Termite Queens Close the Sperm Gates of Eggs to Switch from Sexual to Asexual Reproduction

Total Page:16

File Type:pdf, Size:1020Kb

Termite Queens Close the Sperm Gates of Eggs to Switch from Sexual to Asexual Reproduction Termite queens close the sperm gates of eggs to switch from sexual to asexual reproduction Toshihisa Yashiro and Kenji Matsuura1 Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan Edited by Bert Hölldobler, Arizona State University, Tempe, AZ, and approved October 16, 2014 (received for review July 2, 2014) Males and females are in conflict over genetic transmission in the ants (11–13) and termites (14–16) selectively use both sexual re- evolution of parthenogenesis, because it enhances female re- production and thelytoky when mating with males. In these social productive output but deprives the males’ genetic contribution. insects, queens produce new queens asexually by thelytokous par- For males, any trait that coerces females into sexual reproduction thenogenesis, but they produce workers through sexual re- should increase their fitness. However, in the termite Reticulitermes production. This conditional switching of reproductive tactics allow speratus, queens produce their replacements (neotenic queens) par- queens to increase the transmission of their genes to the next thenogenetically while using normal sexual reproduction to pro- generation and maintain genetic diversity in the worker force, but it duce other colony members. Here, we show that termite queens inevitably provokes queen–male sexual conflict by reducing the produce parthenogenetic offspring in the presence of kings by clos- males’ genetic contribution to future generations (17). This system ing the micropyles (sperm gates; i.e., openings for sperm entry) of provides an ideal opportunity to study how and why females switch their eggs. Our field survey showed that termite eggs show large from sexual to asexual reproduction, even in the presence of males. variation in numbers of micropyles, with some having none. Micro- The breeding system of the subterranean termite Reticulitermes satellite analysis showed that embryos of micropyleless eggs de- velop parthenogenetically, whereas those of eggs with micropyles speratus is characterized by asexual queen succession (AQS) (Fig. 1 are fertilized and develop sexually. Surveys of eggs among queens and SI Text). Termite colonies are typically founded by a monoga- of different age groups showed that queens begin to lay micro- mous pair of primary reproductives (adult winged forms): a king pyleless eggs when they are older and thus, need to produce their and queen. In Reticulitermes termites, primary queens live more EVOLUTION replacements parthenogenetically. In addition, we found clear sea- than 11 y (18). As the primary queen senesces and thus, her egg sonality in new neotenic queen differentiation and micropyleless production becomes insufficient to maintain the colony, sec- egg production. This micropyle-dependent parthenogenesis is the ondary queens (i.e., neotenic queens) differentiate within the first identification, to our knowledge, of the mechanism through colony and supplement egg production, eventually replacing the which females control egg fertilization over time in diploid animals, primary queen (Fig. 1 and Fig. S1) (18, 19). In AQS species, implying a novel route of the evolution of parthenogenesis in favor queens produce their neotenic replacement queens asexually but of female interests without interference from males. use normal sexual reproduction to produce other colony mem- bers (14–16). Because sex determination in Reticulitermes termites is thelytoky | micropyle | asexual queen succession | egg fertilization | male heterogamy (20), queens cannot produce secondary kings by Isoptera parthenogenesis (17). This AQS system enables founding queens to increase their reproductive output while retaining the same trans- he near ubiquity of sexual reproduction is one of the most mission rate of their genes to future generations. Therefore, the Tenduring puzzles in evolutionary biology, because all else founder queen can be considered genetically immortal until the being equal, asexual populations have a twofold fitness advan- colony dies, because neotenic queens are also replaced by sub- tage over their sexual counterparts and should rapidly out- sequent cohorts of parthenogenetically produced neotenic queens. number sexual populations (1, 2). A proposed major advantage of sexual reproduction is that it promotes genetic variability Significance across generations, facilitating adaptation to local ecological conditions (3–5). However, mathematical models have revealed that evolution need not favor sexual reproduction, even when it To clarify the evolution of parthenogenesis, given the potential sexual conflict over genetic