Inferred from DNA Barcoding Data

Total Page:16

File Type:pdf, Size:1020Kb

Inferred from DNA Barcoding Data Contributions to Zoology 89 (2020) 127-145 CTOZ brill.com/ctoz Evolutionary history of species of the firefly subgenus Hotaria (Coleoptera, Lampyridae, Luciolinae, Luciola) inferred from DNA barcoding data Taeman Han Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea Seung-Hyun Kim Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea Hyung Joo Yoon Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea In Gyun Park Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea Haechul Park Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea [email protected] Abstract The firefly subgenus Hotaria sensu lato of the genus Luciola currently includes four morphospecies: L. (H.) parvula, L. (H.) unmunsana, L (H.) papariensis, and L. (H.) tsushimana. The latter three are taxonomically controversial based on both morphological and molecular data. We examined the phylogenetic relation- ships and evolutionary history of the species and related congeners using partial COI gene sequences (DNA barcoding). Our phylogenetic analyses consistently supported the monophyly of Hotaria sensu lato, but did not resolve the generic rank. The two types of L. (H.) parvula in Japan can be considered distinct © Han et al., 2019 | doi:10.1163/18759866-20191420 This is an open access article distributed under the terms of the cc-by 4.0 License. Downloaded from Brill.com09/26/2021 02:28:38AM via free access <UN> 128 Han et al. species that arose by pseudocryptic speciation during the Miocene, with substantial genetic divergence (15.41%). Three morphospecies, L. (H.) unmunsana, L (H.) papariensis, and L. (H.) tsushimana, split into several polyphyletic or paraphyletic groups, forming entangled species groups. They are considered an incipient group that is distinguishable genetically but not morphologically, with evidence for recent allo- patric speciation events corresponding to geologic events and sea-level changes during the Pliocene and Pleistocene. Group III of L. (H.) unmunsana collected from the Jeolla region is a new taxon. Keywords Fireflies – Luciola – Hotaria – incipient species diversity – molecular clock – allopatric speciation Introduction the morphological differentiation. Previous studies of the distributional patterns of the Fireflies belonging to the family Lampyri- two Korean Luciola species are based on dae may be the most charismatic among all the descriptions by Doi (1931, 1932). Kim & insects owing to their beautiful light signals Nam (1981) reported that L. (H.) papariensis for spectacular courtship displays. Thus, they is dominant in the northern part and L. (H.) have inspired many poems, songs, and stories unmunsana is abundant in the southern part as well as research. Fireflies include more than of South Korea. Sim & Kwon (2000) obtained 2,000 species in 100 genera (Lewis & Cratsely, similar results but found that the two spe- 2008). Six species in five genera and two sub- cies are sympatric at every site surveyed, ex- families are known in Korea (Kang, 2012). In cept for a remote volcanic Island, Jeju, where the genus Luciola of Luciolinae, three species only H. (H.) unmunsana is found. Kim et al. are recognized in Korea. L. (s. str.) lateralis is (2004) suggested that L. (H.) papariensis and morphologically distinct from the other two L. (H.) unmunsana are not different species Korean species, L. (Hotaria) unmunsana and because the remarkable the pronotal semicir- L. (H.) papariensis, based on its black scutel- cular speckle is polymorphic within species lum and large punctures on the pronotum. and sometimes differ between species. Kang However, L. (H.) unmunsana and L. (H.) papa- (2012) also pointed out that L. (H.) paparien- riensis are highly similar to each other. sis may be the same as L. (H.) unmunsana Doi (1931, 1932) described L. unmunsana or at least may not be distributed in South (type locality: Mt. Unmun, Cheongdo-gun, Korea based on topotypical specimens of L. Gyeongsangbuk-do, South Korea) and L. pa- unmunsana collected from the type locality, pariensis (type locality: Pabalri, Pungsan-gun, Mt. Unmun, with the blackish semicircular Hamgyeongnam-do, North