Fauna of Whale Falls: Systematics and Ecology of a New Polychaete (Annelida: Chrysopetalidae) from the Deep Pacific Ocean$

Total Page:16

File Type:pdf, Size:1020Kb

Fauna of Whale Falls: Systematics and Ecology of a New Polychaete (Annelida: Chrysopetalidae) from the Deep Pacific Ocean$ ARTICLE IN PRESS Deep-Sea Research I 51 (2004) 1873–1887 www.elsevier.com/locate/dsr Fauna of whale falls: systematics and ecology of a new polychaete (Annelida: Chrysopetalidae) from the deep Pacific Ocean$ Thomas G. Dahlgrena,Ã, Adrian G. Gloverb,c, AmyBaco d, Craig R. Smithb aTja¨rno¨ Marine Biological Laboratory, 452 96 Stro¨mstad, Sweden bDepartment of Oceanography, University of Hawaii, 1000 Pope Rd, Honolulu, HI 96822, USA cZoology Department, The Natural History Museum, Cromwell Rd, London SW7 5BD, UK dWoods Hole Oceanographic Institution, Biology Department, MS 33, Woods Hole, MA 02543, USA Received 29 July2003; received in revised form 26 July2004; accepted 28 July2004 Available online 12 October 2004 Abstract Vigtorniella flokati, a new species of polychaete worm associated with decaying whale remains, is described. Three separate V. flokati populations were sampled using submersibles: two associated with implanted graywhale carcasses in the San Diego Trough (1240 m depth) and the Santa Cruz Basin (1670 m) off California, and one from sperm whale and balaeanopterid bones implanted on the slope of Oahu, Hawaii at 1000 m. Extraordinarilylarge numbers of live specimens were observed and videotaped in situ using submersibles in the San Diego Trough and the Santa Cruz Basin. The populations on the carcass implanted for 4 months in San Diego Trough, and on the bones implanted for 2 years off Oahu, were composed onlyof small sized individuals (including juveniles). V. flokati most closelyresembles the poorlyknown V. zaikai Kiseleva, 1992, described from the Black Sea. Forty-six morphological characters were used in a phylogenetic analysis of selected nereidiform polychaetes. The resulting most-parsimonious trees indicate sister taxon status between V. flokati and V. zaikai, and that this clade is sister to the putativelyancient polychaeteclade Chrysopetalidae. Whale falls, which are intense point sources of organic enrichment at the deep-sea floor, pass through three successional stages. V. flokati appears to colonize the middle, ‘‘enrichment opportunist’’ stage, inhabiting organic- rich bones and sediments 4–24 months after carcass arrival. V. flokati exhibits remarkable behavior, clinging posteriorlyto whale bones or nearbysediments to form a writhing carpet at densities exceeding 8000 m À2. Its extraordinaryabundance on whale falls, and apparent absence from other habitats, suggests it to be a whale-fall specialist. The precise feeding mechanism of the worm remains unknown, but we hypothesize that it may utilize dissolved organic carbon derived from the organic-rich setting of whale falls. The widespread occurrence of V. flokati $The first and second authors contributed equallyto the research and data interpretation. Dahlgren is listed first because he took the lead in writing the paper. ÃCorresponding author. Tel.: +46-526-68682; fax: +46-526-68607. E-mail address: [email protected] (T.G. Dahlgren). 0967-0637/$ - see front matter r 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.dsr.2004.07.017 ARTICLE IN PRESS 1874 T.G. Dahlgren et al. / Deep-Sea Research I 51 (2004) 1873–1887 on ephemeral, food-rich habitat islands in the Pacific suggests life-historystrategies analogous to those for hydrothermal-vent and cold-seep species. r 2004 Elsevier Ltd. All rights reserved. Keywords: Polychaeta; Chrysopetalidae; Whale fall; Organic enrichment; Opportunist; Succession; Santa Cruz Basin; San Diego Trough; Hawaii; Pacific Ocean; Deep sea 1. Introduction bathymodiolin mussels and vestimentiferan poly- chaetes (Bennett et al., 1994; Baco et al., 1999; The discoveryof a chemoautotrophic faunal Distel et al., 2000; Smith and Baco, 2003). assemblage on a lipid-rich whale skeleton (Smith During both the opportunist and chemoauto- et al., 1989) has spurred the studyof whale falls as trophic