Raspberry Pi 3 Home Network Monitoring Tool
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Survey of Network Performance Monitoring Tools
A Survey of Network Performance Monitoring Tools Travis Keshav -- [email protected] Abstract In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key. This paper analyzes several facets of Network Performance Monitoring, evaluating several motivations as well as examining many commercial and public domain products. Keywords: network performance monitoring, application monitoring, flow monitoring, packet capture, sniffing, wireless networks, path analysis, bandwidth analysis, network monitoring platforms, Ethereal, Netflow, tcpdump, Wireshark, Ciscoworks Table Of Contents 1. Introduction 2. Application & Host-Based Monitoring 2.1 Basis of Application & Host-Based Monitoring 2.2 Public Domain Application & Host-Based Monitoring Tools 2.3 Commercial Application & Host-Based Monitoring Tools 3. Flow Monitoring 3.1 Basis of Flow Monitoring 3.2 Public Domain Flow Monitoring Tools 3.3 Commercial Flow Monitoring Protocols 4. Packet Capture/Sniffing 4.1 Basis of Packet Capture/Sniffing 4.2 Public Domain Packet Capture/Sniffing Tools 4.3 Commercial Packet Capture/Sniffing Tools 5. Path/Bandwidth Analysis 5.1 Basis of Path/Bandwidth Analysis 5.2 Public Domain Path/Bandwidth Analysis Tools 6. Wireless Network Monitoring 6.1 Basis of Wireless Network Monitoring 6.2 Public Domain Wireless Network Monitoring Tools 6.3 Commercial Wireless Network Monitoring Tools 7. Network Monitoring Platforms 7.1 Basis of Network Monitoring Platforms 7.2 Commercial Network Monitoring Platforms 8. Conclusion 9. References and Acronyms 1.0 Introduction http://www.cse.wustl.edu/~jain/cse567-06/ftp/net_perf_monitors/index.html 1 of 20 In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key. -
Best Practices for Network Monitoring
White Paper Best Practices for Network Monitoring How a Network Monitoring Switch Helps IT Teams Stay Proactive 26601 Agoura Road, Calabasas, CA 91302 | Tel: 818.871.1800 | Fax: 818.871.1805 | www.ixiacom.com | 915-6509-01 Rev. B, June 2013 2 Table of Contents Monitoring Challenges in Today’s Business Environment .......................................... 4 Giving Monitoring Tools Full Visibility to the Network ............................................... 5 Easing the Path to Upgrade ........................................................................................ 6 Making Monitoring Tools Work Better ........................................................................ 7 Filtering ...................................................................................................................... 7 Load Balancing ........................................................................................................... 8 Packet De-duplication ................................................................................................ 8 Packet Trimming ........................................................................................................ 8 MPLS Stripping .......................................................................................................... 9 Keeping Network Data Secure ................................................................................... 9 Improving Productivity in IT ....................................................................................... 9 Filter Libraries -
Large Scale Monitoring of Home Routers