Korea). The color speckle on the pronotum. This conclusion pattern of the pronotum, which is orange- was based on the description of Doi (1932), red in L. (H.) unmunsana and yellowish- which did not consider intraspecific varia- brown with blackish semicircular speckle tion in the pronotal speckle. Closely related at the anterior part in L. (H.) papariensis, species, similar to the two Korean species of is a diagnostic character (Doi, 1931, 1932). Luciola, are also found in Japan. L. (H.) tsu- However, the type specimens were lost and shimana Nakane, 1970 is distributed only on accordingly cannot be examined to confirm Tsushima Is. and L. (H.) parvula Kiesenwetter, Downloaded from Brill.com09/26/2021 02:28:38AM via free access <UN> EVOLUTIONARY HISTORY OF HOTARIA SPECIES 129 1874 is widely found on three major islands papariensis and L. (H.) unmunsana. Our find- (Honshu, Shikoku, and Kyushu). ings clarify the species statuses of four conge- These four morphospecies are currently ners in Hotaria and provide insight into intra- classified in the subgenus Hotaria Yuasa, 1937 and interspecific divergence. of the genus Luciola (Sim et al., 1999; Sim & Kwon, 2000; Suzuki, 2001), but the taxonomic position of Hotaria is still unclear. It has been Material and methods treated as a genus (Yuasa, 1937; Nakane & Ohba, 1981; Kurosawa et al., 1985; Hirashima, Taxon sampling and initial morphospecies 1989; Suzuki, 1997; Ohba, 1998; Choi et al., identification 2002), as a subgenus (McDermott, 1966; Bal- In total, 72 specimens regarded as Luciola lantyen, 1968; Suzuki, 2001), and as synony- (Hotaria) papariensis and L. (H.) unmunsana mous with Luciola (Oba et al., 2011). were collected in South Korea. This additional During the past two decades, Korean and sampling was expected to provide more im- Japanese fireflies in Luciola have been investi- proved species identification and genetic gated extensively using molecular approaches structures for the focal taxa by expanding on (see reviewed by Suzuki, 2001; Kim et al., 2004). the locations and sample sizes than the pre- Suzuki et al. (1993) used 13 allozyme loci to an- vious studies. These samples were kept alive alyze populations of Hotaria parvula, which until they could be stored at –80°C for DNA can be distinguished into two types accord- extraction. For morphospecies identification, ing to male body size, the dimorphism of flash the descriptions of Doi (1931, 1932) were used interval patterns in males, and their allopatric owing to the lack of type specimens. The gen- distribution in Japan (Ohba, 1983, 1986, 1987), eral features of the specimens were observed and found two genetically distinct ecological under a stereoscopic microscope (MZ 16A and types. Ohmiya et al. (1995) found that H. par- MZ 6; Leica, Solms, Germany). L. (H.) papari- vula is separated from Luciola lineages, includ- ensis was identified based on the presence of ing L. cruciata and L. lateralis, in an analysis of the black semicircular speckle on the anterior luciferase amino acid sequences. Suzuki (1997) part of the pronotum and L. (H.) unmunsana examined a partial sequence of mitochondrial lacked the speckle on the pronotum. Finally, 16S ribosomal RNA (16S rRNA) and showed 22 specimens were identified as L. (H.) papari- H. parvula and H. tsushimana form a mono- ensis from five localities, mainly in the north- phyletic group that is separated from other Lu- ern part of South Korea, and 50 specimens ciola species. Kim et al. (2004) analyzed lucif- were recognized as L. (H.) unmunsana from erase and mitochondrial DNA sequences and five localities, mainly in the middle to south- found that H. papariensis, H. unmunsana, and ern parts of South Korea (table 1, supplemen- H. tsushimana do not exhibit sufficient diver- tary table S1). Unlike previous studies (Kim & gence to be considered separate species (Kim Nam, 1981; Sim & Kwon, 2000; Kim et al., 2004; et al., 2000; Choi et al., 2002, 2003). However, Kang, 2012), we did not find these two species they used only a few local samples (<five spec- co-occurring at the same collecting sites. All imens). Therefore, the precise species statuses materials were preserved in the insect col- of these species are unclear. lection at the Applied Entomology Division, In this study, we performed a DNA barcod- Department of Agricultural Biology, National ing analysis using COI gene sequences to eval- Institute of Agricultural Science (NIAST), uate larger sample sizes of Luciola (Hotaria) Jeonju, Korea. Downloaded from Brill.com09/26/2021 02:28:38AM via free access <UN> 130 Han et al. TABLE 1 Summary of the firefly species examined in this study Species ID Species Samplesize Collection Source of COI sequences localities Present study NCBI 1 Luciolar (Hotaria) 54 South Korea (54)* ○ ○ unmunsana