transmission, identifying the does increase variability that is beneficial, and thus, the preva- mechanism regulating egg fertilization in females is essential. lence of sexual reproduction remains an enigma (6, 7). Some In the termite Reticulitermes speratus, queens produce their biologists have approached this question by considering how loss replacements (neotenic queens) parthenogenetically but use of sex can be achieved in a population of sexual organisms (8– sexual reproduction to produce other colony members. We 10). The evolution of parthenogenesis may be no exception in discovered that queens of the termite close micropyles (open- that it creates sexual conflict, given that parthenogenetic re- ings for sperm entry) of their eggs to produce parthenogenetic production enhances female reproductive output but deprives offspring in the presence of kings. Furthermore, we found that the males’ genetic contribution to future generations. Therefore, queens control the proportion of micropyleless eggs by regu- any trait in males that coerces parthenogenetic females into sexual lating of the number of micropyles over time. This study reproduction should increase their fitness. A recent theoretical describes a novel route of the evolution of parthenogenesis in study showed that the evolution of male coercion substantially favor of females’ interests without interference from males. favors the maintenance of sexual reproduction, although a fe- male barrier against the coercion can evolve (10). Author contributions: K.M. designed research; T.Y. and K.M. performed research; K.M. If male counteradaptations interfere with parthenogenesis, contributed new reagents/analytic tools; T.Y. and K.M. analyzed data; and T.Y. and K.M. females would unlikely be able to switch from sexual to asexual wrote the paper. reproduction unless isolated from males. Identifying the mecha- The authors declare no conflict of interest. nism regulating egg fertilization is critical to better understand the This article is a PNAS Direct Submission. evolutionary routes of parthenogenesis given the potential sexual 1To whom correspondence should be addressed. Email: [email protected]. conflict involved. Unlike facultative parthenogenesis, where This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. females use thelytoky only in the absence of males, queens of some 1073/pnas.1412481111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1412481111 PNAS Early Edition | 1of6 Downloaded by guest on September 27, 2021 Incipient colony Mature colony Queen replacement PK PQ PK SQ PQ SQ SQ PQ SQ PK SQ PK PQ PK SQ AB C D AB C CD D fertilized eggs terminal fusion fertilized eggs terminal fusion ACBCADBD CC ACBCADBD CCDD AC BCADBD DD AC BCADBD CCDD Sexually produced offspring Parthenogens Sexually produced offspring Parthenogens Differentiation into Differentiation into Differentiation into Differentiation into alates and workers secondary queens alates and workers secondary queens Fig. 1. Colony development and asexual queen succession in the termite R. speratus. As the primary queen senesces, secondary queens produced asexually by the primary queen differentiate within the colony and supplement egg production, eventually replacing the primary queen (details described in SI Text). Squares indicate males, and circles represent females. PK, primary king; PQ, primary queen; SQ, secondary queen. (Scale bars: 3 mm.) How can queens of termites (i.e., diploid social insects) control of 3.23 μm(±0.15 SEM, n = 10) in diameter (Fig. 2B), and the egg fertilization? In haplodiploid social Hymenoptera, unfertil- average number of micropyles for all samples (n = 6,000) was ized eggs become males, and fertilized eggs produce females 9.48 (±0.04 SEM, range = 0–33) (Fig. 2 C and D). Significant (21), giving queens a potentially powerful mechanism for con- differences were observed in the number of micropyles among trolling fertilization (22, 23). However, in diploid insects, sperm colonies (F59, 5,940 = 27.35, P < 0.0001; one-way ANOVA), and release is generally activated through a neural loop whenever an 7 of 60 colonies (11.7%) had micropyleless eggs (Table S1). egg passes the genital chamber, with no control over fertilization Unmated R. speratus queens lay eggs, and the unfertilized eggs (24). In this study, we focused on micropyles of eggs to identify develop parthenogenetically, with a comparably high hatching a possible mechanism for controlling fertilization in diploid insects. rate as fertilized eggs (29). All micropyleless eggs showed normal A micropyle is a channel that extends from the external gateway embryonic development as observed in previous studies on par- through the chorion and ends in the vitelline membrane, serving thenogenesis in R. speratus. To test whether the embryos of as the route of sperm entry into a mature oocyte (25–27).
