Biological Clocks

Total Page:16

File Type:pdf, Size:1020Kb

Biological Clocks Corrections BIOCHEMISTRY. For the article ‘‘BH4 domain of antiapoptotic FROM THE ACADEMY. For the article ‘‘Biological clocks’’ by Norio Bcl-2 family members closes voltage-dependent anion channel Ishida, Maki Kaneko, and Ravi Allada, which appeared in and inhibits apoptotic mitochondrial changes and cell death’’ by number 16, August 3, 1999, of Proc. Natl. Acad. Sci. USA (96, Shigeomi Shimizu, Akimitsu Konishi, Takashi Kodama, and 8819–8820), the authors note that (i) the first name of Dr. Honjo Yoshihide Tsujimoto, which appeared in number 7, March 28, that appeared in the acknowledgments is misspelled and should 2000, of Proc. Natl. Acad. Sci. USA (97, 3100–3105), it has been be Tasuku and (ii) the name of the last author in ref. 5 also is brought to the authors’ attention that Fig. 3A is identical to figure misspelled and should be Tanimura. 1c in our previous article published in Nature [Shimizu, S., Narita, M. & Tsujimoto, Y. (1999) Nature (London) 399, Correction published online before print: Proc. Natl. Acad. Sci. USA, 10.1073͞ 483–487]. Although the two figures report different experi- pnas.160264397. Text and publication date are at www.pnas.org͞cgi͞doi͞10.1073͞ ments, the PNAS paper is correct as it stands; the authors pnas.160264397 submitted the figure to Nature by mistake and regret the error. CORRECTIONS PNAS ͉ August 1, 2000 ͉ vol. 97 ͉ no. 16 ͉ 9347 Downloaded by guest on September 27, 2021 Proc. Natl. Acad. Sci. USA Vol. 96, pp. 8819–8820, August 1999 From the Academy This paper is a summary of a session presented at the first Japanese-American Frontiers of Science symposium, held August 21–23, 1998, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. Biological clocks NORIO ISHIDA*†,MAKI KANEKO‡, AND RAVI ALLADA‡§ *Ishida Group of Clock Gene, National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry, 1-1 Higashi, Tsukuba Science City, Ibaraki 305 Japan; ‡Department of Biology, Brandeis University, Waltham, MA 02454; and §Howard Hughes Medical Institute, National Science Foundation Center for Biological Timing, Department of Biology, Brandeis University, Waltham, MA 02254, and Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 ABSTRACT Circadian rhythms describe biological phenom- functional mapping of this brain system. Furthermore, the ena that oscillate with an Ϸ24-hour cycle. These rhythms include comparison between mammalian and fly clock cells [i.e., blood pressure, body temperature, hormone levels, the number of suprachiasmatic nucleus (SCN) and lateral neurons] should immune cells in blood, and the sleep-wake cycle. In this paper, we clarify evolutionary relationship between these systems. will focus on common genes between species that are responsible The circadian control of transcription provides an entry point for determining the circadian behavior, especially some transcrip- to analyze the cis-acting regulatory elements and trans-acting tion factors (i.e., switch genes) that serve to regulate many factors through which the clock may regulate many clock- circadian rhythm genes. The intent of this summary is to intro- controlled gene expressions (6). These putative cis-acting regu- duce the common molecular mechanism of biological clocks latory elements, named the ‘‘time-box’’ (8), are assumed to be between flies and humans and then to describe the research from located in the promoter and enhancer region of clock-controlled three laboratories that was presented in the session. genes. Furthermore, the clock-controlled responsive element (6) or time-box may regulate the endogenous circadian physiological The alternating of day and night of the earth’s cycle is so phenomena under constant conditions. Most recently, a possible reliable that it is not surprising that animals, plants, and candidate for the time-box has been identified in the promoter bacteria adjust their behavior and physiology (for a review, see region of the Drosophila period gene (9). Although per has been ref. 1). Circadian rhythms are a ubiquitous adaptation of all proposed to mediate mRNA cycling through transcriptional organisms to the most predictable of environmental chal- repression, direct