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 21-23 September 2009, Rende (Cosenza), Italy Large scale monitoring of home routers S. Costas-Rodr´ıguez+,R.Mart´ınez-Alvarez´ +,F.J.Gonz´alez-Casta˜no∗+, F. Gil-Casti˜neira∗,R.Duro× +Gradiant, ETSI Telecomunicaci´on, Campus, 36310 Vigo, Spain ∗Departamento de Ingenier´ıa Telem´atica, Universidad de Vigo, Spain ×Grupo Integrado de Ingenier´ıa, Universidad de La Coru˜na, Spain Tel: +34 986 813788, fax: +34 986 812116 E-mail: {scostas,rmartinez}@gradiant.org,{javier,xil}@det.uvigo.es,[email protected] Abstract – This paper describes our experience with reception power, memory usage or uptime are useful to concurrent asynchronous monitoring of large populations of detect and fix many potential problems. end-user broadband-access routers. In our real tests we focused on home/office ADSL Despite of the wealth of research in large-scale monitoring, which assumes that it is possible to inquiry individual nodes routers, although our results are valid for any other access efficiently, end-user access routers usually have manual legacy technology. We monitored the routers of the Spanish ISP interfaces, either HTTP- or telnet-oriented. They seldom and VoIP operator Comunitel (www.comunitel.es). With offer a direct interface to other programs. Moreover, the our approach, a full monitoring cycle of 22,300 such uptime of end-user routers is unpredictable. For all these routers took less than five minutes. reasons, commercial large-scale monitoring tools such as SNMP collectors are useless. The rest of this paper is organized as follows: In This research is motivated by the fact that some telecom- section II we review the background, comprising academic munications operators do not let end-users buy their routers research and existing industrial solutions. -
Network Monitoring Using Nagios and Autoconfiguration for Cyber Defense Competitions
NETWORK MONITORING USING NAGIOS AND AUTOCONFIGURATION FOR CYBER DEFENSE COMPETITIONS Jaipaul Vasireddy B.Tech, A.I.E.T, Jawaharlal Nehru Technological University, India, 2006 PROJECT Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in COMPUTER SCIENCE at CALIFORNIA STATE UNIVERSITY, SACRAMENTO FALL 2009 NETWORK MONITORING USING NAGIOS AND AUTOCONFIGURATION FOR CYBER DEFENSE COMPETITIONS A Project by Jaipaul Vasireddy Approved by: __________________________________, Committee Chair Dr. Isaac Ghansah __________________________________, Second Reader Prof. Richard Smith __________________________ Date ii Student: Jaipaul Vasireddy I certify that this student has met the requirements for format contained in the University format manual, and that this Project is suitable for shelving in the Library and credit is to be awarded for the Project. __________________________, Graduate Coordinator ________________ Dr. Cui Zhang Date Department of Computer Science iii Abstract of NETWORK MONITORING USING NAGIOS AND AUTOCONFIGURATION FOR CYBER DEFENSE COMPETITIONS by Jaipaul Vasireddy The goal of the project is to monitor the services running on the CCDC (College Cyber Defense Competition) network, using Nagios which uses plugins to monitor the services running on a network. Nagios is configured by building configuration files for each machine which is usually done to monitor small number of systems. The configuration of Nagios can also be automated by using shell scripting which is generally done in an industry, where the numbers of systems to be monitored are large. Both the above methods of configuration have been implemented in this project. The project has been successfully used to know the status of each service running on the defending team’s network. -
Deploying F5 with Nagios Open Source Network Monitoring System Welcome to the F5 and Nagios Deployment Guide
DEPLOYMENT GUIDE Version 1.0 IMPORTANT: This guide has been archived. While the content in this guide is still valid for the products and version listed in the document, it is no longer being updated and may refer to F5 or 3rd party products or versions that have reached end-of-life or end-of-support. See https://support.f5.com/csp/article/K11163 for more information. Deploying the BIG-IP LTM with the Nagios Open Source Network Monitoring System Archived Deploying F5 with Nagios Open Source Network Monitoring System Welcome to the F5 and Nagios deployment guide. This guide provides detailed procedures for configuring F5 devices with the Nagios Open Source Network Monitoring System. Network Management Systems (NMS) provide insight to device and application performance, system