Recommended publications
  • Fungi-Rhizopus
    Characters of Fungi Some of the most important characters of fungi are as follows: 1. Occurrence 2. Thallus organization 3. Different forms of mycelium 4. Cell structure 5. Nutrition 6. Heterothallism and Homothallism 7. Reproduction 8. Classification of Fungi. 1. Occurrence: Fungi are cosmopolitan and occur in air, water soil and on plants and animals. They prefer to grow in warm and humid places. Hence, we keep food in the refrigerator to prevent bacterial and fungal infestation. 2. Thallus organization: Except some unicellular forms (e.g. yeasts, Synchytrium), the fungal body is a thallus called mycelium. The mycelium is an interwoven mass of thread-like hyphae (Sing, hypha). Hyphae may be septate (with cross wall) and aseptate (without cross wall). Some fungi are dimorphic that found as both unicellular and mycelial forms e.g. Candida albicans. 3. Different forms of mycelium: (a) Plectenchyma (fungal tissue): In a fungal mycelium, hyphae organized loosely or compactly woven to form a tissue called plectenchyma. It is two types: i. Prosenchyma or Prosoplectenchyma: In these fungal tissue hyphae are loosely interwoven lying more or less parallel to each other. ii. Pseudoparenchyma or paraplectenchyma: In these fungal tissue hyphae are compactly interwoven looking like a parenchyma in cross-section. (b) Sclerotia (Gr. Skleros=haid): These are hard dormant bodies consist of compact hyphae protected by external thickened hyphae. Each Sclerotium germinates into a mycelium, on return of favourable condition, e.g., Penicillium. (c) Rhizomorphs: They are root-like compactly interwoven hyphae with distinct growing tip. They help in absorption and perennation (to tide over the unfavourable periods), e.g., Armillaria mellea.
    [Show full text]
  • Genomic and Transcriptomic Analyses of the Subterranean Termite
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.11.451559; this version posted July 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Genomic and transcriptomic analyses of the 2 subterranean termite Reticulitermes speratus: gene 3 duplication facilitates social evolution 4 5 Shuji Shigenobu*+1,2, Yoshinobu Hayashi+3, Dai Watanabe 4,5, Gaku Tokuda6, 6 Masaru Y Hojo6,19, Kouhei Toga5,7, Ryota Saiki5, Hajime Yaguchi5,8, Yudai 7 Masuoka5,9, Ryutaro Suzuki5,10, Shogo Suzuki5, Moe Kimura11, Masatoshi 8 Matsunami4,12, Yasuhiro Sugime4, Kohei Oguchi4,10,13, Teruyuki Niimi2,14, Hiroki 9 Gotoh15,20, Masaru K Hojo8, Satoshi Miyazaki16, Atsushi Toyoda17, Toru Miura*4,13, 10 Kiyoto Maekawa*18 11 12 1) NIBB Research Core Facilities, National Institute for Basic Biology, Okazaki, 13 444-8585 Japan 14 2) Department of Basic Biology, School of Life Science, The Graduate University for 15 Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444- 16 8585, Japan 17 3) Department of Biology, Keio University, Hiyoshi, Yokohama, 223-8521, Japan 18 4) Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 19 Hokkaido, 060-0810, Japan 20 5) Graduate School of Science and Engineering, University of Toyama, Toyama, 21 930-8555, Japan 22 6) Tropical Biosphere Research Center, COMB, University of the Ryukyus, 23 Nishihara, Okinawa 903-0213, Japan 24 7) Department of Biosciences, College of Humanities and Sciences,
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • The Evolutionary Maintenance of Sexual Reproduction: the Solutions Proposed for a Longstanding Problem
