Forall X: Calgary an Introduction to Formal Logic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tt-Satisfiable
CMPSCI 601: Recall From Last Time Lecture 6 Boolean Syntax: ¡ ¢¤£¦¥¨§¨£ © §¨£ § Boolean variables: A boolean variable represents an atomic statement that may be either true or false. There may be infinitely many of these available. Boolean expressions: £ atomic: , (“top”), (“bottom”) § ! " # $ , , , , , for Boolean expressions Note that any particular expression is a finite string, and thus may use only finitely many variables. £ £ A literal is an atomic expression or its negation: , , , . As you may know, the choice of operators is somewhat arbitary as long as we have a complete set, one that suf- fices to simulate all boolean functions. On HW#1 we ¢ § § ! argued that is already a complete set. 1 CMPSCI 601: Boolean Logic: Semantics Lecture 6 A boolean expression has a meaning, a truth value of true or false, once we know the truth values of all the individual variables. ¢ £ # ¡ A truth assignment is a function ¢ true § false , where is the set of all variables. An as- signment is appropriate to an expression ¤ if it assigns a value to all variables used in ¤ . ¡ The double-turnstile symbol ¥ (read as “models”) de- notes the relationship between a truth assignment and an ¡ ¥ ¤ expression. The statement “ ” (read as “ models ¤ ¤ ”) simply says “ is true under ”. 2 ¡ ¤ ¥ ¤ If is appropriate to , we define when is true by induction on the structure of ¤ : is true and is false for any , £ A variable is true iff says that it is, ¡ ¡ ¡ ¡ " ! ¥ ¤ ¥ ¥ If ¤ , iff both and , ¡ ¡ ¡ ¡ " ¥ ¤ ¥ ¥ If ¤ , iff either or or both, ¡ ¡ ¡ ¡ " # ¥ ¤ ¥ ¥ If ¤ , unless and , ¡ ¡ ¡ ¡ $ ¥ ¤ ¥ ¥ If ¤ , iff and are both true or both false. 3 Definition 6.1 A boolean expression ¤ is satisfiable iff ¡ ¥ ¤ there exists . -
UNIT-I Mathematical Logic Statements and Notations
UNIT-I Mathematical Logic Statements and notations: A proposition or statement is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: “Paris is in France” (true), “London is in Denmark” (false), “2 < 4” (true), “4 = 7 (false)”. However the following are not propositions: “what is your name?” (this is a question), “do your homework” (this is a command), “this sentence is false” (neither true nor false), “x is an even number” (it depends on what x represents), “Socrates” (it is not even a sentence). The truth or falsehood of a proposition is called its truth value. Connectives: Connectives are used for making compound propositions. The main ones are the following (p and q represent given propositions): Name Represented Meaning Negation ¬p “not p” Conjunction p q “p and q” Disjunction p q “p or q (or both)” Exclusive Or p q “either p or q, but not both” Implication p ⊕ q “if p then q” Biconditional p q “p if and only if q” Truth Tables: Logical identity Logical identity is an operation on one logical value, typically the value of a proposition that produces a value of true if its operand is true and a value of false if its operand is false. The truth table for the logical identity operator is as follows: Logical Identity p p T T F F Logical negation Logical negation is an operation on one logical value, typically the value of a proposition that produces a value of true if its operand is false and a value of false if its operand is true. -
Chapter 1 Logic and Set Theory
Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic. -
Folktale Documentation Release 1.0
Folktale Documentation Release 1.0 Quildreen Motta Nov 05, 2017 Contents 1 Guides 3 2 Indices and tables 5 3 Other resources 7 3.1 Getting started..............................................7 3.2 Folktale by Example........................................... 10 3.3 API Reference.............................................. 12 3.4 How do I................................................... 63 3.5 Glossary................................................. 63 Python Module Index 65 i ii Folktale Documentation, Release 1.0 Folktale is a suite of libraries for generic functional programming in JavaScript that allows you to write elegant modular applications with fewer bugs, and more reuse. Contents 1 Folktale Documentation, Release 1.0 2 Contents CHAPTER 1 Guides • Getting Started A series of quick tutorials to get you up and running quickly with the Folktale libraries. • API reference A quick reference of Folktale’s libraries, including usage examples and cross-references. 3 Folktale Documentation, Release 1.0 4 Chapter 1. Guides CHAPTER 2 Indices and tables • Global Module Index Quick access to all modules. • General Index All functions, classes, terms, sections. • Search page Search this documentation. 5 Folktale Documentation, Release 1.0 6 Chapter 2. Indices and tables CHAPTER 3 Other resources • Licence information 3.1 Getting started This guide will cover everything you need to start using the Folktale project right away, from giving you a brief overview of the project, to installing it, to creating a simple example. Once you get the hang of things, the Folktale By Example guide should help you understanding the concepts behind the library, and mapping them to real use cases. 3.1.1 So, what’s Folktale anyways? Folktale is a suite of libraries for allowing a particular style of functional programming in JavaScript. -