stability, network trouble spots and a host of other items that affect a company's ability to provide computer network services. Recent advances in automated event correlation, data storage and retrieval, as well as open source systems that allow greater integration, have greatly improved today's Network Management Systems. The Nagios system and network monitoring application is an open source project. Nagios maintains network status information by polling objects for specific service responses. Examples of monitored network services include SMTP, DNS, HTTP, and so on. For more information on the Nagios project, see http://www.nagios.org/ or http://sourceforge.net/projects/nagios/. For further Nagios resources and information, see http://community.nagios.org/. For more information on F5 devices described in this guide, see http://www.f5.com/products/big-ip/. To provide feedback on this deployment guide or other F5 solution documents, contact us at [email protected]. -
Network Management
Chapter 12: Network Management Jian Ren and Tongtong Li, Michigan State University Introduction 2 Network Scanners . 25 OSI Network Management Model . .3 Packet Filters . 26 Network Management Layers . .4 Wireless Network Management 26 ISO Network Management Functions 6 Cellular Networks . 27 Configuration Management . .6 Location Management for Cellular Fault Management . .6 Networks . 28 Security Management . .7 Accounting Management . .7 Policy-based Network Management 29 What Is a Policy? . 30 Performance Management . .7 Benefits of PBNM . 31 Network Management Protocols 7 Architecture of a PBNM System . 31 SNMP/SNMPv1 . .8 Conclusion 32 SNMPv2 . 13 SNMPv3 . 15 Glossary 33 Remote Network Monitoring (RMON) 23 Acknowledgements 34 Network Management Tools 24 Network Monitors . 25 Acronyms 37 Abstract: The continuous growth in scale and diversity of computer networks and network components has made network management one of the most challenging issues facing network administrators. It has become impossible to carry out network management functions without the support of automated tools and applications. In this chapter, the major network management issues, including network management requirements, functions, techniques, security, some well- known network management protocols and tools, will be discussed. Location management for the wireless cellular networks will also be briefly described. Finally, policy-based network management, which is a promising direction for the next generation of network management, will be briefly described. Keywords: -
List of Projects Using Raspberry Pi with Advance View: 1
List of Projects using Raspberry Pi with advance view: 1. Home/Hotel Monitoring System with Automated controls A cloud connected prototype to monitor and control any hotel or can be home, The system is connected to an android application. Story Everyday we see a changing trend in technology and no matter wh has changed the way we live today and…... Listed under: Metering - Instrument Projects, Sensor - Transducer - Detector Projects 2. JQR Quadruped Autonomous Robot With a lot of inspiration from Boston Dynamics projects, I'm trying to make something great w million dollars. Story JQR Quadruped Robot is a DIY project with the main objective to build an autonomous, legged robot that wi people in many activities. The project…... Listed under: Robotics - Automation Projects 3. Raspberry Pi Web-Controlled Robot with Video Simple Raspberry Pi web-controlled robot with video live streaming. Story gatoBo gato is the spanish translation for cat. A web controlled Raspberry Pi Zero W Robot with live video streaming. This is something I b order to bother my cats. About Raspberry Pi Wikipedia: The Raspberry Pi is a…... Listed under: Robotics - Automation Projects 4. Alexa Messenger for Whatsapp Text anyone at anytime without even holding your phone or type a single letter with Alexa Messen Story Alexa Messenger for Whatsapp Did you ever want to text your friend but you are always busy or just not comfortable wit phone small screen…... Listed under: Other Projects 5. Archimedes: The AI Robot Owl A wearable robotic owl familiar. Archimedes judges your emotions, via Google AIY. Story As feature in Make: Magazine! This is a robotic owl that looks around for cool people, and can tell whether you're happy or upset. -