    J. Genet. Vol. 69, No. 1, April 1990, pp. 1-10. 9 Printedin India. The evolutionary maintenance of sexual reproduction: The solutions proposed for a longstanding problem STEPHEN C. STEARNS Zoology Institute, Rheinsprung 9, CH-4051 Basel, Switzerland Abstract. The evolutionary maintenance of mixis is one of the major unsolved problems in modern biology. This paper reviews the phenomenon of sex, the hypotheses for its maintenance, and recent evidence bearing on the hypotheses. One elegant experiment supports the idea that bacterial transformation, an analogue and possible forerunner of eukaryotic mixis, functions as a repair mechanism. All mechanisms that produce a short- term advantage for sex in eukaryotes and that are supported by experimental results rely on strong genotype by environment interactions for fitness. While many environmental factors are involved, most prominently parasites, disease, and coarse-grained environmental heterogeneity of other sorts, each is effective only insofar as it is involved in a genotype by environment interaction for fitness. Keywords. Sexual reproduction; genotype by environment interaction; mixis; evolution of SeX. 1. Introduction The existence of sexual reproduction was no-puzzle for evolutionary biologists until 1962, when the publication of Wynne-Edwards' book signalled one of the most productive mistakes in the history of biologyl Wynne-Edwards made explicit and clear a kind of group-selectionist thinking that had previously been too implicit and diffuse to stimulate objections. Prior to that, one could explain sexual reproduction as an adaptation that endowed a population or species with the ability to evolve more rapidly than would asexual reproduction. After that, as part of the reaction to the criticisms of group selection (e.g.
    [Show full text]
  • Morphometric Analysis of Coptotermes Spp. Soldier Caste (Blattodea: Rhinotermitidae) in Indonesia and Evidence of Coptotermes Gestroi Extreme Head-Capsule Shapes
    insects Article Morphometric Analysis of Coptotermes spp. Soldier Caste (Blattodea: Rhinotermitidae) in Indonesia and Evidence of Coptotermes gestroi Extreme Head-Capsule Shapes Bramantyo Wikantyoso 1,2,*, Shu-Ping Tseng 3, Setiawan Khoirul Himmi 2 , Sulaeman Yusuf 2 and Tsuyoshi Yoshimura 1 1 Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; [email protected] 2 Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI) Jl. Raya Bogor km 46 Cibinong, Bogor 16911, Indonesia; [email protected] (S.K.H.); [email protected] (S.Y.) 3 Department of Entomology, University of California, 900 University Avenue, Riverside, CA 92521, USA; [email protected] * Correspondence: [email protected] Simple Summary: The morphological characteristics of the soldier caste in termites provide valuable taxonomic information at the species level. Head-shape variation in soldiers was often used as an indicative characteristic in some genera. While species with egg-shaped and waterdrop-shaped head capsule (HC), Coptotermes gestroi and C. curvignathus, respectively, are familiar in Indonesia, neither a measurement nor head index may avoid the subjectivity of shape interpretation. We conducted linear Citation: Wikantyoso, B.; Tseng, S.-P.; and geometric morphometrics analyses of soldiers’ HC of Coptotermes spp. obtained from various Himmi, S.K.; Yusuf, S.; Yoshimura, T. locations in Indonesia. Although subtle differences were observed, the posterior parts of the HC Morphometric Analysis of laterally expanded in a gradual manner in C. gestroi, C. sepangensis, and C. curvignathus in that order. Coptotermes spp. Soldier Caste Furthermore, three extreme head-shape variations of C.
