(2012) – Lecture 5 Rajinder Dhindsa Evolution of Land Plants

Total Page:16

File Type:pdf, Size:1020Kb

(2012) – Lecture 5 Rajinder Dhindsa Evolution of Land Plants Free tutoring service from students who have taken the course at McGill One-on-one, group or tutorial style sessions Check out our website for more info & to sign up! Email: [email protected] Website: http://peertutors.sus.mcgill.ca/ Facebook: www.facebook.com/suspeertutoring Twitter: @SUSPeerTutoring Biol-111 (2012) – Lecture 5 Rajinder Dhindsa Evolution of Land Plants What types of new challenges and opportunities the plant life would face in living on land as opposed to living in water? How can these new challenges be met and opportunities exploited? 2 Do you have a clicker? (I need to check if my clicker receiver is working 1. Yes. 2. What is a clicker? 3. I don’t like clickers 0% 0% 0% Response Counter Yes. What is a clicker? I don’t like clickers 3 During the evolution of land plants, plants moved to land from water. What challenges did they confront? • Make a list of important necessities of life and then compare how a plant fulfills them living in water and a plant living on land. • Think about the limitations and advantages of living in water and living on land. 4 Important necessities of a plant 1. Optimum hydration: Avoid dehydration of the body. 2. Protection of gametes from dehydration 3. Maintenance of physical structure and posture of the body. 4. Water provides considerable buoyancy. On land they will have to support almost all their weight. 4. to obtain sufficient water and nutrients from surrounding medium. 5. To carry out maximum photosynthesis 5. Maximum body size possible. 5 Plants living in water 1. No deficiency of water. 2. No special protection of gametes needed. They can be released into water. 3. No problem in maintaining physical structure and posture of the body as water provides buoyancy. Organisms in water don’t have to support their weight. 4. Water and mineral enter the plant body by diffusion through simple diffusion through the body surface. No special organs ot structures needed 5. Photosynthesis is limited by attenuation of light intensity under water. 5. In general body size is limited 6 Plants living on land 1. Water availability frequent problem, thus evolution of organs for absorption of water and minerals through roots and root hair. Water conservation through controlled loss through stomata. 2. Special pathways evolved for distribution of water and minerals through long-distance transport (Xylem, phloem) 3. Gametes are protected. Water is made available only in preparation for fertilization. 4. Evolution of seed habit resistant to dehydration. 5. Cell wall thickening in tissues to provide mechanical strength. 6. To benefit from higher light intensity, leaves with large surface evolved for maximum photosynthesis. 5. Large sprophytic body evolved. 7 All adaptations needed for flourishing life on land did not arise simultaneously during the course of evolution. Their sequential acquisition can be seen various land plants. 8 9 Alternation of Generations In sexually reproducing organisms, there is a phenomenon called Alternation of generations. A haploid form called gametophyte with one set of chromosomes alternates with a diploid form called sporophyte with two sets of chromosomes. Gametophyte produces gametes that fuse to form zygote that develops into sporophyte. The latter forms haploid spores through meiosis. Each spore develops into a gametophyte. 10 Advanced green algae are ancestors of plants (Gametes already protected in these ancestors) All green algae have Chara – up to 5 Photosynthesis with chlorophyll a,b cm long cells Cellulose cell walls Haploid dominant Coleochaete Pair of advanced groups jointly have Multicellular thallus growth form Antheridium & oogonium protect gametes Oedogonium with oogonium and 11 antheridium Advanced algae like Chara and Coleochaete as ancestors of land plants Coleochaete-like alga could serve as an ancestor of thallus- based land plants like liverworts (see later) Chara-like alga possesses branching growth patter and could serve as an ancestor for most land plants with erect growth habit. 12 Adaptive changes that evolved for life on land also altered the pattern of alternation of generations Let us follow the changes in relative predominance and independence of sporophytic and gametophytic phases of life- cycle. Remember: gametophyte is haploid (every cell has one set of chromosomes) Sporophyte is diploid (every cell has two sets of chromosomes). Think about possible consequences of this all-important difference. 