Recommended publications
  • A Synopsis of Aquatic Fireflies with Description of a New Species (Coleoptera) 539-562 © Wiener Coleopterologenverein, Zool.-Bot
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Water Beetles of China Jahr/Year: 2003 Band/Volume: 3 Autor(en)/Author(s): Jeng Ming-Luen, Lai Jennifer, Yang Ping-Shih Artikel/Article: Lampyridae: A synopsis of aquatic fireflies with description of a new species (Coleoptera) 539-562 © Wiener Coleopterologenverein, Zool.-Bot. Ges. Österreich, Austria; download unter www.biologiezentrum.at JÄcil & Jl (eels.): Water Hectics of China Vol.111 539 - 562 Wien, April 2003 LAMPYRIDAE: A synopsis of aquatic fireflies with description of a new species (Coleoptera) M.-L. JENG, J. LAI & P.-S. YANG Abstract A synopsis of the Lampyridae (Coleoptera) hitherto reported to be aquatic is given. The authors could confirm aquatic larval stages for five out of the fifteen reported cases: Luciola cruciata MOTSCHULSKY (Japan), L. ficta OLIVIER (China, incl. Taiwan), L. latcralis MOTSCHULSKY (Japan, Korea, China and Russia), L. owadai SATO & KlMURA (Japan) and L. substriata Gorham (= L. fonnosana PIC syn.n.) (Taiwan, Myanmar and India). A sixth species, L. hyclrophila sp.n. (Taiwan), is described. The larvae of all but L. substriata have lateral tracheal gills on abdominal segments 1-8; L. substriata has a metapneustic larval stage with a pair of functional spiracles on the eighth abdominal segment. It is suggested that the aquatic habits in Luciola LAPORTE have evolved at least twice. The species with facultatively aquatic larvae are summarized also. A lectotype is designated for L.ficta. Key words: Coleoptera, Lampyridae, Luciola, aquatic, new species. Introduction Lampyridae, or fireflies, belong to the superfamily Cantharoidea (sensu CROWSON 1972) or Elatcroidea (sensu LAWRENCE & NEWTON 1995).
    [Show full text]
  • Methodologies for Monitoring Fireflies in Hong Kong
    40 Methodologies for monitoring fireflies Methodologies for monitoring fireflies in Hong Kong Yiu Vor 31E, Tin Sam Tsuen, Kam Sheung Road, Yuen Long, N.T., Hong Kong. Email: [email protected] ABSTRACT record fireflies qualitatively and quantitatively, including: In total 241 field visits to 47 different sites in Hong Kong a. Malaise traps. Ten traps were set for a general were conducted specifically for firefly survey, from 2009 insects study in 2014 and small quantity of fireflies to 2020. Various methods were used to record fireflies were collected; qualitatively and quantitatively. Local restrictedness of 29 species of Hong Kong fireflies are listed. Methods b. Quadrat count and point count. Used in high for accessing the population of different firefly species visibility areas with concentration of flying fireflies are discussed and recommended according to their displaying light at night. Area of the quadrats was distribution characteristic, flash and flight, and habitat. measured by visual estimation, measuring tape Using photography and videography to assist counting or a Leica DISTO DXT Laser Distance meter. The fireflies is introduced. Current limitations and further observer stand along the margins of the quadrat actions are proposed. to counts the number of fireflies displaying light ; or stand at the centre of the quadrat and count the Key words: Fireflies, Lampyridae, Rhagophthalmidae, number of fireflies displaying light in a 360 degree Hong Kong, local restrictedness, accessing population perspective – point count. c. Transect count. This was usually done by walking INTRODUCTION slowly along a road, a trail or a path; fireflies occurring on both sides of the path were counted.