SOM IB3710 Quad Core SOM (System-On-Module) Rev 1.3
Intel Braswell SOM IB3710 Quad Core SOM (System-On-Module) Rev 1.3 SolidRun Ltd. 7 Hamada st., Yokne’am Illit, 2495900, Israel Simple. Robust. Computing Solutions www.solid-run.com 1 | Page Document revision 1.0 28082017 SolidRun Ltd. 2017 Overview Embedded system developers, device makers and OEMs: Shorten your development cycle and accelerate time-to-market with our Micro-System on a Module – SolidRun’s SOM family. We’ve harnessed Intel’s powerful new Braswell line of 14 nm SoCs, producing a powerful, small form- factor module that is ideally suited for a wide range of Windows- and Linux-based IoT applications. SOM IB3710 Highlighted Features Based on Intel’s Braswell SoC Up to 8GB Memory Size Small size 53mmx40mm Long longevity of 7 years 4K support Optimized onboard power management Dramatically reduces complexity 2 | Page Document revision 1.0 28082017 SolidRun Ltd. 2017 System Specifications Pentium N3710 Processor cores 4 Memory (RAM) Up to 8GB (4GB default size) CPU HFM Clock (GHz) 1.60, Burst 2.56 Graphic GPU Intel Gen8 LP – 16EU GPU HFM Clock (MHz) 400, Turbo Clock 700 Max Resolution (DP 1.1a, HDMI 1.4b) 3840×2160 @30 Hz, 2560×1600 @60; 24 bpp eDP 1.4 Max 2560×1600 @60; 24bpp Junction temp. range 0C-90C Dimensions 52.8mm x 40mm Max. height from carrier 6.1mm to 8.6mm (depending on DF40 1.5-4.0 mm mating height on carrier board) Mechanical fastening 3 x M1.8 mechanical holes DDR-3L Onboard one channel (1GByte version) and dual channel (all other) DDR3L 1600Mbps , up to 8GByte total Network Onboard 10/100/1000 Mbps (RTL8111G) -
Press Release 26.2.2019
Press Release 26.2.2019 Media Contacts: Jake Jones [email protected] SolidRun Announces Its First 16 Core Networking COM Express type 7 Platform Harnessing NXP’s Robust QorIQ® Layerscape® LX2160A processor CEx7 LX2160A COM Express module developed in partnership with NXP will be offered as a COM, an SBC and evaluation board – boasting unparalleled performance for high-end network computing applications. Nuremberg, February 26, 2019 – SolidRun, a leading developer of high-performance and energy- efficient embedded edge computing solutions is today announcing the new CEx7 LX2160A. The new module, built in partnership with NXP, harnesses the outstanding network computing power of NXP’s LX2160A 16 core Arm® Cortex®-v8 A72 processor developed on a modular COM Express type 7 standard form factor. CEx7 LX2160A was designed for high-end network and edge computing applications, including switch management, software defined network, and software based dataplane, server offload, network security solutions, white box switching, eNodeB L2/L3 compute node and network storage solutions. Based on the advanced 16 core NXP LX2160A Arm® v8 Cortex®-A72 processor, the new COM Express Type 7 module from SolidRun supports up to 2.2GHz CPU clock with high-end networking accelerators and connectivity features. Implemented in low-power 16 FinFET Compact, this powerful 64-bit Arm based platform offers support for 100 Gigabit with up to 16 Ethernet ports, supporting on board 64-bit DDR4 (up to 64GB),with ECC, and DPDK. The module also features 18 lane PCIe gen 4.0 (6 controllers), two SATA ports, two USB 3.0 ports with a total of 24 muxed SERDESs. -
Microsom I2 Dual Core Som (System-On-Module)