13 Isogamy: The two gametes are similar in appearance This figure shows the alternation of generations in Chlamydomonas, an unicellular green alga. It has asexual as well as sexual modes of reproduction. The gametophytic phase is predominant. The sporophytic phase is limited to just the zygote. Asexual reproduction is just the multiplication of the haploid gametophytic phase. 14 Waxy cuticle appears to prevent drying Heterogamy: The two gametes are dissimilar in appearnce and are protected in gametangia. It shows homospory. Alternation of generations in Marchantia – a liverwort. The gametophyte is predominant and its body is called thallus – a flat mat-like structure. A thallus produces male or female umbrella-shaped structures which produce antheridia (containing motile sperms) or archegonia (containing egg). After fertilization, the zygote grows right on the umbrella- shaped structure and produces spores through meiosis. Each spore produces male or female thallus. Non-motile and motile gamete. Sporophyte is matrotrophic. 15 Life-Cycle of a moss – Stomata appear for gaseous exchange Each archegonium produces a single egg. Each antheridium produces millions of sperms (the travelling gamete) Sporophyte is matrotrophic. 16 Anthoceros is a hornwort. The cylindrical sporophyte can be nearly 8” tall and is matrotrophic. Hornworts and vascular plants are believed to share common ancestors. Again, Sporophyte is matrotrophic. Clicker Question Next ! 17 Hornworts - one of the three groups of bryophytes, share common ancestry with vascular plants. 18 Heterospory first appears in the earliest vascular plants – the Pteridophytes – club-mosses or lycopods, ferns and horsetails. 19 Evolution of microphylls (simple leaves with a single vascular projection) and megaphylls (expanded leaves with many vascular veins) to maximize size and light interception Microphylls Megaphylls 20 Selaginella – a lycopod, shows both heterospory as well as heterogamy. Microphylls appear Selaginella is a hetero- sporous pteridophyte (an early vascular plant related to ferns). It produces microspores giving rise to male gametophyte , and megaspores giving rise to female gametophyte. After fertilization, in some species, the zygote undergoes dormancy before germinating (as in seeds). 21 Life cycle of a common fern Ferns include both homosporous and heterosporous species Megaphylls appear Xylem and phloem appear 22 Equisetum – a horsetail, grows abundantly in McGill University Arboretum Up to here, sperms have flagella and are motile 23 Gymnosperm life cycle Naked ovule borne on the scale • Sperms are not motile • But still no flowers • No xylem vessels • Gametophyte matrotrophic • 300 ft tall sporophyte • Same tree bears male strobili and female cones • Naked ovule develops into a naked seed • Polyembryony: several embryos develop within one seed. 24 Angiosperm Life Cycle: Flowers appear, xylem vessels appear, sperms not motile Gametophyte matrotrophic Male gametophyte represented by mature pollen grain consisting of two cells. Female gametophyte represented by 8-celled embryo sac. One of those cells is the egg. Double fertilization Only one embryo per seed Female gametophyte 25 Higher Plant vasculature: Tracheids, Vessels, Seive tubes and Companion cells Phloem seive tubes and Xylem vessels and tracheids companion cells 26 Evolution of Alternation of Generations Gametophyte Gametophyte much Sporophyte predominant and predominant and smaller than nourishes the hidden and nourishes smaller sporophyte but both inconspicuous gametophyte sporophyte live independently 27 Sprophyte/Gametophyte Size Ratio Group Sporophyte Gametophyte Sporophyte/Gametophyte Dependence Algae: Variable Bryophytes Mosses 2 cm 5 cm 0.4 Sporophyte matrotrophic Hornworts upto 20 cm thallus 0.4 20 Sporophyte matrotrophic Pteridophytes: 50-200 cm upto 5 mm 400 Both live independently Gymnosperms >10,000 cm <1 mm 100,000 Microscopic gametophyte and Angiosperms matrotrophic Diploidy means 2 copies of each gene. • Gene-dosage effect • Provides a cushion against harmful mutations. 28 Plants and mobility Plants did not evolve any mechanisms of mobility, except in Tolkien’s fantasies (Lord Of The Rings). Why not? Because they never needed to! They get what they need standing majestically where they are. When they need to either bring something to them or send something away, they recruited slaves – animals! 29 So, how did the plants meet special challenges associated with living on land? 1. Control of water loss through stomata and surface cuticle. 2. Protection of gametes. 3. Expansion of photosynthetic surface (leaves) to take advantage of higher light intensity. 4. Special tissues with thickened cell walls for mechanical strength to support the plant body. 5. Seed habit – Dehydrated seed capable of being stored. 6. Evolution of the diploid sporophyte as the predominant body form to provide cushion against mutations as well as higher gene dosage to increase` body size. 30 .