    [Show full text]
  • Molecular Systematics of the Firefly Genus Luciola
    animals Article Molecular Systematics of the Firefly Genus Luciola (Coleoptera: Lampyridae: Luciolinae) with the Description of a New Species from Singapore Wan F. A. Jusoh 1,* , Lesley Ballantyne 2, Su Hooi Chan 3, Tuan Wah Wong 4, Darren Yeo 5, B. Nada 6 and Kin Onn Chan 1,* 1 Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore 2 School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga 2678, Australia; [email protected] 3 Central Nature Reserve, National Parks Board, Singapore 573858, Singapore; [email protected] 4 National Parks Board HQ (Raffles Building), Singapore Botanic Gardens, Singapore 259569, Singapore; [email protected] 5 Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; [email protected] 6 Forest Biodiversity Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; [email protected] * Correspondence: [email protected] (W.F.A.J.); [email protected] (K.O.C.) Simple Summary: Fireflies have a scattered distribution in Singapore but are not as uncommon as many would generally assume. A nationwide survey of fireflies in 2009 across Singapore documented 11 species, including “Luciola sp. 2”, which is particularly noteworthy because the specimens were collected from a freshwater swamp forest in the central catchment area of Singapore and did not fit Citation: Jusoh, W.F.A.; Ballantyne, the descriptions of any known Luciola species. Ten years later, we revisited the same locality to collect L.; Chan, S.H.; Wong, T.W.; Yeo, D.; new specimens and genetic material of Luciola sp. 2. Subsequently, the mitochondrial genome of that Nada, B.; Chan, K.O.
    [Show full text]
  • Coleoptera: Lampyridae) and the Description of New Genera
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3653 (1): 001–162 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3653.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:72A07BC6-AEB0-4EBC-AFA8-F5871065680F ZOOTAXA 3653 Systematics and Phylogenetics of Indo-Pacific Luciolinae Fireflies (Coleoptera: Lampyridae) and the Description of new Genera LESLEY A. BALLANTYNE1 & CHRISTINE L. LAMBKIN2 1. School of Agricultural and Wine Sciences, Charles Sturt University, PO Box 588, Wagga Wagga, 2678, Australia. [email protected] 2 Queensland Museum, PO Box 3300 South Brisbane, 4101, Australia. [email protected] Magnolia Press Auckland, New Zealand Accepted by C. Majka: 28 Feb. 2013; published: 22 May 2013 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. LESLEY A. BALLANTYNE & CHRISTINE L. LAMBKIN Systematics and Phylogenetics of Indo-Pacific Luciolinae Fireflies (Coleoptera: Lampyridae) and the Description of new Genera ( Zootaxa 3653) 162 pp.; 30 cm. 22 May 2013 ISBN 978-1-77557-160-5 (paperback) ISBN 978-1-77557-161-2 (Online edition) FIRST PUBLISHED IN 2013 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2013 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
    [Show full text]
  • Luciola Roseicollis
    A journal of world insect systematics INSECTA MUNDI 0874 Luciola lambkinae Keller and Ballantyne, Page Count: 3 new replacement name for Luciola roseicollis Pic, 1935 (Coleoptera: Lampyridae) Keller and Ballantyne Oliver Keller Florida State Collection of Arthropods Florida Department of Agriculture and Consumer Services P.O. Box 147100 Gainesville, FL 32614-7100, U.S.A. Lesley Ballantyne School of Agricultural and Wine Sciences Charles Sturt University Wagga Wagga, NSW, Australia Date of issue: June 25, 2021 Center for Systematic Entomology, Inc., Gainesville, FL Keller O, Ballantyne L. 2021. Luciola lambkinae Keller and Ballantyne, new replacement name for Luciola roseicollis Pic, 1935 (Coleoptera: Lampyridae). Insecta Mundi 0874: 1–3. Published on June 25, 2021 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medi- cal entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources, including the Zoological Record and CAB Abstracts. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality.