stages, whale falls also harbor a number intense point sources of organic enrichment at the of potentiallyendemic species ( Smith and Baco, deep-ocean floor. Recent investigations have 2003). examined their significance in both ecological Although the species diversityof these assem- (Bennett et al., 1994; Naganuma et al., 1996; blages has been well documented using operational Deming et al., 1997; Smith et al., 1998, 2002; Smith taxonomic units (Ampharetidae sp. A, etc.; Baco and Baco, 2003) and evolutionary( Goedert et al., and Smith, 2003; Smith and Baco, 2003), much of 1995; Feldman et al., 1998; Smith and Baco, 1998, the whale-fall fauna remains undescribed, inhibit- 2003; Baco et al., 1999) terms. Ecological research, ing further research into the autecologyand through experimental implantation, indicates that functional significance of the remarkable whale- fresh whale falls pass through a series of succes- fall endemics. Here we present both the systema- sional stages (Smith et al., 2002; Smith and Baco, tics and ecologyof a dominant new species of 2003). Evolutionaryresearch, using both morpho- polychaete from the opportunistic successional logical and molecular methods, indicates that stage. Perhaps atypically for a deep-sea poly- whale bones could have acted as sulfide-rich chaete, both in situ observations and fixed samples ‘‘stepping stones’’ for the dispersal of sulfide are available for the description. ‘‘loving’’ fauna across the deep ocean basins, and Chrysopetalid polychaetes are a diverse group from shallow-water into deep-sea habitats (Smith of marine worms inhabiting most seas and et al., 1989; Bennett et al., 1994; Baco et al., 1999; substrates, including arctic, temporal and tropical Smith and Baco, 2003). littoral habitats, as well as decaying wood and soft Studies of whale carcasses implanted at bathyal sediments in the deep sea (Dahlgren, 2000; Watson depths off California for less than 1.5 months have Russell, 2000). Most intertidal and shallow sub- revealed largelyintact carcasses, with soft tissue tidal chrysopetalids possess flattened notochaetae, predominantlyscavenged byhagfish, Eptatretus called paleae, covering the dorsum in a roofing-tile deani, sleeper sharks, Somniosus pacificus,and like pattern. Manyof the deep-sea forms, however, lysianassid amphipods (Smith and Baco, 2003). lack the paleae and instead carryerect spines that Carcasses at the seafloor for 4–18 months still are rounded in cross section. Further, close attracted hagfish, but (depending on carcass size) examination of newlycollected material of known were essentiallystripped of soft tissue and but poorlydescribed species indicates a wider primarilysupported invertebrate opportunists on diversityof chaetal morphologywithin the group bones and in organicallyenriched sediments than has been previouslysuggested ( Dahlgren, (Smith et al., 1998, 2003). The bones of carcasses 1996, 2000, in press; Aguirrezabalaga et al., 1999). at the seafloor for 4.5 to 415 years were colonized Based on structural similarities to Cambrian bychemoautotrophic microbial mats and macro- annelid fossil taxa, it has been argued that faunal invertebrates, including some taxa known chrysopetalids represent a basal group within the from vents and seeps, such as vesicomyid clams, Annelida (Butterfield, 1990, 1994; Westheide and ARTICLE IN PRESS T.G. Dahlgren et al. / Deep-Sea Research I 51 (2004) 1873–1887 1875 Watson Russell, 1992; Dahlgren, 2000; Rouse and 2. Material and methods Pleijel, 2001). Chrysopetalidae has traditionally been treated as an aberrant familywithin the order Specimens of Vigtorniella flokati sp. n. were Phyllodocida (e.g. Pettibone, 1982). Perkins (1985) collected using manned and remotelyoperated and Glasby(1993) emphasized the close relation- submersible vehicles from whale-bone habitats at ships between the Hesionidae, Nereididae, and three different locations in the Northern Pacific Chrysopetalidae within the order Phyllodocida, a Ocean. Two of the whale falls are located off the hypothesis further supported by cladistic analyses coast of California in the San Diego Trough of