Recommended publications
  • Fungi-Rhizopus
    Characters of Fungi Some of the most important characters of fungi are as follows: 1. Occurrence 2. Thallus organization 3. Different forms of mycelium 4. Cell structure 5. Nutrition 6. Heterothallism and Homothallism 7. Reproduction 8. Classification of Fungi. 1. Occurrence: Fungi are cosmopolitan and occur in air, water soil and on plants and animals. They prefer to grow in warm and humid places. Hence, we keep food in the refrigerator to prevent bacterial and fungal infestation. 2. Thallus organization: Except some unicellular forms (e.g. yeasts, Synchytrium), the fungal body is a thallus called mycelium. The mycelium is an interwoven mass of thread-like hyphae (Sing, hypha). Hyphae may be septate (with cross wall) and aseptate (without cross wall). Some fungi are dimorphic that found as both unicellular and mycelial forms e.g. Candida albicans. 3. Different forms of mycelium: (a) Plectenchyma (fungal tissue): In a fungal mycelium, hyphae organized loosely or compactly woven to form a tissue called plectenchyma. It is two types: i. Prosenchyma or Prosoplectenchyma: In these fungal tissue hyphae are loosely interwoven lying more or less parallel to each other. ii. Pseudoparenchyma or paraplectenchyma: In these fungal tissue hyphae are compactly interwoven looking like a parenchyma in cross-section. (b) Sclerotia (Gr. Skleros=haid): These are hard dormant bodies consist of compact hyphae protected by external thickened hyphae. Each Sclerotium germinates into a mycelium, on return of favourable condition, e.g., Penicillium. (c) Rhizomorphs: They are root-like compactly interwoven hyphae with distinct growing tip. They help in absorption and perennation (to tide over the unfavourable periods), e.g., Armillaria mellea.
    [Show full text]
  • The Evolutionary Maintenance of Sexual Reproduction: the Solutions Proposed for a Longstanding Problem
    J. Genet. Vol. 69, No. 1, April 1990, pp. 1-10. 9 Printedin India. The evolutionary maintenance of sexual reproduction: The solutions proposed for a longstanding problem STEPHEN C. STEARNS Zoology Institute, Rheinsprung 9, CH-4051 Basel, Switzerland Abstract. The evolutionary maintenance of mixis is one of the major unsolved problems in modern biology. This paper reviews the phenomenon of sex, the hypotheses for its maintenance, and recent evidence bearing on the hypotheses. One elegant experiment supports the idea that bacterial transformation, an analogue and possible forerunner of eukaryotic mixis, functions as a repair mechanism. All mechanisms that produce a short- term advantage for sex in eukaryotes and that are supported by experimental results rely on strong genotype by environment interactions for fitness. While many environmental factors are involved, most prominently parasites, disease, and coarse-grained environmental heterogeneity of other sorts, each is effective only insofar as it is involved in a genotype by environment interaction for fitness. Keywords. Sexual reproduction; genotype by environment interaction; mixis; evolution of SeX. 1. Introduction The existence of sexual reproduction was no-puzzle for evolutionary biologists until 1962, when the publication of Wynne-Edwards' book signalled one of the most productive mistakes in the history of biologyl Wynne-Edwards made explicit and clear a kind of group-selectionist thinking that had previously been too implicit and diffuse to stimulate objections. Prior to that, one could explain sexual reproduction as an adaptation that endowed a population or species with the ability to evolve more rapidly than would asexual reproduction. After that, as part of the reaction to the criticisms of group selection (e.g.