Theorem Proving in Classical Logic
MEng Individual Project Imperial College London Department of Computing Theorem Proving in Classical Logic Supervisor: Dr. Steffen van Bakel Author: David Davies Second Marker: Dr. Nicolas Wu June 16, 2021 Abstract It is well known that functional programming and logic are deeply intertwined. This has led to many systems capable of expressing both propositional and first order logic, that also operate as well-typed programs. What currently ties popular theorem provers together is their basis in intuitionistic logic, where one cannot prove the law of the excluded middle, ‘A A’ – that any proposition is either true or false. In classical logic this notion is provable, and the_: corresponding programs turn out to be those with control operators. In this report, we explore and expand upon the research about calculi that correspond with classical logic; and the problems that occur for those relating to first order logic. To see how these calculi behave in practice, we develop and implement functional languages for propositional and first order logic, expressing classical calculi in the setting of a theorem prover, much like Agda and Coq. In the first order language, users are able to define inductive data and record types; importantly, they are able to write computable programs that have a correspondence with classical propositions. Acknowledgements I would like to thank Steffen van Bakel, my supervisor, for his support throughout this project and helping find a topic of study based on my interests, for which I am incredibly grateful. His insight and advice have been invaluable. I would also like to thank my second marker, Nicolas Wu, for introducing me to the world of dependent types, and suggesting useful resources that have aided me greatly during this report. -
Chapter 9: Initial Theorems About Axiom System
Initial Theorems about Axiom 9 System AS1 1. Theorems in Axiom Systems versus Theorems about Axiom Systems ..................................2 2. Proofs about Axiom Systems ................................................................................................3 3. Initial Examples of Proofs in the Metalanguage about AS1 ..................................................4 4. The Deduction Theorem.......................................................................................................7 5. Using Mathematical Induction to do Proofs about Derivations .............................................8 6. Setting up the Proof of the Deduction Theorem.....................................................................9 7. Informal Proof of the Deduction Theorem..........................................................................10 8. The Lemmas Supporting the Deduction Theorem................................................................11 9. Rules R1 and R2 are Required for any DT-MP-Logic........................................................12 10. The Converse of the Deduction Theorem and Modus Ponens .............................................14 11. Some General Theorems About ......................................................................................15 12. Further Theorems About AS1.............................................................................................16 13. Appendix: Summary of Theorems about AS1.....................................................................18 2 Hardegree, -
Learning Dependency-Based Compositional Semantics
Learning Dependency-Based Compositional Semantics Percy Liang∗ University of California, Berkeley Michael I. Jordan∗∗ University of California, Berkeley Dan Klein† University of California, Berkeley Suppose we want to build a system that answers a natural language question by representing its semantics as a logical form and computing the answer given a structured database of facts. The core part of such a system is the semantic parser that maps questions to logical forms. Semantic parsers are typically trained from examples of questions annotated with their target logical forms, but this type of annotation is expensive. Our goal is to instead learn a semantic parser from question–answer pairs, where the logical form is modeled as a latent variable. We develop a new semantic formalism, dependency-based compositional semantics (DCS) and define a log-linear distribution over DCS logical forms. The model parameters are estimated using a simple procedure that alternates between beam search and numerical optimization. On two standard semantic parsing benchmarks, we show that our system obtains comparable accuracies to even state-of-the-art systems that do require annotated logical forms. 