interaction between per and DNA is very lenges. A biological rhythm that persists under constant con- unlikely because of the lack of a DNA-binding domain in PER. ditions and has a period of Ϸ1 day is called ‘‘circadian’’ (circa, Hardin’s group extensively analyzed the promoter region of per ‘‘around’’; dian, ‘‘day’’). gene in studies using per-lacZ fusion gene transgenic flies (9). Until very recently, the molecules underlying the oscillation They identified a circadian transcriptional enhancer within a have remained unknown. Perturbations of such oscillations by 69-bp DNA fragment containing an E-box upstream of per gene, inhibitors of RNA or protein synthesis suggest that such which is responsible for the night-time activation of per gene molecules are involved (2). expression. The E-box is a known binding site for the basic An approach that has been successful in unraveling mech- helix-loop-helix class of transcription factors. anisms is the use of genetic alterations. The first and second Recently, the strongest candidate yet for a trans-acting factor clock mutants discovered in the fruit fly, Drosophila melano- in the oscillator is Clock, cloned by using a forward-genetic gaster, are period and timeless genes (3–5). strategy (10). Takahashi’s group (10) isolated and analyzed In fruit flies, the abundance of mRNA and protein products locomoter activity of circadian mutant mouse strains. The Clock of the period and timeless genes cycle for Ϸ24 hours in specific mutant exhibited long period becoming arrhythmic after several sites of the fly brain (6). Maki Kaneko et al. talked about these days in constant darkness. Takahashi and colleagues (10) suc- putative pacemaker cells in the fruit fly brain by using these cessfully cloned the responsible gene and identified the mutation molecular oscillation as a marker (7). In the adult head, protein in the protein coding region of the Clock gene. Interestingly studies showed that per is rhythmically expressed in specific enough, the Clock protein contains a protein–protein binding sites, the lateral neurons located between the central brain and domain (PAS), which is located in the Drosophila per gene and a the optic lobes. Lateral neurons are considered as the putative basic helix-loop-helix motif for DNA-binding. Moreover, Taka- pacemaker cells for the adult fly’s locomoter activity rhythm. hashi and colleagues (10) were able to completely rescue the long Kaneko et al. (7) demonstrated that the products of per and period and arrhythmic phenotype of clock mutant mice by tim are detectable in a limited number of neurons in the larval transfer of the normal clock gene. brain. The expression patterns in several such cells is cyclical. Ravi Allada et al. described the common molecular compo- Among these neurons, five laterally located cells express. nents focusing on Clock, which is responsible for the circadian PERIOD (PER) from the early larval stage, suggesting that rhythm generation in both flies and humans (11). Allada and his they may be responsible for the larval time keeping of eclosion colleagues (11) screened chemically mutagenized flies looking for and locomoter activity. Another interesting finding is a cluster mutants that alter or abolish circadian rhythmicity of locomoter of neurons with the cyclical expression of per and tim in activity and found a new arrhythmic mutant, initially called Jrk. antiphase to the lateral neurons. The results imply the presence Jrk flies express low levels of period and timeless proteins because of multiple oscillators involved in rhythms of different physi- of reduced levels of transcription. The gene was identified and ological or behavioral processes in a single organism. Kaneko exhibits striking sequence conservation with the mammalian et al. (7) also described the anatomical characterization of the circadian rhythm gene, Clock; hence, Allada et al. (11) renamed wiring patterns of the pacemaker neurons by using per pro- moter-dependent reporter gene expression. Such a molecular Abbreviations: per, period; tim, timeless; SCN, suprachiasmatic nu- anatomical approach should bring a new insight into the cleus; PAS, period arnt sim; RPER2, Rat PERIOD 2; TIM, TIME- LESS; BMAL, brain and muscle