    [Show full text]
  • What Is an Animal? Animals: General Characteristics 1. by Far, the Largest
    What is an Animal? Animals: General Characteristics 1. by far, the largest and most diverse kingdom 2. eukaryote cells eucaryotic heterotrophs no chloroplasts lack cell walls around cells aerobic require free oxygen for respiration lots more mitochondria lots more energy more mitochondria than cells of any other kingdom need much more energy, much more active 3. ALL are multicellular best development of multicellularity of all kingdoms 4. most are motile and more active than members of any other kingdom Animal Records: Locomotion Swimming fastest pinniped 25mph (40kph) Running fastest land mammal Cheetah, Acinonyx jubatus 60mph (96kph) in spurts speeds up to 90 mph have been claimed, not verified slowest land mammal 3 toed sloth, Bradypus tridactylus 6-8 ft/min (0.088mph) Flying Fastest Insect: Dragonflies, some flies & moths 25-30 mph black cutworm moth 70mph (rides cold fronts) Fastest horizontal flight(bird): racing pigeons and dunlin sandpipers 110mph spine tailed swift, Chaetura caudacuta, 106mph (170kph) red breasted merganser ducks 100 mph Fastest wingbeat of bird hummingbird90b/sec Fastest flight (mammal): 48mph mexican free tailed bat (others suspected to be faster) Fastest diving flight: peregrin falcon 82mph (unverified to over 200mph); (but horizontal flight 30-60mph) 5. most animals store extra energy as fats or oils 6. most with true tissues epithelial covers body *muscular used for movement *nervous coordination and control connective storage, transport, protection, etc 7. most with organs and complex organ systems plants have simple organs animals have organs grouped into complex interacting systems most animals have a head with distinct sense Animals – Introduction (general); Ziser, 2006 2 organs and some kind of brain most have some kinds of appendages for collecting food or for movement 8.
    [Show full text]
  • Paradigm Shift in Sex Chromosome Evolution Abstracts of the Workshop Held in Berlin, 19-22 September 2019
    Paradigm shift in sex chromosome evolution Abstracts of the workshop held in Berlin, 19-22 September 2019 Edited by 1 Matthias Stöck https://orcid.org/0000-0003-4888-8371 2 Lukáš Kratochvíl https://orcid.org/0000-0002-3515-729X 1 Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Ecophysiology and Aquaculture, Berlin, Germany 2 Charles University, Faculty of Science, Department of Ecology, Prague, Czech Republic © 2019. This manuscript version is made available under the CC-BY 4.0 license Workshop: Paradigm shift in sex chromosome evolution. Berlin, September 19 - 22 1 Paradigm shift in sex chromosome evolution Edited by Matthias Stöck https://orcid.org/0000-0003-4888-8371, Lukáš Kratochvíl https://orcid.org/0000-0002-3515-729X DOI 10.4126/FRL01-006417884 Name of the conference: Paradigm shift in sex chromosome evolution - conceptual and empirical challenges from studies in vertebrates (workshop held in Berlin, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 19-22 September 2019). Original publication date 12 December 2019 (available online) Citation Stöck, M., Kratochvíl, L. (eds.): Paradigm shift in sex chromosome evolution. Abstracts of the workshop held in Berlin, Leibniz- Institute of Freshwater Ecology and Inland Fisheries (IGB), 19-22 September 2019. Berlin and Prague, 42 pp. Key words Vertebrates, sex chromosomes, sex determination, genetics, evolution, genomics, paradigm shift Abstract Explaining the variation in sex-determining mechanisms across the tree of life and understanding the evolution of sex chromosomes represent important goals in evolutionary biology. Many papers have followed the classical paradigm of differentiation pathways of sex chromosomes from autosomes. However, the evolutionary drivers and many other aspects of the differentiation of sex chromosomes still remain controversial.
    [Show full text]
  • Sexual Selection, Sexual Conflict and the Evolution of Ageing and Life Span
    Functional Ecology 2008, 22, 443–453 doi: 10.1111/j.1365-2435.2008.01417.x THEBlackwell Publishing Ltd EVOLUTIONARY ECOLOGY OF SENESCENCE Sexual selection, sexual conflict and the evolution of ageing and life span R. Bonduriansky*, A. Maklakov, F. Zajitschek and R. Brooks Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney NSW 2052, Australia Summary 1. Classic evolutionary models interpret ageing as a cost of reproduction, but evolutionary research has thus far largely neglected the conceptual links between the evolution of ageing and a key mode of selection on male and female reproductive strategies – sexual selection and sexual conflict. 2. We synthesize ideas and evidence linking sex and ageing, and make the case that a focus on this fascinating problem will ultimately lead to a more complete understanding of both the evolution of ageing and the evolution of sexual strategies. 3. The primary and secondary differentiation of male and female reproductive strategies is expected to produce sex-specific optima for traits that affect longevity and ageing rate, often favouring a ‘live fast, die young’ strategy in males, relative to females, although numerous exceptions to this pattern are observed and sex-differences in ageing rate, in particular, remain poorly understood. 4. Conversely, environmental factors that influence life expectancy or ageing rate can thereby determine the magnitude or even sign of sexual selection. 5. Sexual conflict is expected to displace the sexes from their sex-specific life-history optima through sexually antagonistic interactions, as well as sex-specific selection on loci expressed in both sexes.