    [Show full text]
  • Parthenogensis
    PARTHENOGENSIS Parthenogenesis is the development of an egg without fertilization. (Gr.Parthenos=virgin; gensis=birth). The individuals formed by parthenogenesis are called parthenotes. Parthenogenesis may be of two types. They are natural parthenogenesis and artificial parthenogenesis. 1. NATURAL PARTHENOGENESIS When parthenogenesis occur spontaneously, it is said to be natural parthenogenesis. Parthenogenesis is a regular natural phenomenon in a few groups of animals. Some animals reproduce exclusively by parthenogenesis. 1 In some other species, parthenogenesis alternates with sexual reproduction. Based on this, natural parthenogenesis is divided into two groups, namely complete parthenogenesis and incomplete parthenogenesis. 1) Complete Parthenogenesis In certain animal parthenogenesis is the only method of reproduction. This type of parthenogenesis is called complete or total or obligatory parthenogenesis. Populations exhibiting total parthenogenesis consist entirely of females. There are no males. E.g. Lacerta (lizard). 1) Incomplete Parthenogenesis In some animals parthenogenesis reproduction and sexual reproduction occur alternately. This is called incomplete or cyclical parthenogenesis. 2 Example a. In gallflies, there is one parthenogenetic reproduction and one sexual reproduction per year (P,S,P,S, (P,S,………). b. In aphids, daphnids and rotifers one sexual reproduction occurs in summer after many parthenogenetic reproductions, (P,P,P,P,P,S,…..P,P,P,P,P,S……..P,). Natural parthenogenesis is further classified into two types. They are haploid parthenogenesis or arrhenotoky and diploid parthenogenesis or thelytoky. A. Haploid Parthenogenesis or Arrhenotoky It is the development of a hyploid egg into a haploid animal. All the haploid individulas are males. Arrhenotoky occur in insects, rotifers and arachnids. 3 i. Haploid Parthenogenesis in insects: In insects haploid parthenogenesis is exhibited by hymenoptera, homoptera, colepters and thysanoptera.
    [Show full text]
  • Progress Report
    MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER UNEP REPORT OF THE TECHNOLOGY AND ECONOMIC ASSESSMENT PANEL MAY 2017 VOLUME 1 PROGRESS REPORT UNEP MAY 2017 REPORT OF THE TECHNOLOGY AND ECONOMIC ASSESSMENT PANEL VOLUME 1 PROGRESS REPORT iii Montreal Protocol On Substances that Deplete the Ozone Layer Report of the UNEP Technology and Economic Assessment Panel May 2017 VOLUME 1 PROGRESS REPORT The text of this report is composed in Times New Roman. Co-ordination: Technology and Economic Assessment Panel Composition of the report: Bella Maranion, Marta Pizano, Ashley Woodcock Layout and formatting: Marta Pizano (UNEP TEAP) Date: May 2017 Under certain conditions, printed copies of this report are available from: UNITED NATIONS ENVIRONMENT PROGRAMME Ozone Secretariat, P.O. Box 30552, Nairobi, Kenya This document is also available in portable document format from the UNEP Ozone Secretariat's website: http://ozone.unep.org/en/assessment-panels/technology-and-economic-assessment-panel No copyright involved. This publication may be freely copied, abstracted and cited, with acknowledgement of the source of the material. ISBN: 978-9966-076-27-4 iv May 2017 TEAP Progress Report Disclaimer The United Nations Environment Programme (UNEP), the Technology and Economic Assessment Panel (TEAP) Co-chairs and members, the Technical Options Committees Co-chairs and members, the TEAP Task Forces Co-chairs and members, and the companies and organisations that employ them do not endorse the performance, worker safety, or environmental acceptability of any of the technical options discussed. Every industrial operation requires consideration of worker safety and proper disposal of contaminants and waste products.