morphological and molecular data (Pleijel and (SDT) and Santa Cruz Basin (SCrB), and the third Dahlgren, 1998; Dahlgren et al., 2000). is located off Oahu, Hawaii (Fig. 1). Details of The new whale-fall chrysopetalid most closely collection methods, locations, and depths are resembles the poorlyknown Vigtorniella zaikai provided in Table 1. All specimens for morpholo- (Kiseleva, 1992). V. zaikai was described from gical analyses were initially fixed in a 4% pelagic polychaete larvae that were raised to formaldehyde solution in seawater and subse- supposedlyadult stage in the laboratory( Kiseleva, quentlytransferred to 70% ethanol. In addition, 1992). The original name Victoriella Kiseleva, 1992 four specimens from SCrB were fixed directlyin was found to be pre-occupied and subsequently EtOH for subsequent DNA extraction. replaced with Vigtorniella Kiseleva, 1996. Larvae of this form were first reported from Black Sea 2.1. Imaging plankton tows by Kiseleva (1959), and can occur in large numbers throughout the year (Murina, Formalin-fixed specimens were examined using 1997). The larvae were also described in detail by dissecting and compound light microscopes and Murina (1986) who misidentified them as the larvae digitallyimaged. The digital images were con- of Pelagobia serrata Southern, 1909 (Phyllodocidae). verted to halftones and contrast enhanced using In 1994, live adults were first recorded from Adobe Photoshop 6.0. For size measurements, sediments at 117–151 m depths at the oxic-anoxic batches of specimens were placed under the boundaryof the Black Sea floor ( Sergeeva et al., dissecting
Recommended publications
  • Full Curriculum Vitae
    C. R. Smith July 2017 Curriculum Vitae CRAIG RANDALL SMITH Address: Department of Oceanography University of Hawaii at Manoa 1000 Pope Road Honolulu, HI 96822 Telephone: 808-956-7776 email: [email protected] Education: B.S., 1977, with high honors, Biological Science, Michigan State University Ph.D., Dec 1983, Biological Oceanography, University of California at San Diego, Scripps Institution of Oceanography Professional Experience: 1975-1976: Teaching Assistant, Biological Science Program, Michigan State University 1976: Summer Student Fellow, Woods Hole Oceanographic Institution 1976-1977: Research Assistant, Microbiology Department, Michigan State University 1977-1981: Research Assistant, Program for the Study of Sub- Seabed Disposal of Radioactive Waste, Scripps Institution of Oceanography 1981-1983: Associate Investigator, O.N.R. grant entitled, "The Impact of Large Organic Falls on a Bathyal Benthic Community," Scripps Institution of Oceanography 1983-1984: Postdoctoral Scholar, Woods Hole Oceanographic Institution 1985-1986: Postdoctoral Research Associate, School of Oceanography, University of Washington 1986-1988: Research Assistant Professor, School of Oceanography, University of Washington 1988-1995: Associate Professor, Department of Oceanography, University of Hawaii at Manoa 1995-1998, 2004-2007: Chair, Biological Oceanography Division, University of Hawaii at Manoa 1997-1998, 2006-2007: Associate Chair, Department of Oceanography 1995-present: Professor, Department of Oceanography, University of Hawaii at Manoa Major Research
    [Show full text]
  • Bibliography of Coastal Worm-Reef and Tubeworm Species of the World (1950-2010)
    Centre National de la Recherche Scientique Muséum National d'Histoire Naturelle Bibliography of Coastal Worm-Reef and Tubeworm Species of the World (1950-2010) Jer´ omeˆ Fournier Marine Biological Station Dinard This bibliographical list was compiled by Jérôme Fournier1. This list relates to the worm-reefs species and several tube-dwelling species of Annelidae and more particularly: • Ficopomatus enigmaticus (Fauvel, 1923) [Serpulidae], • Gunnarea gaimardi (Quatrefages, 1848) [Sabellariidae], • Idanthyrsus cretus Chamberlin, 1919 [Sabellariidae], • Idanthyrsus pennatus (Peters, 1854) [Sabellariidae], • Lanice conchilega (Pallas, 1766) [Terebellidae), • Lygdamis sp Kinberg, 1867 [Sabellariidae), • Owenia fusiformis Delle Chiaje, 1844 [Oweniidae), • Pectinaria gouldii (Verrill, 