arnt-like. †To whom reprint requests should be addressed. E-mail: nishida@ PNAS is available online at www.pnas.org. nibh.go.jp. 8819 8820 From the Academy: Ishida et al. Proc. Natl. Acad. Sci. USA 96 (1999) this fly gene dClock. Like mouse clock, Drosophila clock contains basic helix-loop-helix and PAS domains as well as a transcrip- tional activation domain. Recent works from both mammals and flies suggest that the protein partners of CLOCK are also evolutionarily conserved (named BMAL) (12, 13). CLOCK-BMAL dimmers were shown to bind to the promoter region of period and timeless genes and to transactivate both genes in flies. Furthermore, PERIOD-TIMELESS (PER-TIM) expression represses CLOCK-BMAL-mediated reporter induction. Thus, a nega- tive feedback model has been proposed (Fig. 1). In mammals, the SCN in the hypothalamus is considered to be a major pacemaker for circadian rhythm phenomena, as demon- strated by many anatomical and physiological studies (14). Re- cently, three homologues of Drosophila
Recommended publications
  • Paul Hardin, Ph.D. John W
    Department of Biology The College of Arts + Sciences | Indiana University Bloomington About Paul Hardin Distinguished Alumni Award Lecture Thu., Oct. 18, 2018 • 4 to 5 pm • Myers Hall 130 Paul Hardin, Ph.D. John W. Lyons Jr. ’59 Chair in Biology, Texas A&M University Genetic architecture underlying circadian clock initiation, maintenance, and output in Drosophila Circadian clocks drive daily rhythms in metabolism, physiology, and behavior in organisms ranging from cyanobacteria to humans. The identification and analysis of “clock genes” in Drosophila revealed that circadian timekeeping is based on a transcriptional feedback loop Paul Hardin studied the development of the sea in which CLOCK-CYCLE (CLK-CYC) heterodimers activate transcription of their feedback urchin embryo in William Klein’s lab at Indiana repressors PERIOD (PER) and TIMELESS (TIM). Subsequent studies revealed that similar University, from where he received his Ph.D. in transcriptional feedback loops keep circadian time in all eukaryotes and, in the case of 1987. He did his postdoctoral fellowship with animals, that these feedback loops are comprised of conserved components. The “core” Michael Rosbash at Brandeis University, working feedback loop described above operates in conjunction with an “interlocked” feedback on the circadian rhythms of the fruit fly, Drosophila loop in animals to drive rhythmic transcription of hundreds of genes that are maximally melanogaster. His work with Michael Rosbash and expressed at different phases of the circadian cycle. These feedback loops operate in many, Jeff Hall has been instrumental to our understanding but not all, tissues in flies including the brain pacemaker neurons that control rest:activity of how circadian rhythms affect a myriad of rhythms.
    [Show full text]
  • Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid
    ORIGINAL RESEARCH published: 02 July 2021 doi: 10.3389/fphys.2021.705048 Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid Francesca Sara Colizzi 1, Katharina Beer 1, Paolo Cuti 2, Peter Deppisch 1, David Martínez Torres 2, Taishi Yoshii 3 and Charlotte Helfrich-Förster 1* 1Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany, 2Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain, 3Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, Edited by: or food availability. Here, we characterized the master clock in the brain of a strongly Joanna C. Chiu, photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies University of California, Davis, United States against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Reviewed by: Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and Hideharu Numata, PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of Kyoto University, Japan many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic Annika Fitzpatrick Barber, Rutgers, The State University of manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No New Jersey, United States staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive *Correspondence: cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while Charlotte Helfrich-Förster charlotte.foerster@biozentrum.