1. Introduction One of the major challenges in natural language processing (NLP) is building systems that both handle complex linguistic phenomena and require minimal human effort. The difficulty of achieving both criteria is particularly evident in training semantic parsers, where annotating linguistic expressions with their associated logical forms is expensive but until recently, seemingly unavoidable. Advances in learning latent-variable models, however, have made it possible to progressively reduce the amount of supervision ∗ Computer Science Division, University of California, Berkeley, CA 94720, USA. -
Inference Versus Consequence* Göran Sundholm Leyden University
To appear in LOGICA Yearbook, 1998, Czech Acad. Sc., Prague. Inference versus Consequence* Göran Sundholm Leyden University The following passage, hereinafter "the passage", could have been taken from a modern textbook.1 It is prototypical of current logical orthodoxy: The inference (*) A1, …, Ak. Therefore: C is valid if and only if whenever all the premises A1, …, Ak are true, the conclusion C is true also. When (*) is valid, we also say that C is a logical consequence of A1, …, Ak. We write A1, …, Ak |= C. It is my contention that the passage does not properly capture the nature of inference, since it does not distinguish between valid inference and logical consequence. The view that the validity of inference is reducible to logical consequence has been made famous in our century by Tarski, and also by Wittgenstein in the Tractatus and by Quine, who both reduced valid inference to the logical truth of a suitable implication.2 All three were anticipated by Bolzano.3 Bolzano considered Urteile (judgements) of the form A is true where A is a Satz an sich (proposition in the modern sense).4 Such a judgement is correct (richtig) when the proposition A, that serves as the judgemental content, really is true.5 A correct judgement is an Erkenntnis, that is, a piece of knowledge.6 Similarly, for Bolzano, the general form I of inference * I am indebted to my colleague Dr. E. P. Bos who read an early version of the manuscript and offered valuable comments. 1 Could have been so taken and almost was; cf. -
Logical Vs. Natural Language Conjunctions in Czech: a Comparative Study
ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 68–73 http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, c 2016 K. Prikrylová,ˇ V. Kubon,ˇ K. Veselovská Logical vs. Natural Language Conjunctions in Czech: A Comparative Study Katrin Prikrylová,ˇ Vladislav Kubon,ˇ and Katerinaˇ Veselovská Charles University in Prague, Faculty of Mathematics and Physics Czech Republic {prikrylova,vk,veselovska}@ufal.mff.cuni.cz Abstract: This paper studies the relationship between con- ceptions and irregularities which do not abide the rules as junctions in a natural language (Czech) and their logical strictly as it is the case in logic. counterparts. It shows that the process of transformation Primarily due to this difference, the transformation of of a natural language expression into its logical representa- natural language sentences into their logical representation tion is not straightforward. The paper concentrates on the constitutes a complex issue. As we are going to show in most frequently used logical conjunctions, and , and it the subsequent sections, there are no simple rules which analyzes the natural language phenomena which∧ influence∨ would allow automation of the process – the majority of their transformation into logical conjunction and disjunc- problematic cases requires an individual approach. tion. The phenomena discussed in the paper are temporal In the following text we are going to restrict our ob- sequence, expressions describing mutual relationship and servations to the two most frequently used conjunctions, the consequences of using plural. namely a (and) and nebo (or). 1 Introduction and motivation 2 Sentences containing the conjunction a (and) The endeavor to express natural language sentences in the form of logical expressions is probably as old as logic it- The initial assumption about complex sentences contain- self. -
Presupposition Projection and Entailment Relations