NXP-Freescale i.MX6 MicroSoM i2 Dual Core SoM (System-On-Module) SolidRun Ltd. 3 Dolev st., 3rd floor, P.O. Box 75 Migdal Tefen 2495900, Israel. Simple. Robust. Computing Solutions www.solid-run.com MicroSoM i2 Data Sheet Overview Expands the capabilities of the single core SOM-i1 with a dual lite CPU and 1GByte of DRAM. MicroSoM i2 Highlighted Features: • Based on NXP’s iMX6 Dual-lite Core SoC • 1GB DDR3 • Small size 47mm×30mm • Variety of temperature grades: - Commercial 0°C...60°C - Extended-20°C...70°C - Industrial -40°C...85°C - Automotive -40°C...105°C • Long longevity of 10 years • Low power consumption © SolidRun Ltd. 2016 3 Dolev St., 3rd floor, P.O. Box 75, Migdal Tefen 2495900, Israel / 2 MicroSoM i2 Data Sheet System Specifications i.MX6 Dual-lite Processor core Dual core ARM A9 Processor speed 1GHz (up to 1.2GHz) Floating Point VFPv3 SIMD NEON Graphics Processing Unit Vivante GC880 3D GPU Support OpenGL ES 1.1/2.0 HW Video Dec/Enc Multi Format Memory 64 bit, 1GB DDR3 @ 800Mbps Wired Network 10/100/1000 Mbps* Wireless Network Optional Bluetooth Optional Display Max resolution HDMI: 1080p, LCD: WUXGA (1920×1200) Display Interfaces LVDS, HDMI 1.4, DSI, Parallel Dual display support Supported External Storage NOR-Flash, eMMC, SD/microSD, PCIe SSD SD/MMC 3 USB 2.0 host 1 USB OTG 1 Serial ports 3 Digital audio serial interface 1 Camera interface port 2 Lane CSI CAN bus ** S-ATA – PCI-Express 2.0 ×1 Second Ethernet Via PCIe or USB NIC I2C 3 SPI 3 PWM 4 © SolidRun Ltd. -
Debian GNU/Linux Installation Guide
Debian GNU/Linux Installation Guide July 31, 2021 Debian GNU/Linux Installation Guide Copyright © 2004 – 2021 the Debian Installer team This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General Public License. Please refer to the license in Appendix F. Build version of this manual: 20210730. i Contents 1 Welcome to Debian 1 1.1 What is Debian? . 1 1.2 What is GNU/Linux? . 1 1.3 What is Debian GNU/Linux? . 2 1.4 What is the Debian Installer? . 3 1.5 Getting Debian . 3 1.6 Getting the Newest Version of This Document . 3 1.7 Organization of This Document . 3 1.8 About Copyrights and Software Licenses . 4 2 System Requirements 5 2.1 Supported Hardware . 5 2.1.1 Supported Architectures . 5 2.1.2 Three different ARM ports . 6 2.1.3 Variations in ARM CPU designs and support complexity . 6 2.1.4 Platforms supported by Debian/armhf . 6 2.1.5 Platforms no longer supported by Debian/armhf . 8 2.1.6 Multiple Processors . 8 2.1.7 Graphics Hardware Support . 8 2.1.8 Network Connectivity Hardware . 8 2.1.9 Peripherals and Other Hardware . 8 2.2 Devices Requiring Firmware . 8 2.3 Purchasing Hardware Specifically for GNU/Linux . 9 2.3.1 Avoid Proprietary or Closed Hardware . 9 2.4 Installation Media . 9 2.4.1 CD-ROM/DVD-ROM/BD-ROM . 9 2.4.2 Network . 10 2.4.3 Hard Disk . 10 2.4.4 Un*x or GNU system . -
SOM I.MX8M Datasheet
SOM i.MX8M Datasheet NXP i.MX8M based System on Module | Rev. 2.0 SolidRun Ltd. Embedded Edge Computing 7 Hamada st., Yokne’am Illit, 2495900, Israel www.solid-run.com Overview SolidRun’s i.MX8M based System on Module (SOM) harnesses NXP’s powerful i.MX8M in a flexible & compact SOM including a memory subsystem, power management subsystem, networking and system interconnectivity. The i.MX8 SOM will allow developers and OEMs to simplify the production cycle and reduce time-to-market drastically. SOM i.MX8M Highlighted Features Based on NXP’s i.MX8M dual/quad-core Arm Cortex A53 processor, Cortex M4 general purpose processor 4K UltraHD, full HDR, 20 audio channels & Dolby Vision Up to 4GB LPDDR4 3200 Tiny footprint (47mm x 30mm) 2 | Page Document revision 1.1 25072019 SolidRun Ltd. 2019 System Specifications SOM i.MX8M Dual SOM i.MX8M Quad Lite SOM i.MX8M Quad Processor NXP i.MX8M dual Arm Cortex NXP i.MX8M Quad Arm Cortex NXP i.MX8M Quad Arm Cortex A53 A53 A53 General Purpose Processor Arm Cortex M4 Arm Cortex M4 Arm Cortex M4 Processor Speed 1.5GHz Commercial 1.5GHz Commercial 1.5GHz Commercial 1.3GHz Industrial 1.3GHz Industrial 1.3GHz Industrial Floating Point VFPv4 VFPv4 VFPv4 SIMD NEON NEON NEON Graphic Processing Unit Vivante GC7000 Lite Vivante GC7000 Lite Vivante GC7000 Lite 3D GPU Support OpenGL ES1.1/2.0/3.0/3.1, OpenGL ES1.1/2.0/3.0/3.1, OpenGL ES1.1/2.0/3.0/3.1, OpenCL 1.2 & Vulkan OpenCL 1.2 & Vulkan OpenCL 1.2 & Vulkan HW Video Dec/Enc Multi Format Multi Format Multi Format Memory 32bit up to 3GB LPDDR4 32bit up to 3GB LPDDR4