    [Show full text]
  • Gene Flow in Trichogramma Wasps
    Heredity 73 (1994) 317—327 Received 28 February 1994 The Genetical Society of Great Britain Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps RICHARD STOUTHAMERff* & DAVID J. KAZMERt tDepartmentof Entomology, University of Cailfornia, Riverside, CA 92521 and Departrnent of Biology, University of Rochester, Rochester, NY 14627, U.S.A. Cytogeneticsand gene flow were studied in microbe-associated parthenogenetic (thelytokous) forms of three species of the genus Trichogramma (T pretiosum, T deion and T. nr. deion). The chromosome behaviour in newly laid eggs indicated that the mechanism allowing restoration of diploidy in unfertilized thelytokous eggs was a segregation failure of the two sets of chromosomes in the first mitotic anaphase. This results in a nucleus containing two sets of identical chromosomes. The mechanism is known as gamete duplication and results m complete homozygosity. This was confirmed by investigation of the segregation pattern of allozymes in the offspring of heterozygous thelytokous females. Contrary to the generally assumed genetic isolation of thelytokous lines, thelytokous females of these species can mate and will use the sperm to fertilize some of their eggs. These fertilized eggs give rise to females whose genome consists of one set of chromosomes from each parent. Egg fertilization and the resulting syngamy of the sperm and egg pronucleus apparently precludes the gamete duplication that would have taken place if the egg had remained unfertilized. Most field populations of Trichogramma contain both parthenogenetic (thelytokous) and sexual (arrhenotokous) forms. In the two field populations that we studied there was evidence for high levels of gene flow from the sexual (arrhenotokous) fraction to the parthenogenetic (thelytokous) fraction of the population.
    [Show full text]
  • The Evolution of Eusociality, Including a Review of the Social Status of Ropalidia Marginata Raghavendra Gadagkar
    Natural History and Evolution of Paper-Wasps EDITED BY STEFANO TURILLAZZI Department of Animal Biology and Genetics University of Florence, Italy and MARY JANE WEST-EBERHARD Smithsonian Tropical Research Institute Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1996 15 The evolution of eusociality, including a review of the social status of Ropalidia marginata Raghavendra Gadagkar What is eusociality? Social insects, esi>ecially bees and wasps exhibit such a bewildering variety of so­ cial organizations thal we wouJd be quite lost without a sound classification and some technical terms with universally accepted definitions. A system of classi­ fication that is built along lines of progressively varying degr~es of social organiza­ tion and sophistication would be even more attractive. Michener (1969) has presented just such a system of classification that has been so popularized by Wilson (1971) that it has now the added virtue of being nearly universally accept­ able. According to this system-of classification, eusocial insects (the only truly social insects, by definition) are defined as those that possess all of the three funda­ mental lraits of eusociality namely: ( 1) cooperative brood care; (2) differentiation of colony members into fertile reproductive castes (queens or kings as the case may be) and sterile non-reproductive castes (workers) (simply referred to hereafter as reproductive caste differentiation); (3) an overlap of generations such that offspring assist their parents in brood care and other tasks involved in colony maintenance. The s.ystem explicitly recognizes equa1ly well-defined groups that are not eusocial. Omit the criterion of overlap of generations and we have the semisocia1.
    [Show full text]
  • What Is an Animal? Animals: General Characteristics 1. by Far, the Largest
    What is an Animal? Animals: General Characteristics 1. by far, the largest and most diverse kingdom 2. eukaryote cells eucaryotic heterotrophs no chloroplasts lack cell walls around cells aerobic require free oxygen for respiration lots more mitochondria lots more energy more mitochondria than cells of any other kingdom need much more energy, much more active 3. ALL are multicellular best development of multicellularity of all kingdoms 4. most are motile and more active than members of any other kingdom Animal Records: Locomotion Swimming fastest pinniped 25mph (40kph) Running fastest land mammal Cheetah, Acinonyx jubatus 60mph (96kph) in spurts speeds up to 90 mph have been claimed, not verified slowest land mammal 3 toed sloth, Bradypus tridactylus 6-8 ft/min (0.088mph) Flying Fastest Insect: Dragonflies, some flies & moths 25-30 mph black cutworm moth 70mph (rides cold fronts) Fastest horizontal flight(bird): racing pigeons and dunlin sandpipers 110mph spine tailed swift, Chaetura caudacuta, 106mph (170kph) red breasted merganser ducks 100 mph Fastest wingbeat of bird hummingbird90b/sec Fastest flight (mammal): 48mph mexican free tailed bat (others suspected to be faster) Fastest diving flight: peregrin falcon 82mph (unverified to over 200mph); (but horizontal flight 30-60mph) 5. most animals store extra energy as fats or oils 6. most with true tissues epithelial covers body *muscular used for movement *nervous coordination and control connective storage, transport, protection, etc 7. most with organs and complex organ systems plants have simple organs animals have organs grouped into complex interacting systems most animals have a head with distinct sense Animals – Introduction (general); Ziser, 2006 2 organs and some kind of brain most have some kinds of appendages for collecting food or for movement 8.