1874) [Pectinariidae], • Pectinaria granulata (Linnaeus, 1767) [Pectinariidae], • Pectinaria koreni (Malmgren, 1866) [Pectinariidae], • Phalacrostemma sp Marenzeller, 1895 [Sabellariidae), • Phragmatopoma caudata (Krøyer) Mörch, 1863 [Sabellariidae], • Phragmatopoma californica (Fewkes) Hartman, 1944 [Sabellariidae], • Phragmatopoma virgini Kinberg, 1866 [Sabellariidae], • Sabellaria alveolata (Linnaeus, 1767) [Sabellariidae], • Sabellaria spinulosa Leuckart, 1849 [Sabellariidae], • Serpula vermicularis Linnaeus, 1767 [Serpulidae]. We listed almost all the references in earth and life sciences relating to these species. We used the 'Web of Science' data base and the registers of the fol- lowing libraries: Muséum National d'Histoire Naturelle (France) and University
    [Show full text]
  • Revision of Hyalopale (Chrysopetalidae; Phyllodocida; Annelida
    Revision of Hyalopale (Chrysopetalidae; Phyllodocida; Annelida) an amphi-Atlantic Hyalopale bispinosa species complex and five new species from reefs of the Caribbean Sea and Indo-Pacific Oceans Watson, Charlotte; Tilic, Ekin; Rouse, Greg W. Published in: Zootaxa DOI: 10.11646/zootaxa.4671.3.2 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Watson, C., Tilic, E., & Rouse, G. W. (2019). Revision of Hyalopale (Chrysopetalidae; Phyllodocida; Annelida): an amphi-Atlantic Hyalopale bispinosa species complex and five new species from reefs of the Caribbean Sea and Indo-Pacific Oceans. Zootaxa, 4671(3), 339-368. https://doi.org/10.11646/zootaxa.4671.3.2 Download date: 27. sep.. 2021 Zootaxa 4671 (3): 339–368 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4671.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:99459D5F-3C35-4F7D-9768-D70616676851 Revision of Hyalopale (Chrysopetalidae; Phyllodocida; Annelida): an amphi-Atlantic Hyalopale bispinosa species complex and five new species from reefs of the Caribbean Sea and Indo-Pacific Oceans CHARLOTTE WATSON1, EKIN TILIC2 & GREG W. ROUSE2 1Museum & Art Gallery of the Northern Territory, Box 4646, Darwin, 0801 NT, Australia. E-mail: [email protected] 2Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92093-0202, USA. E-mail: [email protected] Abstract The formerly monotypic taxon, Hyalopale bispinosa Perkins 1985 (Chrysopetalinae), is comprised of a cryptic species complex from predominantly tropical embayments and island reefs of the Western Atlantic and Indo-Pacific Oceans.
    [Show full text]
  • Unique Physical and Chemical Properties of Kian Sand Worm
    https://doi.org/10.33805/2638-7735.123 Volume 2 Issue 1 | PDF 123 | Pages 4 Biochemistry and Modern Applications Research Article ISSN: 2638-7735 Unique Physical and Chemical Properties of Kian Sand Worm (Siphonosoma ur-pulau) Traditional Medicine: Electrical, Optical and Chemical Response of Edible Powder with Different Sizes Amrosius Masrikat1, 2 and Hendry Izaac Elim1-5* Affiliation 1Department of Physics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia 2Nanotechnology Research Center and Innovative Creation (PPNRI-LPPM), Pattimura University, Rumah Tiga, Ambon, Indonesia 3Multidisciplinary Research Center of Excellence (MrCE), UNPATTI, RumahTiga, Ambon, Indonesia 4Physics department, Pattimura University, Ambon, Maluku, Indonesia 5Development and Innovative Center (PPI) of Pattimura University, Ambon, Indonesia *Corresponding author: Hendry Izaac Elim, Nanomaterials for Photonics Nanotechnology Laboratory (N4PN Lab.), Department of Physics, Faculty of Mathematics and Natural Sciences, Pattimura University, Jl. Ir. M. Putuhena, Poka, Ambon, Indonesia, Tel: + 6285243836774, Email: [email protected] Citation: Masrikat A and Elim IH. Unique physical and chemical properties of kian sand worm (siphonosoma ur-pulau) traditional medicine: electrical, optical and chemical response of edible powder with different sizes (2019) Biochem Modern Appl 3: 51-55. Received: Sep 02, 2019 Accepted: Sep 22, 2019 Published: Sep 26, 2019 Copyright: © 2019 Masrikat A, et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Sea worms or sand worms were widely spread on earth generally in beach areas with a series of different taxonomy sizes.
