laboratory, Cincinnati, Ohio. B.Sc. Biological Sciences. December 1978, University of Oregon, Eugene, Oregon. Undergraduate work in Humanities, Sciences and Computer Science. 1973-1978. Simon Fraser University, Vancouver, B.C., Canada. Certifications Certified in the Comprehensive Practice of Industrial Hygiene by the American Board of Industrial Hygiene. CIH #3969 Awarded June 1988. Most recent recertification review approval July 2015 – December 1, 2020. Registered Occupational Hygienist by the Canadian Registration Board of Occupational Hygienists. ROH #198 Awarded January 1989. Most recent registration maintenance review approval January 1, 2015 – December 31, 2019. Honors Asthma 411 ‘Team’ selected as 2018 Health Care Heroes by the Fort Worth Business Press for their advocacy work on building a collaborative to spread Asthma 411 throughout the city and county, February 8, 2018. (Dr. Sterling is the developer of Asthma 411 – A K-12 School-based asthma initiative). The annual Health Care Heroes Awards recognizes excellence in the medical community. Each year it is awarded to outstanding physicians, administrators, volunteers and other dedicated individuals.
    [Show full text]