    [Show full text]
  • Coleoptera: Lampyridae)
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2020-03-23 Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae) Gavin Jon Martin Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Martin, Gavin Jon, "Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae)" (2020). Theses and Dissertations. 8895. https://scholarsarchive.byu.edu/etd/8895 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected]. Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae) Gavin Jon Martin A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Seth M. Bybee, Chair Marc A. Branham Jamie L. Jensen Kathrin F. Stanger-Hall Michael F. Whiting Department of Biology Brigham Young University Copyright © 2020 Gavin Jon Martin All Rights Reserved ABSTRACT Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae) Gavin Jon Martin Department of Biology, BYU Doctor of Philosophy Fireflies are a cosmopolitan group of bioluminescent beetles classified in the family Lampyridae. The first catalogue of Lampyridae was published in 1907 and since that time, the classification and systematics of fireflies have been in flux. Several more recent catalogues and classification schemes have been published, but rarely have they taken phylogenetic history into account. Here I infer the first large scale anchored hybrid enrichment phylogeny for the fireflies and use this phylogeny as a backbone to inform classification.
    [Show full text]
  • Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies
    insects Article Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies Xueying Ge 1, Lilan Yuan 1,2, Ya Kang 1, Tong Liu 1, Haoyu Liu 1,* and Yuxia Yang 1,* 1 The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; [email protected] (X.G.); [email protected] (L.Y.); [email protected] (Y.K.); [email protected] (T.L.) 2 College of Agriculture, Yangtze University, Jingzhou 434025, China * Correspondence: [email protected] (H.L.); [email protected] (Y.Y.) Simple Summary: The classification of Lampyridae has been extensively debated. Although some recent efforts have provided deeper insight into it, few genes have been analyzed for Cyphonocerinae in the molecular phylogenies, which undoubtedly influence elucidating the relationships of fireflies. In this study, we generated the first complete mitochondrial genome for Cyphonocerinae, with Cyphonocerus sanguineus klapperichi as the representative species. The comparative analyses of the mitogenomes were made between C. sanguineus klapperichi and that of well-characterized species. The results showed that the mitogenome of Cyphonocerinae was conservative in the organization and characters, compared with all other fireflies. Like most other insects, the cox1 gene was most converse, Citation: Ge, X.; Yuan, L.; Kang, Y.; and the third codon positions of the protein-coding genes were more rate-heterogeneous than the Liu, T.; Liu, H.; Yang, Y. first and second ones in the fireflies. The phylogenetic analyses suggested that Cyphonocerinae as an Characterization of the First independent lineage was more closely related to Drilaster (Ototretinae).