    [Show full text]
  • A Metapopulation Model for Whale-Fall Specialists: the Largest Whales Are Essential to Prevent Species Extinctions
    THE SEA: THE CURRENT AND FUTURE OCEAN Journal of Marine Research, 77, Supplement, 283–302, 2019 A metapopulation model for whale-fall specialists: The largest whales are essential to prevent species extinctions by Craig R. Smith,1,2 Joe Roman,3 and J. B. Nation4 ABSTRACT The sunken carcasses of great whales (i.e., whale falls) provide an important deep-sea habitat for more than 100 species that may be considered whale-fall specialists. Commercial whaling has reduced the abundance and size of whales, and thus whale-fall habitats, as great whales were hunted and removed from the oceans, often to near extinction. In this article, we use a metapopulation modeling approach to explore the consequences of whaling to the abundance and persistence of whale-fall habitats in the deep sea and to the potential for extinction of whale-fall specialists. Our modeling indicates that the persistence of metapopulations of whale-fall specialists is linearly related to the abundance of whales, and extremely sensitive (to the fourth power) to the mean size of whales. Thus, whaling-induced declines in the mean size of whales are likely to have been as important as declines in whale abundance to extinction pressure on whale-fall specialists. Our modeling also indicates that commercial whaling, even under proposed sustainable yield scenarios, has the potential to yield substantial extinction of whale-fall specialists. The loss of whale-fall habitat is likely to have had the greatest impact on the diversity of whale-fall specialists in areas where whales have been hunted for centuries, allowing extinctions to proceed to completion.
    [Show full text]
  • Role of Cetaceans in Ecosystem Functioning
    WORKSHOP REPORT Role of Cetaceans in Ecosystem Functioning: Defining Marine Conservation Policies in the 21st Century 28th International Congress for Conservation Biology Society for Conservation Biology Workshop Report Role of Cetaceans in Ecosystem Functioning: Defining Marine Conservation Policies in the 21st Century 28th International Congress for Conservation Biology Society for Conservation Biology 26 July 2017, Cartagena, Colombia Room Barahona 1, Cartagena Convention Center www.ccc-chile.org www.icb.org.ar www.whales.org www.oceancare.org www.hsi.org csiwhalesalive.org www.nrdc.org www.minrel.gob.cl www.belgium.be For centuries, the great whales (baleen whales and the scientists, but to ecological economists (who ascribe finan- sperm whale) and other cetaceans1 (small whales, dolphins cial values to ecological functions) and to and porpoises) were valued almost exclusively for their oil policymakers concerned with conserving biodiversity. and meat. Widespread commercial hunting reduced great These services confirm what the public, since the early whale numbers by as much as 90 percent, with some ‘Save the Whale’ movement in the 1970s, has always un- populations being hunted to extinction. derstood; cetaceans are special. In recent decades, changing attitudes toward protecting The global implications of the significant contributions of wildlife and the natural world and the growth of ecotourism cetaceans “to ecosystem functioning that are beneficial for provided new cultural and non-extractive economic values the natural environment and people” were first formally for these marine mammals. acknowledged in 2016 when the International Whaling Commission (IWC) adopted a resolution on Cetaceans and Today, whale watching is worth more than $2 billion annu- Their Contributions to Ecosystem Functioning2.