    [Show full text]
  • Diploid Males Support a Two-Step Mechanism of Endosymbiont-Induced Thelytoky in a Parasitoid Wasp Wen-Juan Ma1,2*, Bart A
    Ma et al. BMC Evolutionary Biology (2015) 15:84 DOI 10.1186/s12862-015-0370-9 RESEARCH ARTICLE Open Access Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp Wen-Juan Ma1,2*, Bart A. Pannebakker3, Louis van de Zande1, Tanja Schwander1,2, Bregje Wertheim1 and Leo W. Beukeboom1 Abstract Background: Haplodiploidy, where females develop from diploid, fertilized eggs and males from haploid, unfertilized eggs, is abundant in some insect lineages. Some species in these lineages reproduce by thelytoky that is caused by infection with endosymbionts: infected females lay haploid eggs that undergo diploidization and develop into females, while males are very rare or absent. It is generally assumed that in thelytokous wasps, endosymbionts merely diploidize the unfertilized eggs, which would then trigger female development. Results: We found that females in the parasitoid wasp Asobara japonica infected with thelytoky-inducing Wolbachia produce 0.7–1.2 % male offspring. Seven to 39 % of these males are diploid, indicating that diploidization and female development can be uncoupled in A. japonica. Wolbachia titer in adults was correlated with their ploidy and sex: diploids carried much higher Wolbachia titers than haploids, and diploid females carried more Wolbachia than diploid males. Data from introgression lines indicated that the development of diploid individuals into males instead of females is not caused by malfunction-mutationsinthehostgenomebutthatdiploidmalesaremost likely produced when the endosymbiont fails to activate the female sex determination pathway. Our data therefore support a two-step mechanism by which endosymbionts induce thelytoky in A. japonica: diploidization of the unfertilized egg is followed by feminization, whereby each step correlates with a threshold of endosymbiont titer during wasp development.
    [Show full text]
  • The Life Cycle of Reticulitermes Spp. (Isoptera: Rhinotermitidae): What Do We Know?
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/10621165 The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): What do we know? Article in Bulletin of Entomological Research · September 2003 DOI: 10.1079/BER2003238 · Source: PubMed CITATIONS READS 69 313 2 authors: Laetitia V Lainé Denis Wright Imperial College London Imperial College London 1 PUBLICATION 69 CITATIONS 26 PUBLICATIONS 290 CITATIONS SEE PROFILE SEE PROFILE All content following this page was uploaded by Laetitia V Lainé on 01 August 2014. The user has requested enhancement of the downloaded file. 01BER238 17/7/03 11:19 am Page 267 Bulletin of Entomological Research (2003) 93, 267–378 DOI: 10.1079/BER2003238 REVIEW ARTICLE The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): what do we know? L.V. Lainé* and D.J. Wright Department of Biological Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK Abstract The subterranean termites in the genus Reticulitermes have a complex and plastic life cycle, which has been the subject of a number of publications over the past century. Given the inherent difficulties in studying such cryptic, eusocial organisms it is not perhaps surprising that the literature on their biology has failed to reach a consensus. An overview of the literature is given, which is followed by a discussion of the various theories on the life cycle of Reticulitermes spp. A substantial proportion of the review focuses on the French literature, which constitutes the majority of the primary sources and can be difficult to access. There are many discrepancies in the literature in terms of the number of instars, the definition of workers and the question of whether they should be termed pseudergates or, potentially, an additional terminology used to differentiate between pseudergates and the true workers seen in the higher termites (Isoptera: Termitidae).
    [Show full text]