    [Show full text]
  • Phylogenetic Analysis of the Subfamily Ototretinae (Coleoptera: Lampyridae)
    Phylogenetic analysis of the subfamily Ototretinae (Coleoptera: Lampyridae) KRISTÝNA JANISOVAa & MILADA BOCAKOVA b* "Department of Botany and Zoology, Faculty of Science, Masaryk University, Terezy Novákové 64, CZ-62100 Brno, Czech Republic h Department of Biology, Faculty of Education, Palacký University, Purkrabská 2, CZ-77140 Olomouc, Czech Republic Abstract The first phylogenetic analysis of the subfamily Ototretinae was performed. A data matrix of 42 taxa and 51 morphological characters was assembled, containing all genus - group taxa of the Ototretinae. The monophyly of the Ototretinae was supported. The preferred hypothesis, the majority rule consensus tree generated using implied weights under parsimony criterion showed Baolacus, Falsophaeopterus, Stenocladius to be the most basal splits, followed by divergence of Oculogryphus and Brachypterodrilus. All the other Ototretinae having a circular pit in posterior angles distally formed a crown clade of "higher" Ototretinae proposed here to be the tribe Ototretini. This Ototretini clade was shown to be composed of three lineages: 1. the Drilaster clade, 2. Picodrilus clade, and 3. Lamellipalpus clade. Within Drilaster clade, Emasia was recovered as sister to Drilaster + Flabellototreta clade. North American Brachylampis was shown to originate as sister to Asiatic genus Picodrilus. Within Lamellipalpus clade, Ceylanidrilus and Hydaspoides were recovered among the most basal splits. The genus Lamellipalpodes was shown to be paraphyletic with respect to the Lamellipalpus. Formerly independent subfamily Ototretadrilinae formed a sister group of (Lamellipalpus + Lamellipalpodes) + Hyperstoma clade. Ceylonese Eugeusis + Harmatelia clade was sister to Gorhamia, and all the three genera were recovered as closely related to {{Lamellipalpus -^-Lamellipalpodes) + Hyperstoma) + Ototretadrilus clade. Key words Phylogeny, Ototretinae, Lampyridae, morphology Introduction The Ototretinae belongs to the family Lampyridae, a diverse group of beetles known for their ability of bioluminescence.
    [Show full text]
  • Firefly Genomes Illuminate Parallel Origins of Bioluminescence in Beetles
    Firefly genomes illuminate parallel origins of bioluminescence in beetles The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fallon, Timothy R. et al. "Firefly genomes illuminate parallel origins of bioluminescence in beetles." eLife 7 (2018): e36495 © 2019 The Author(s) As Published 10.7554/elife.36495 Publisher eLife Sciences Publications, Ltd Version Final published version Citable link https://hdl.handle.net/1721.1/124645 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Firefly genomes illuminate parallel origins of bioluminescence in beetles Timothy R Fallon1,2†, Sarah E Lower3,4†, Ching-Ho Chang5, Manabu Bessho-Uehara6,7,8, Gavin J Martin9, Adam J Bewick10, Megan Behringer11, Humberto J Debat12, Isaac Wong5, John C Day13, Anton Suvorov9, Christian J Silva5,14, Kathrin F Stanger-Hall15, David W Hall10, Robert J Schmitz10, David R Nelson16, Sara M Lewis17, Shuji Shigenobu18, Seth M Bybee9, Amanda M Larracuente5, Yuichi Oba6, Jing-Ke Weng1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States; 4Department of Biology, Bucknell University, Lewisburg, United States; 5Department of Biology, University of Rochester, Rochester, United States; 6Department of Environmental Biology,
    [Show full text]
  • Downloaded from Brill.Com09/27/2021 05:10:11AM Via Free Access
    Contributions to Zoology 89 (2020) 127-145 CTOZ brill.com/ctoz Evolutionary history of species of the firefly subgenus Hotaria (Coleoptera, Lampyridae, Luciolinae, Luciola) inferred from DNA barcoding data Taeman Han Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea Seung-Hyun Kim Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea Hyung Joo Yoon Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea In Gyun Park Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea Haechul Park Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju- gun, Jeollabuk-do 55365, Korea [email protected] Abstract The firefly subgenus Hotaria sensu lato of the genus Luciola currently includes four morphospecies: L. (H.) parvula, L. (H.) unmunsana, L (H.) papariensis, and L. (H.) tsushimana. The latter three are taxonomically controversial based on both morphological and molecular data. We examined the phylogenetic relation- ships and evolutionary history of the species and related congeners using partial COI gene sequences (DNA barcoding). Our phylogenetic analyses consistently supported the monophyly of Hotaria sensu lato, but did not resolve the generic rank. The two types of L. (H.) parvula in Japan can be considered distinct © Han et al., 2019 | doi:10.1163/18759866-20191420 This is an open access article distributed under the terms of the cc-by 4.0 License.