    [Show full text]
  • A Polymorphism in the Human Timeless Gene Is Not Associated
    Sleep Research Online 3(2): 73-76, 2000 1096-214X http://www.sro.org/2000/Pedrazzoli/73/ © 2000 WebSciences Printed in the USA. All rights reserved. A Polymorphism in the Human Timeless Gene is not Associated with Diurnal Preferences In Normal Adults Mario Pedrazzoli1, Lin Ling1, Laurel Finn2, Terry Young2, Daniel Katzenberg1 and Emmanuel Mignot1 1Center for Narco l e p s y , Department of Psychiatry, Stanford University 2De p a r tment of Preventive Medicine, University of Wisconsin-Madison The effect of a single nucleotide polymorphism, a glutamine to arginine amino acid substitution in the human Timeless gene (Q831R, A2634G), on diurnal preferences was studied in a random sample of normal volunteers enrolled in a population- based epidemiology study of the natural history of sleep disorders. We genotyped 528 subjects for this single nucleotide polymorphism and determined morningness-eveningness tendencies using the Horne-Ostberg questionnaire. Our results indicate that Q831R Timeless has no influence on morningness-eveningness tendencies in humans. CURRENT CLAIM: The A to G polymorphism in the position 2634 of human timeless gene is not related with diurnal preferences. Genetic studies in the last years have advanced our mutations. In animals, mutations such as Clock or Tau (recently understanding of the molecular mechanisms responsible for the characterized as the CKe gene, Lowrey et al., 2000) are control of circadian rhythms. Most of these studies have used associated not only with a long or short free running period but model organisms such as Neurospora, Arabidopis, Drosophila also with alterations in the phase angle of entrainment under and mouse.
    [Show full text]
  • So Here's a Figure of This, Here's the Per Gene, Here's Its Promoter
    So here's a figure of this, here's the per gene, here's its promoter. There's a ribosome, and this gene is now active, illustrated by this glow and the gene is producing messenger RNA which is being turned into protein, into period protein by the protein synthesis machinery. Some of those protein molecules are unstable and they are degraded by the cellular machinery, the pink ones. And some of them are stable for reasons, which we will come to tomorrow, and the stable proteins accumulate. And this protein build-up continues, the gene is active, RNA is made, protein is produced, and at some point in the middle of the night there's enough protein which has been produced, and that protein migrates into the nucleus and the protein then acts as a repressor to turn off its own gene expression. And in the morning, when the sun comes up these protein molecules start to turn over, they degrade and disappear over the course of several hours leading to the turn-on of the gene, which begins the next cycle, the next production of RNA. Now this animation is similar to the one I showed you yesterday except now we have the positive transcription factor CYC and CLOCK, which actually bind to the per promoter at this e-box and drive transcription, turning on RNA synthesis and here is the production of the per protein by the ribosome, the unstable, pink proteins, which are rapidly degraded and then every other protein or so, molecule is stabilized and accumulates in the cytoplasm during the evening.
    [Show full text]
  • A Mutant Drosophila Homolog of Mammalian Clock Disrupts
    Cell, Vol. 93, 791±804, May 29, 1998, Copyright 1998 by Cell Press AMutantDrosophila Homolog of Mammalian Clock Disrupts Circadian Rhythms and Transcription of period and timeless Ravi Allada,*²³§ Neal E. White,³ Aronson et al., 1994; Shearman et al., 1997; Sun et al., W. Venus So,²³ Jeffrey C. Hall,²³ 1997; Tei et al., 1997). ²³ and Michael Rosbash* k In Drosophila, there are two well-characterized clock *Howard Hughes Medical Institute genes: period (per) and timeless (tim). Protein levels, ² NSF, Center for Biological Timing RNA levels, and transcription rates of these two genes ³ Department of Biology undergo robust circadian oscillations (Zerr et al., 1990; Brandeis University Hardin et al., 1990, 1992; Hardin, 1994; Sehgal et al., Waltham, Massachusetts 02254 1995; So and Rosbash, 1997). In addition, mutations § Department of Pathology in the two proteins (PER and TIM) alter or abolish the Brigham and Women's Hospital periodicity and phase of these rhythms, demonstrating Boston, Massachusetts 02115 that both proteins regulate their own transcription (Har- din et al., 1990; Sehgal et al., 1995; Marrus et al., 1996). Although there is no evidence indicating that the effects Summary on transcription are direct, PER contains a PAS domain, which has been shown to mediate interactions between We report the identification, characterization, and transcription factors (Huang et al., 1993; Lindebro et cloning of a novel Drosophila circadian rhythm gene, al., 1995). Most of these PAS-containing transcription dClock. The mutant, initially called Jrk, manifests dom- factors also contain the well-characterized basic helix- inant effects: heterozygous flies have a period alter- loop-helix (bHLH) DNA-binding domains (Crews, 1998).