    [Show full text]
  • KINGDOM PLANTAE Algae Moss & Fern NOTES SPOROPHYTE (2N)
    KINGDOM PLANTAE Algae Moss & Fern NOTES Characteristics: • Eukaryotes • Autotrophs – have chlorophyll in chloroplasts for photosynthesis • Cell walls made of cellulose • Unicellular & multicellular • Sexual & asexual reproduction • A life cycle (L. C.) called alternation of generations Life Cycle: Alternation of Generations Plant switches back and forth between the sporophyte and the gametophyte generations (they alternate). 2 Phases: 1. Sporophyte generation = Diploid (2N) = Produces spores by meiosis. 2. Gametophyte generation = Haploid (N) = Produces gametes (sex cells). SPOROPHYTE (2N) zygote 2N 2N fertilization meiosis gametes N N N spores GAMETOPHYTE (N) AQUATIC PLANT REPRODUCTION: ALGAE A. Asexual reproduction 3 types: 1. Fragmentation = piece breaks off cell body and grows into a new individual. 2. Asexual spores = haploid 3. Mitotic division = simple cell division –single celled algae. B. Sexual reproduction The two gametes fuse to form a zygote There are two types of gametes: identical and different 1.Isogamy = identical gametes = isogametes = same size and structure. When isogametes fuse = conjugation. Isogametes are differentiated by + and – strain (like fungus) 2. Heterogamy = different gametes = different size and structure. Larger gamete = egg; smaller gamete = sperm. When egg and sperm fuse = fertilization. Algae have accessory pigments Function: • Protect chlorophyll • Absorb additional light for algae’s photosynthetic machinery. This allows algae to live in deeper water than chlorophyll alone • Gives algae its colour AQUATIC PLANTS Benefits of living in water Problem with living in water • Won’t dry out • No conductive tissue • Water provides support for the • No true roots, stems, or leaves plant • Provides nutrients • They must be thin to absorb nutrients & water through leaf- like structures • Helps disperse spores • Helps gametes meet Ecological roles/ uses of algae • Food source • Supply O2 to earth - phytoplankton • Gelatin for pie filling • Used to make agar plates (for study of bacteria!).
    [Show full text]
  • Termite Queens Close the Sperm Gates of Eggs to Switch from Sexual to Asexual Reproduction
    Termite queens close the sperm gates of eggs to switch from sexual to asexual reproduction Toshihisa Yashiro and Kenji Matsuura1 Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan Edited by Bert Hölldobler, Arizona State University, Tempe, AZ, and approved October 16, 2014 (received for review July 2, 2014) Males and females are in conflict over genetic transmission in the ants (11–13) and termites (14–16) selectively use both sexual re- evolution of parthenogenesis, because it enhances female re- production and thelytoky when mating with males. In these social productive output but deprives the males’ genetic contribution. insects, queens produce new queens asexually by thelytokous par- For males, any trait that coerces females into sexual reproduction thenogenesis, but they produce workers through sexual re- should increase their fitness. However, in the termite Reticulitermes production. This conditional switching of reproductive tactics allow speratus, queens produce their replacements (neotenic queens) par- queens to increase the transmission of their genes to the next thenogenetically while using normal sexual reproduction to pro- generation and maintain genetic diversity in the worker force, but it duce other colony members. Here, we show that termite queens inevitably provokes queen–male sexual conflict by reducing the produce parthenogenetic offspring in the presence of kings by clos- males’ genetic contribution to future generations (17). This system ing the micropyles (sperm gates; i.e., openings for sperm entry) of provides an ideal opportunity to study how and why females switch their eggs. Our field survey showed that termite eggs show large from sexual to asexual reproduction, even in the presence of males.