    [Show full text]
  • Firefly Genomes Illuminate Parallel Origins of Bioluminescence in Beetles
    bioRxiv preprint doi: https://doi.org/10.1101/237586; this version posted February 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Firefly genomes illuminate parallel origins of bioluminescence in beetles Authors: Timothy R. Fallon1,2,*, Sarah E. Lower3,*, Ching-Ho Chang4, Manabu Bessho-Uehara5,6, Gavin J. Martin7, Adam J. Bewick8, Megan Behringer9, Humberto J. Debat10, Isaac Wong4, John C. Day11, Anton Suvorov7, Christian J. Silva4,12, Kathrin F. Stanger-Hall13, David W. Hall8, Robert J. Schmitz8, David R. Nelson14, Sara M. Lewis15, Shuji Shigenobu16, Seth M. Bybee7, Amanda M. Larracuente4, Yuichi Oba5, Jing-Ke Weng1,2,† Affiliations: 1Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA. 2Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 3Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York 14850, USA. 4Department of Biology, University of Rochester, Rochester, New York 14627, USA. 5Department of Environmental Biology, Chubu University, Kasugai, Aichi 487-8501, Japan. 6Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464- 8601, Japan. 7Department of Biology, Brigham Young University, Provo, Utah 84602, USA. 8Department of Genetics, University of Georgia, Athens, Georgia 30602, USA. 9Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona 85287, USA. 10Center of Agronomic Research National Institute of Agricultural Technology, Córdoba, Argentina. 11Centre for Ecology and Hydrology (CEH) Wallingford, Wallingford, Oxfordshire, UK. 12Department of Plant Sciences, University of California Davis, Davis, California, USA. 13Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA. 14Department of Microbiology Immunology and Biochemistry, University of Tennessee HSC, Memphis 38163, USA.
    [Show full text]
  • Journal of Insect Science: Vol. 6 | Article 37 1 Journal of Insect Science | ISSN: 1536-2442
    Journal of Insect Science | www.insectscience.org ISSN: 1536-2442 Genomic structure of the luciferase gene from the bioluminescent beetle, Nyctophila cf. caucasica John C. Day1, Mohammad J. Chaichi2, Iraj Najafil3 and Andrew S. Whiteley1 1 CEH-Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3SR, UK 2 Department of Chemistry, Mazandaran University, Babolsar, Iran. 3 Biological Control Centre, Amol, Iran Abstract The gene coding for beetle luciferase, the enzyme responsible for bioluminescence in over two thousand coleopteran species has, to date, only been characterized from one Palearctic species of Lampyridae. Here we report the characterization of the luciferase gene from a female beetle of an Iranian lampyrid species, Nyctophila cf. caucasica (Coleoptera:Lampyridae). The luciferase gene was composed of seven exons, coding for 547 amino acids, separated by six introns spanning 1976 bp of genomic DNA. The deduced amino acid sequences of the luciferase gene of N. caucasica showed 98.9% homology to that of the Palearctic species Lampyris noctiluca. Analysis of the 810 bp upstream region of the luciferase gene revealed three TATA boxes and several other consensus transcriptional factor recognition sequences presenting evidence for a putative core promoter region conserved in Lampyrinae from −190 through to −155 upstream of the luciferase start codon. Along with the core promoter region the luciferase gene was compared with orthologous sequences from other lampyrid species and found to have greatest identity to Lampyris turkistanicus and Lampyris noctiluca. The significant sequence identity to the former is discussed in relation to taxonomic issues of Iranian lampyrids. Keywords: Coleoptera, Lampyridae, phylogeny, promoter, Lampyris turkistanicus, Lampyris noctiluca Correspondence to: [email protected], [email protected], [email protected], [email protected] Received: 14.7.2005 | Accepted: 8.2.2006 | Published: 27.10.2006 Copyright: Creative Commons Attribution 2.5 ISSN: 1536-2442 | Volume 6, Number 37 Cite this paper as: Day JC, Chaichi MJ, Najafil I, Whiteley AS.
    [Show full text]