    [Show full text]
  • Case 3:17-Cr-00249-BJD-JRK Document 89 Filed 03/14/18 Page 1 of 32 Pageid 361
    Case 3:17-cr-00249-BJD-JRK Document 89 Filed 03/14/18 Page 1 of 32 PageID 361 UNITED STATES DISTRICT COURT MIDDLE DISTRICT OF FLORIDA JACKSONVILLE DIVISION UNITED STATES OF AMERICA v. CASE NO. 3:17-cr-249-BJD-JRK JOSHUA RYNE GOLDBERG DEFENDANT’S SENTENCING MEMORANDUM The Defendant, Joshua Ryne Goldberg, by and through counsel, Paul Shorstein, Shorstein, Lasnetski & Gihon, LLC, hereby submits the following Sentencing Memorandum setting forth all factors that the Court should consider in determining the type and length of sentence that is sufficient, but not greater than necessary, to comply with the statutory directives set forth in 18 U.S.C. §3553(a). BACKGROUND In 2015, law enforcement officials began investigating a certain online account that was posting threatening and other disturbing comments over the internet. Specifically, some of the internet discussion revolved around a potential attack of a 9/11 event in Kansas City, Missouri. That investigation ultimately led law enforcement officials to the Clay County home of Joshua Goldberg and his family. In the early morning hours of September 10, 2015, FBI agents and other law enforcement officials executed a search warrant inside 1 Case 3:17-cr-00249-BJD-JRK Document 89 Filed 03/14/18 Page 2 of 32 PageID 362 the Goldbergs’ home. They found Joshua Goldberg inside, as he always was. Joshua gave a statement that lasted a few hours despite not having slept for approximately 24 hours and not having taken his medication. Presumably, because the law enforcement officials found a severely mentally ill young man rather than what they expected as the source of the threatening internet activity, the government sought a criminal complaint (case number 3:15-mj-1170-J-JRK), which was filed on September 10, 2015, rather than more formal charges.
    [Show full text]
  • Epigenetic Modifications to Cytosine and Alzheimer's Disease
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2017 EPIGENETIC MODIFICATIONS TO CYTOSINE AND ALZHEIMER’S DISEASE: A QUANTITATIVE ANALYSIS OF POST-MORTEM TISSUE Elizabeth M. Ellison University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.398 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Ellison, Elizabeth M., "EPIGENETIC MODIFICATIONS TO CYTOSINE AND ALZHEIMER’S DISEASE: A QUANTITATIVE ANALYSIS OF POST-MORTEM TISSUE" (2017). Theses and Dissertations--Chemistry. 86. https://uknowledge.uky.edu/chemistry_etds/86 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • In the United States District Court for the Northern District of Ohio Western Division