    [Show full text]
  • REPRODUCTION in ORGANISMS 1. Select the Option Which Arranges the Given Organisms in Ascending Order of Their Life Span
    REPRODUCTION IN ORGANISMS 1. Select the option which arranges the given organisms in ascending order of their life span. (A) Parrot < Crow < Butterfly < Banyan tree (B) Butterfly < Crow < Parrot < Crocodile (C) Fruit fly < Crocodile < Parrot < Banyan tree (D) Parrot < Tortoise < Dog < Crow 2. Refer the given figures and select the correct option. (A) It is a type of parthenogenesis. (B) It is a type of asexual reproduction. (C) The offsprings can also be called as clones. (D) Both B and C. 3. Identify which part of the flower is diploid. (A) Ovary (B) Anther (C) Pollen (D) Egg 4. Study the given figures representing the process of binary fission in Amoeba. Arrange the figures in the correct sequence and select the correct answer. (A) (iv) → (iii) → (i) → (ii) → (v) (B) (iii) → (iv) → (i) → (ii) → (v) (C) (iii) → (v) → (ii) → (iv) → (i) (D) (iv) → (iii) → (ii) → (v) → (i) 5. Read the following statements about asexual reproduction and select the correct ones. (i) It involves a single parent. (ii) It is slower than sexual reproduction. (iii) It produces progeny that are genetically identical with the parent but not with one another. (iv) The progeny of asexual reproduction can be termed as clones. (A) (i) and (ii) (B) (ii) and (iii) (C) (i) and (iv) (D) (i), (iii) and (iv) 6. Match Column-I with Column-II and select the correct option from the codes given below. Column I Column II A. Sponge (i) Tuber B. Yeast (ii) Offset C. Potato (iii) Gemmules D. Water hyacinth (iv) Budding (A) A-(iv), B-(i), C-(ii), D-(iii) (B) A-(iii), B-(i), C-(iv), D-(ii) (C) A-(iii), B-(iv), C-(i), D-(ii) (D) A-(iv), B-(ii), C-(i), D-(iii) 7.
    [Show full text]
  • Unit –13– Reproduction in Fungi by Dr. Kirtika Padalia-Converted.Pdf
    BIOLOGY AND DIVERSITY OF VIRUSES, BACTERIA AND FUNGI (PAPER CODE: BOT 501) By Dr. Kirtika Padalia Department of Botany Uttarakhand Open University, Haldwani E-mail: [email protected] OBJECTIVES The main objective of the present lecture is to cover the topic and make it easy to understand and interesting for our students/learners. BLOCK – III : FUNGI – I Unit –13 : Reproduction in Fungi In this lecture, we will discuss about the various methods of reproduction adopted by the fungi. CONTENT ❑ Reproduction in fungi ❖ Vegetative Reproduction • Fission • Budding • Fragmentation • Sclerotia • Rhizomorphs ❖ Asexual Reproduction • Endogenous Spores • Exogenous Spores ❖ Sexual Reproduction • Planogametic Copulation • Gametangial Contact • Gametangial Copulation • Spermatization: • Somatogamy ❑ Sexual Incompatibility ❑ Sexual Pheromones ❑ Key Points of The Lecture ❑ Terminology ❑ Some Assessment Questions REPRODUCTION IN FUNGI ❖ Reproduction may be define as a process in which individual species increase their number by producing the progeny. ❖ Fungi are achlorophyllas, heterotrophic eukaryotic thallophytes, which adopted the various methods of reproduction. ❖ When the fungal mycelium has reached a certain stage of maturity and has accumulated reserve food material, it start reproduction. ❖ Reproduction involves the production of new individuals resembling the parent or parents. ❖ In fungi, reproduction is of three kinds; • Vegetative reproduction • Asexual reproduction • Sexual reproduction ❖ Many mycologist, however, included all methods of reproduction (vegetative and spore formation) which do not involve union of nucli or sex cell or sex organs under asexual or somatic reproduction. ❖ During asexual and sexual reproduction processes spores are the essential structures. The spores formed after meiosis are called meiospores (e.g., ascospores, basidiospores and sporangiospores) and those resulting from mitosis, called mitospores (e.g., mitospores, zoospores, aplanospores, conidia, uredospores).
    [Show full text]
  • Evolution of Sex Why Is Sexual Reproduction So Commonplace?