    [Show full text]
  • H1.1 Open Water
    PAGE .............................................................. 392 ▼ H1.1 OPEN WATER The open-water offshore habitat covers an area of by which solar energy enters the marine ecosystem, Nova Scotia larger than the land mass, and includes similar to the layer of plants on land. The ocean H1.1 Open Water salt water in inlets, bays and estuaries. The water waters are distinctive in having fostered the origins and the organisms it supports are the primary means of life on the planet. Plate H1.1.1: Right Whale, north of Brier Island (Unit 912). Photo: BIOS Habitats Natural History of Nova Scotia, Volume I © Nova Scotia Museum of Natural History .............................................................. PAGE 393 ▼ FORMATION PLANTS Oceans are formed as part of major geological events. The plants of the open ocean are almost entirely Nova Scotia’s open-ocean habitats are part of the microscopic algae, collectively known as phyto- Atlantic Ocean, which opened during the Jurassic plankton. Many different species occur, including Period and has been in continuous existence ever representatives of the prochlorophytes (blue-green since. The quality and depth of the water column algae—evolutionary intermediates between bacteria have fluctuated in relation to post-glacial climatic and algae), diatoms, dinoflagellates, chrysomonads, conditions. cryptomonads, minute flagellates and unicellular reproductive stages of macroscopic algae. Phyto- H1.1 PHYSICAL ASPECTS plankton are often grouped in size classes: Open Water 1. Water conditions, such as salinity, temperature, macroplankton: 200–2000 micrometres, includes ice-formation, turbidity, light penetration, tides larger diatoms. and currents, are extremely variable in the microplankton: 20–200 micrometres, includes waters offshore. most diatoms. 2. Air-water interaction, surface-water turbulence nanoplankton: 2–20 micrometres, includes determines the level of wave and gas exchange.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Deep-Sea Biology
    Deep-Sea Biology (OCN430) - Syllabus Fall 2017 Instructors: Jeff Drazen, office MSB605, [email protected], 956-6567 Craig Smith, office MSB617, [email protected], 956-7776 T TH 12:00-1:15 POST708 Syllabus schedule subject to change Course Goals – The deep sea is the largest living space on the planet. Its inhabitants are varied and its communities are often complex, adapted to the particular characteristics of their habitat. This course will cover the major topics in the field, such as bentho-pelagic coupling, depth zonation, energetics, diversity, ecosystem function, adaptations, and the ecology of major habitats. The last portion of the course will deal with anthropogenic threats such as deep-sea fisheries, mining and global climate change. Its goal is to provide you with a basic understanding of what we know (and don’t know) about the biology, ecology and biodiversity of deep-sea ecosystems, the methods used in the field, and it will create a forum for discussion of the major current questions and recent exciting discoveries. Course Structure – After each lecture (or pair of lectures) students will lead a discussion session. The lectures will present the basics of the topics. The discussions will be based on assigned readings (primarily current scientific papers), allowing the class to explore the controversies, implications of recent findings, and highlight future directions for research. Student Learning Outcomes – At the end of this course you will be able to: 1) Describe the co-varying effects of temperature, pressure, oxygen and light levels on the adaptations of deep-sea organisms. 2) Evaluate the influence of variables co-varying with depth on communities, populations, and species.
    [Show full text]
  • Ocean Acidification Summary
    Table of Contents View From the Masthead 2 Monterey Bay as a Window to the World 5 5 Towards a global biogeochemical sensor array Establishing a baseline for the bathypelagic community of Monterey Canyon A new coastal pelagic ecosystem paradigm? Persistent ocean presence reveals ecosystem dynamics Expeditions 16 Applying neotectonics to studies of the seafloor Remote detection of microbes in the deep 16 The dual effects of global warming and ocean acidification Seafloor mapping enables detailed seamount study Gauging risks posed by an aging shipwreck Unique AUV aids in assessing Gulf of Mexico oil spill The thawing Arctic seafloor Weird and Wonderful 29 Newly discovered group of algae live in both fresh water and the ocean 29 Submarine canyons provide mixed blessing for seafloor life Jellies eating jellies Spotting a rare sea-toad The longest brooding period On the Horizon 33 Climate change and ocean acidification Welcoming a new player in the ocean sciences 33 Behind the Scenes: Maximizing Sea Time 38 Despite the Challenges Addenda Project Summaries 41 Awards 50 Invited Lectures 51 Mentorships 54 38 Peer-Reviewed Publications 58 Other Publications 63 Board of Directors 64 2010 Annual Report 1 View From the Masthead View From the Masthead wo thousand ten started with the retooling of our strategic plan and an ambitious set of projects that promised to deliver exciting results and showcase our emphasis on merging science, engi- neering, and marine operations. What we did not anticipate, however, was working in the Gulf of Mexico! The explosion of the Deepwater Horizon oil platform in late April quickly set us on a new course.