    Case: 3:16-cv-02724-JRK Doc #: 19 Filed: 01/29/18 1 of 19. PageID #: <pageID> IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF OHIO WESTERN DIVISION KAYLA D. SPENCER, Case No. 3:16 CV 2724 Plaintiff, v. Magistrate Judge James R. Knepp, II COMMISSIONER OF SOCIAL SECURITY, Defendant. MEMORANDUM OPINION AND ORDER INTRODUCTION Plaintiff Kayla D. Spencer (“Plaintiff”) filed a Complaint against the Commissioner of Social Security (“Commissioner”) seeking judicial review of the Commissioner’s decision to deny disability insurance benefits (“DIB”) and supplemental security income (“SSI”). (Doc. 1). The district court has jurisdiction under 42 U.S.C. §§ 1383(c) and 405(g). The parties consented to the undersigned’s exercise of jurisdiction in accordance with 28 U.S.C. § 636(c) and Civil Rule 73. (Non-document entry dated February 13, 2017). For the reasons stated below, the undersigned affirms the decision of the Commissioner. PROCEDURAL BACKGROUND Plaintiff filed for DIB and SSI in October 2011, alleging a disability onset date of September 30, 2010. (Tr. 326-35). Her claims were denied initially and upon reconsideration. (Tr. 198-203, 208-12). Plaintiff then requested a hearing before an administrative law judge (“ALJ”). (Tr. 213-14). Plaintiff (represented by counsel), and a vocational expert (“VE”) testified at a hearing before the ALJ on August 21, 2013. (Tr. 76-120). On October 18, 2013, the ALJ found Plaintiff not disabled in a written decision. (Tr. 169-92). On April 6, 2015, the Appeals Council Case: 3:16-cv-02724-JRK Doc #: 19 Filed: 01/29/18 2 of 19.
    [Show full text]
  • Molecular Genetics of the Fruit-Fly Circadian Clock
    European Journal of Human Genetics (2006) 14, 729–738 & 2006 Nature Publishing Group All rights reserved 1018-4813/06 $30.00 www.nature.com/ejhg REVIEW Molecular genetics of the fruit-fly circadian clock Ezio Rosato1, Eran Tauber1 and Charalambos P Kyriacou*,1 1Department of Genetics, University of Leicester, Leicester, UK The circadian clock percolates through every aspect of behaviour and physiology, and has wide implications for human and animal health. The molecular basis of the Drosophila circadian clock provides a model system that has remarkable similarities to that of mammals. The various cardinal clock molecules in the fly are outlined, and compared to those of their actual and ‘functional’ homologues in the mammal. We also focus on the evolutionary tinkering of these clock genes and compare and contrast the neuronal basis for behavioural rhythms between the two phyla. European Journal of Human Genetics (2006) 14, 729–738. doi:10.1038/sj.ejhg.5201547 Keywords: Drosophila; circadian clock; molecular genetics Introduction: clocks and disease same ones that determine the corresponding human 24 h The number of reviews written on biological rhythms in cycle. the past 15 years has been enormous, particularly those on Is there a relationship between circadian clocks and the molecular aspects. So, why are we writing another one disease? In Western societies, about 20% of the population, on Drosophila, and why for a readership of human/medical perhaps more, work in shifts. There are various types of geneticists who must care little or nothing for such a shift-work programmes, but all have the effect of desyn- subject or such an organism? After all, 24 h circadian chronising the workers internal clock to the outside world.