    Honors Project by Aaron Weinblatt Evolution of Sex Why is Sexual Reproduction so Commonplace? Introduction The topic of reproduction has been one of my interests for a while. Evolution, in general, has always fascinated me and I pursued more knowledge of the topic with extracurricular reading and research. I was inspired to write this honors project after reading The Red Queen: Sex and ​ the Evolution of Human Nature by Matt Ridley during the summer before sophomore year. ​ Ridley pointed out that initially, all life forms reproduced asexually. As lifeforms evolved, so did reproduction and eventually, sexual reproduction was practiced. Humans have since evolved their human nature, however, the two forms of reproduction have stayed the same. This begs the question of why life forms have two separate forms of reproduction and why we humans, the most recent species, reproduce sexually. Life has been around for approximately 4.250 billion years and it wasn’t until about 1.250 billion years ago that life began reproducing sexually. Before then, life forms on earth reproduced asexually. Around nine hundred million years after the first sexually reproducing organisms evolved, land life emerged. An estimated 99.99% of all eukaryotes1 can (and often do) reproduce sexually including us humans. So how and why did life begin reproducing sexually after three billion years and why has it prevailed? The explanation for the predominance of sexual reproduction is inconsistent and includes many theories, however, by studying and comparing the facts, a conclusion can materialize. How Sexual Reproduction Works Unlike asexual reproduction, sexual reproduction produces offspring that resemble their ​ ​ parents but are not identical.
    [Show full text]
  • CLASSIFICATION of LIVING ORGANISMS the Main Purpose Of
    CLASSIFICATION OF LIVING ORGANISMS The main purpose of the classification is to group the living things on the earth according to their kinship relations and make it easier to understand them in a regular system. The science that serves this purpose is known as Systematics or Taxonomy. Taxonomy consists of the words "taxis" (regulation, classification) and "nomos" (rule, rule, law) in Greek. The meaning of taxonomy is to set rules and laws on the classification. Systematics is the science dealing with the diversity of organisms and of any and all relationships among them. HISTORY OF CLASSIFICATION Aristotle (384-322 B.C.), was one of the first scientists to organize living things. He developed the first classification system, which divided all known organisms into two groups (Plants and Animals). The basis of this classification is to classify the living things based on their external appearances, living conditions, the basis of analogical organs and morphologic similarity. Nowadays, this classification has lost its validity. Phylogenetic classification is currently used in the classification of living things. The basic principles of scientific classification were first introduced by Carl Linnaeus (1707-1778) and he is known as the father of taxonomy. Linnaeus, like Aristotle, classified organisms according to their traits. The classification systems of both Aristotle and Linnaeus started with the same two groups (Plants and Animals). Linnaeus called these groups, kingdoms. Unlike Aristotle, Linnaeus divided the kingdom into levels (Class, Order, Genera, Species etc.). Organisms were placed in these levels based on traits, including similarities of body parts, physical form such as size, shape, and methods of feeding.
    [Show full text]
  • A Computational Workflow to Study Sex Determination Using Restriction Site-Associated DNA Sequencing Data
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.054866; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. RADSex: a computational workflow to study sex determination using Restriction Site-Associated DNA Sequencing data 1,2,3* 1,2 1,4 1 Romain Feron ,​ Qiaowei Pan ,​ Ming Wen ,​ Boudjema Imarazene ,​ Elodie 1 ​ 1,5 ​ ​ 1 6 ​ Jouanno ,​ Jennifer Anderson ,​ Amaury Herpin ,​ Laurent Journot ,​ Hugues ​ 6 7 ​ 8 ​ 8 ​ 9,10 Parrinello ,​ Christophe Klopp ,​ Verena A. Kottler ,​ Alvaro S. Roco ,​ Kang Du ,​ ​ 8 ​ 10 ​ 11 ​ ​ 11 Susanne Kneitz ,​ Mateus Adolfi ,​ Catherine A. Wilson ,​ Braedan McCluskey ,​ 11​ ​ 11 ​ 12 ​13 Angel Amores ,​ Thomas Desvignes ,​ Frederick W. Goetz ,​ Ato Takanashi ,​ ​ 13 ​ 14 15​ 15​ Mari Kawaguchi ,​ H. William Detrich III ,​ Marcos Oliveira ,​ Rafael Nobrega ,​ ​ 16 ​ 16 ​ 17 17​ Takashi Sakamoto ,​ Masatoshi Nakamoto ,​ Anna Wargelius ,​ Ørjan Karlsen ,​ 8,18​ 19 ​ 2,3​ ​20 Zhongwei Wang ,​ Matthias Stöck ,​ Robert M. Waterhouse ,​ Ingo Braasch ,​ ​ 11 9,10 1,*​ ​ John H. Postlethwait ,​ Manfred Schartl and​ Yann Guiguen ​ ​ ​ Affiliations 1. INRAE, LPGP, 35000, Rennes, France 2. Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland 3. Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 4. State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China 5. Department of Systematic Biology, EBC, Uppsala University, Norbyvägen 18D 752 36 Uppsala, Sweden 6.
    [Show full text]