Presupposition Projection and Entailment Relations Amaia Garcia Odon i Acknowledgements I would like to thank the members of my thesis committee, Prof. Dr. Rob van der Sandt, Dr. Henk Zeevat, Dr. Isidora Stojanovic, Dr. Cornelia Ebert and Dr. Enric Vallduví for having accepted to be on my thesis committee. I am extremely grateful to my adviser, Louise McNally, and to Rob van der Sandt. Without their invaluable help, I would not have written this dissertation. Louise has been a wonderful adviser, who has always provided me with excellent guid- ance and continuous encouragement. Rob has been a mentor who has generously spent much time with me, teaching me Logic, discussing my work, and helping me clear up my thoughts. Very special thanks to Henk Zeevat for having shared his insights with me and for having convinced me that it was possible to finish on time. Thanks to Bart Geurts, Noor van Leusen, Sammie Tarenskeen, Bob van Tiel, Natalia Zevakhina and Corien Bary in Nijmegen; to Paul Dekker, Jeroen Groe- nendijk, Frank Veltman, Floris Roelofsen, Morgan Mameni, Raquel Fernández and Margot Colinet in Amsterdam; to Fernando García Murga, Agustín Vicente, Myriam Uribe-Etxebarria, Javier Ormazabal, Vidal Valmala, Gorka Elordieta, Urtzi Etxeberria and Javi Fernández in Vitoria-Gasteiz, to David Beaver and Mari- bel Romero. Also thanks to the people I met at the ESSLLIs of Bordeaux, Copen- hagen and Ljubljana, especially to Nick Asher, Craige Roberts, Judith Tonhauser, Fenghui Zhang, Mingya Liu, Alexandra Spalek, Cornelia Ebert and Elena Pa- ducheva. I gratefully acknowledge the financial help provided by the Basque Government – Departamento de Educación, Universidades e Investigación (BFI07.96) and Fun- dación ICREA (via an ICREA Academia award to Louise McNally). -
Logic and Proof Release 3.18.4
Logic and Proof Release 3.18.4 Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn Sep 10, 2021 CONTENTS 1 Introduction 1 1.1 Mathematical Proof ............................................ 1 1.2 Symbolic Logic .............................................. 2 1.3 Interactive Theorem Proving ....................................... 4 1.4 The Semantic Point of View ....................................... 5 1.5 Goals Summarized ............................................ 6 1.6 About this Textbook ........................................... 6 2 Propositional Logic 7 2.1 A Puzzle ................................................. 7 2.2 A Solution ................................................ 7 2.3 Rules of Inference ............................................ 8 2.4 The Language of Propositional Logic ................................... 15 2.5 Exercises ................................................. 16 3 Natural Deduction for Propositional Logic 17 3.1 Derivations in Natural Deduction ..................................... 17 3.2 Examples ................................................. 19 3.3 Forward and Backward Reasoning .................................... 20 3.4 Reasoning by Cases ............................................ 22 3.5 Some Logical Identities .......................................... 23 3.6 Exercises ................................................. 24 4 Propositional Logic in Lean 25 4.1 Expressions for Propositions and Proofs ................................. 25 4.2 More commands ............................................ -
Iso/Iec Jtc 1/Sc 2 N 3769/Wg2 N2866 Date: 2004-11-12
ISO/IEC JTC 1/SC 2 N 3769/WG2 N2866 DATE: 2004-11-12 ISO/IEC JTC 1/SC 2 Coded Character Sets Secretariat: Japan (JISC) DOC. TYPE Summary of Voting/Table of Replies Summary of Voting on ISO/IEC JTC 1/SC 2 N 3758 : ISO/IEC 14651/FPDAM 2, Information technology -- International string ordering TITLE and comparison -- Method for comparing character strings and description of the common template tailorable ordering -- AMENDMENT 2 SOURCE SC 2 Secretariat PROJECT JTC1.02.14651.00.02 This document is forwarded to Project Editor for resolution of comments. STATUS The Project Editor is requested to prepare a draft disposition of comments report, revised text and a recommendation for further processing. ACTION ID FYI DUE DATE P, O and L Members of ISO/IEC JTC 1/SC 2 ; ISO/IEC JTC 1 Secretariat; DISTRIBUTION ISO/IEC ITTF ACCESS LEVEL Def ISSUE NO. 202 NAME 02n3769.pdf SIZE FILE (KB) 24 PAGES Secretariat ISO/IEC JTC 1/SC 2 - IPSJ/ITSCJ *(Information Processing Society of Japan/Information Technology Standards Commission of Japan) Room 308-3, Kikai-Shinko-Kaikan Bldg., 3-5-8, Shiba-Koen, Minato-ku, Tokyo 105- 0011 Japan *Standard Organization Accredited by JISC Telephone: +81-3-3431-2808; Facsimile: +81-3-3431-6493; E-mail: [email protected] Summary of Voting on ISO/IEC JTC 1/SC 2 N 3758 : ISO/IEC 14651/FPDAM 2, Information technology -- International string ordering and comparison -- Method for comparing character strings and description of the common template tailorable ordering AMENDMENT 2 Q1 : FPDAM Consideration Q1 Not yet Comments Approve