    [Show full text]
  • (Polychaeta) Borings in Paraspirifer Bownockeri (Brachiopoda: Devonian)1
    114 A. E. ANNALA AND L. A. KAPUSTKA Vol. 83 Copyright © 1983 Ohio Acad. Sci. 003O-O95O/83/0003-O114 $2.00/0 VERMIFORICHNUS (POLYCHAETA) BORINGS IN PARASPIRIFER BOWNOCKERI (BRACHIOPODA: DEVONIAN)1 R. D. HOARE and R. L. WALDEN, Department of Geology, Bowling Green State University, Bowling Green, OH 43403 ABSTRACT. Shells of Paraspirifer bownockeri (Stewart) from the Silica Formation, Middle Devonian of northwestern Ohio, commonly contain numerous borings of a polychaete worm forming the endolithic trace fossil Vermiforichnus clarki Cameron (1969a) which can be exposed by acidizing the specimens. The borings are most abundant on the brachial valve, and their surface openings tend to be concentrated along major growth lines thence extending dominantly in the general direction of the beaks of the valves. In- festations of the polychaete occurred at 2 different time intervals as indicated by the spac- ing of the borings on 2 major growth lines with renewed shell growth between them. Growth of the host was severely reduced immediately following the infestation and in some areas damage to the mantle caused deformation in the shell of the host. OHIO J. SCI. 83 (3): 114-119, 1983 INTRODUCTION (1932) by Hoare and Steller (1967) (fig. 1), Previous interpretations of the larger as boring sponges by Kesling and Chilman borings commonly seen in the brachiopod (1975) and as "Clionoides" sp. by Steller Paraspirifer bownockeri (Stewart) from the (1965), Kesling et al. (1980) and Sparks Silica Formation in northwestern Ohio et al. (1980). These interpretations were have been alluded to as sponge borings, based on the external configuration of the Clionoides thomasi Fenton and Fenton surface opening of the boring only.
    [Show full text]
  • The Presence of Melinna Palmata (Annelida: Polychaeta) and Ensis
    Cah. Biol. Mar. (2007) 48 : 391-401 The presence of Melinna palmata (Annelida: Polychaeta) and Ensis directus (Mollusca: Bivalvia) related to sedimentary changes in the Bay of Seine (English Channel, France) Jean-Claude DAUVIN1*, Thierry RUELLET1, Eric THIEBAUT2, Franck GENTIL2, Nicolas DESROY3, Anne-Laure JANSON4, Sylvain DUHAMEL5, Jérôme JOURDE5 and Serge SIMON5 (1) Station Marine de Wimereux, Université des Sciences et Technologies de Lille, FRE CNRS 2816 ELICO, B.P. 80, 62930 Wimereux, France. *Corresponding author: Fax: 33 3 21 99 29 01, E-mail: [email protected] (2) Université Pierre et Marie Curie-Paris 6, Station Biologique de Roscoff, UMR CNRS 7144, B.P. 74, 29682 Roscoff Cedex, France (3) Station IFREMER, 2 bis rue Saint-Georges, B.P. 46, 35042 Saint-Malo Cedex, France (4) Muséum National d’Histoire Naturelle, Département Milieux et Peuplements Aquatiques CNRS UMR 5178 BOME, 61 rue Buffon, 75005 Paris, France (5) Cellule du Suivi du Littoral Normand, 16 quai Casimir Delavigne, 76600 Le Havre, France Abstract: Since late 1990s the annelid polychaete Melinna palmata and the mollusc bivalve Ensis directus have been collected in the eastern part of the Bay of Seine (English Channel), indicating changes in the benthic communities. Melinna palmata was never collected prior to 2002, whereas it was reported in the muddy fine sands of the western part of the Channel, along the French (e.g. Bay of Cherbourg) and southern UK (e.g. Southampton Waters) coasts. Ensis directus was first reported in 1998 and now appears to be well implanted, given the abundant population collected in 2006.
    [Show full text]