    [Show full text]
  • The Neuropeptide Pigment-Dispersing Factor Coordinates Pacemaker Interactions in the Drosophila Circadian System
    The Journal of Neuroscience, September 8, 2004 • 24(36):7951–7957 • 7951 Cellular/Molecular The Neuropeptide Pigment-Dispersing Factor Coordinates Pacemaker Interactions in the Drosophila Circadian System Yiing Lin,1 Gary D. Stormo,1 and Paul H. Taghert2 Departments of 1Genetics and 2Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri 63110 In Drosophila, the neuropeptide pigment-dispersing factor (PDF) is required to maintain behavioral rhythms under constant conditions. To understand how PDF exerts its influence, we performed time-series immunostainings for the PERIOD protein in normal and pdf mutant flies over9dofconstant conditions. Without pdf, pacemaker neurons that normally express PDF maintained two markers of rhythms: that of PERIOD nuclear translocation and its protein staining intensity. As a group, however, they displayed a gradual disper- sion in their phasing of nuclear translocation. A separate group of non-PDF circadian pacemakers also maintained PERIOD nuclear translocation rhythms without pdf but exhibited altered phase and amplitude of PERIOD staining intensity. Therefore, pdf is not required to maintain circadian protein oscillations under constant conditions; however, it is required to coordinate the phase and amplitude of such rhythms among the diverse pacemakers. These observations begin to outline the hierarchy of circadian pacemaker circuitry in the Drosophila brain. Key words: pigment-dispersing factor; circadian rhythm; Drosophila; lateral neurons; nuclear accumulation; period Introduction ally been ascribed to individual cell properties (Michel et al., The organizing principles for the neuronal networks underlying 1993; Welsh et al., 1995; Liu et al., 1997; Herzog et al., 1998). circadian oscillations are essentially unknown. Which cells are Recent evidence, however, suggests that interneuronal commu- the critical oscillators for particular output functions, what is nication may be required to sustain basic molecular rhythms.
    [Show full text]
  • Oxidized Phospholipids Regulate Amino Acid Metabolism Through MTHFD2 to Facilitate Nucleotide Release in Endothelial Cells
    ARTICLE DOI: 10.1038/s41467-018-04602-0 OPEN Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells Juliane Hitzel1,2, Eunjee Lee3,4, Yi Zhang 3,5,Sofia Iris Bibli2,6, Xiaogang Li7, Sven Zukunft 2,6, Beatrice Pflüger1,2, Jiong Hu2,6, Christoph Schürmann1,2, Andrea Estefania Vasconez1,2, James A. Oo1,2, Adelheid Kratzer8,9, Sandeep Kumar 10, Flávia Rezende1,2, Ivana Josipovic1,2, Dominique Thomas11, Hector Giral8,9, Yannick Schreiber12, Gerd Geisslinger11,12, Christian Fork1,2, Xia Yang13, Fragiska Sigala14, Casey E. Romanoski15, Jens Kroll7, Hanjoong Jo 10, Ulf Landmesser8,9,16, Aldons J. Lusis17, 1234567890():,; Dmitry Namgaladze18, Ingrid Fleming2,6, Matthias S. Leisegang1,2, Jun Zhu 3,4 & Ralf P. Brandes1,2 Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a cau- sal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipo- proteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2- controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis.
    [Show full text]
  • Up-Regulation of PER3 Expression Is Correlated with Better Clinical Outcome in Acute Leukemia
    ANTICANCER RESEARCH 35: 6615-6622 (2015) Up-regulation of PER3 Expression Is Correlated with Better Clinical Outcome in Acute Leukemia MING-YU YANG1, PAI-MEI LIN2, HUI-HUA HSIAO3,4, JUI-FENG HSU5, HUGO YOU-HSIEN LIN5,6, CHENG-MING HSU1,7, I-YA CHEN1, SHENG-WEN SU1, YI-CHANG LIU3,4 and SHENG-FUNG LIN3,4 1Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, R.O.C.; 2Department of Nursing, I-Shou University, Kaohsiung City, Taiwan, R.O.C.; 3Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan, R.O.C.; 4Faculty of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan, R.O.C.; 5Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan, R.O.C.; 6Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan, R.O.C.; 7Department of Otolaryngology, Kaoshiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, R.O.C. Abstract. Background: Altered expression of circadian treatment. Conclusion: Circadian clock genes are altered in clock genes has been linked to various types of cancer. This patients with acute leukemia and up-regulation of PER3 is study aimed to investigate whether these genes are also correlated with a better clinical outcome. altered in acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). Materials and Methods: The expression Acute leukemia comprises about 20,000 cancer diagnoses profiles of nine circadian clock genes of peripheral blood and 10,000 deaths in the United States each year (1).
    [Show full text]