19. Compactifications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Or Dense in Itself)Ifx Has No Isolated Points
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 11, Pages 3607{3616 S 0002-9939(03)06660-7 Article electronically published on February 24, 2003 TYCHONOFF EXPANSIONS BY INDEPENDENT FAMILIES WANJUN HU (Communicated by Alan Dow) Abstract. A method for Tychonoff expansions using independent families is introduced. Using this method we prove that every countable Tychonoff space which admits a partition into infinitely many open-hereditarily irre- solvable dense subspaces has a Tychonoff expansion that is !-resolvable but not strongly extraresolvable. We also show that, under Luzin's Hypothesis ! ! (2 1 =2 ), there exists an !-resolvable Tychonoff space of size !1 which is not maximally resolvable. Introduction A topological space X is called crowded (or dense in itself)ifX has no isolated points. E. Hewitt defined a resolvable space as a space which has two disjoint dense subsets (see [17]). A space is called κ-resolvable [3] if it admits κ-many pairwise disjoint dense sets. The cardinal ∆(X):=minfjUj : U is a non-empty open subset of Xg is called the dispersion character of the space X.ThespaceX is called maximally resolvable [2] if it is ∆(X)-resolvable; if every crowded subspace of X is not resolvable, then X is called hereditarily irresolvable (HI). Analogously, X is open-hereditarily irresolvable (or OHI) if every non-empty open subset of X is irresolvable. V.I. Malykhin introduced a similar concept of extraresolvable (see [20] + and [6]): a space is extraresolvable if there exists a family fDα : α<∆(X) g of dense susbets of X such that Dα \ Dβ is nowhere dense in X for distinct α and β. -
Topological Description of Riemannian Foliations with Dense Leaves
TOPOLOGICAL DESCRIPTION OF RIEMANNIAN FOLIATIONS WITH DENSE LEAVES J. A. AL¶ VAREZ LOPEZ*¶ AND A. CANDELy Contents Introduction 1 1. Local groups and local actions 2 2. Equicontinuous pseudogroups 5 3. Riemannian pseudogroups 9 4. Equicontinuous pseudogroups and Hilbert's 5th problem 10 5. A description of transitive, compactly generated, strongly equicontinuous and quasi-e®ective pseudogroups 14 6. Quasi-analyticity of pseudogroups 15 References 16 Introduction Riemannian foliations occupy an important place in geometry. An excellent survey is A. Haefliger’s Bourbaki seminar [6], and the book of P. Molino [13] is the standard reference for riemannian foliations. In one of the appendices to this book, E. Ghys proposes the problem of developing a theory of equicontinuous foliated spaces parallel- ing that of riemannian foliations; he uses the suggestive term \qualitative riemannian foliations" for such foliated spaces. In our previous paper [1], we discussed the structure of equicontinuous foliated spaces and, more generally, of equicontinuous pseudogroups of local homeomorphisms of topological spaces. This concept was di±cult to develop because of the nature of pseudogroups and the failure of having an in¯nitesimal characterization of local isome- tries, as one does have in the riemannian case. These di±culties give rise to two versions of equicontinuity: a weaker version seems to be more natural, but a stronger version is more useful to generalize topological properties of riemannian foliations. Another relevant property for this purpose is quasi-e®ectiveness, which is a generalization to pseudogroups of e®ectiveness for group actions. In the case of locally connected fo- liated spaces, quasi-e®ectiveness is equivalent to the quasi-analyticity introduced by Date: July 19, 2002. -
Chapter 7 Separation Properties
Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and . -
Dense Embeddings of Sigma-Compact, Nowhere Locallycompact Metric Spaces
proceedings of the american mathematical society Volume 95. Number 1, September 1985 DENSE EMBEDDINGS OF SIGMA-COMPACT, NOWHERE LOCALLYCOMPACT METRIC SPACES PHILIP L. BOWERS Abstract. It is proved that a connected complete separable ANR Z that satisfies the discrete n-cells property admits dense embeddings of every «-dimensional o-compact, nowhere locally compact metric space X(n e N U {0, oo}). More gener- ally, the collection of dense embeddings forms a dense Gs-subset of the collection of dense maps of X into Z. In particular, the collection of dense embeddings of an arbitrary o-compact, nowhere locally compact metric space into Hubert space forms such a dense Cs-subset. This generalizes and extends a result of Curtis [Cu,]. 0. Introduction. In [Cu,], D. W. Curtis constructs dense embeddings of a-compact, nowhere locally compact metric spaces into the separable Hilbert space l2. In this paper, we extend and generalize this result in two distinct ways: first, we show that any dense map of a a-compact, nowhere locally compact space into Hilbert space is strongly approximable by dense embeddings, and second, we extend this result to finite-dimensional analogs of Hilbert space. Specifically, we prove Theorem. Let Z be a complete separable ANR that satisfies the discrete n-cells property for some w e ÍV U {0, oo} and let X be a o-compact, nowhere locally compact metric space of dimension at most n. Then for every map f: X -» Z such that f(X) is dense in Z and for every open cover <%of Z, there exists an embedding g: X —>Z such that g(X) is dense in Z and g is °U-close to f. -
DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V . -
On Α-Normal and Β-Normal Spaces
Comment.Math.Univ.Carolin. 42,3 (2001)507–519 507 On α-normal and β-normal spaces A.V. Arhangel’skii, L. Ludwig Abstract. We define two natural normality type properties, α-normality and β-normality, and compare these notions to normality. A natural weakening of Jones Lemma immedi- ately leads to generalizations of some important results on normal spaces. We observe that every β-normal, pseudocompact space is countably compact, and show that if X is a dense subspace of a product of metrizable spaces, then X is normal if and only if X is β-normal. All hereditarily separable spaces are α-normal. A space is normal if and only if it is κ-normal and β-normal. Central results of the paper are contained in Sections 3 and 4. Several examples are given, including an example (identified by R.Z. Buzyakova) of an α-normal, κ-normal, and not β-normal space, which is, in fact, a pseudocompact topological group. We observe that under CH there exists a locally compact Hausdorff hereditarily α-normal non-normal space (Theorem 3.3). This example is related to the main result of Section 4, which is a version of the famous Katˇetov’s theorem on metrizability of a compactum the third power of which is hereditarily normal (Corollary 4.3). We also present a Tychonoff space X such that no dense subspace of X is α-normal (Section 3). Keywords: normal, α-normal, β-normal, κ-normal, weakly normal, extremally discon- nected, Cp(X), Lindel¨of, compact, pseudocompact, countably compact, hereditarily sep- arable, hereditarily α-normal, property wD, weakly perfect, first countable Classification: 54D15, 54D65, 54G20 §0. -
On the Covering Dimension of Subspaces
proceedings of the american mathematical society Volume 72, Number 3, December 1978 ON THE COVERINGDIMENSION OF SUBSPACES OF PRODUCT OF SORGENFREY LINES1 AU A. FORA Abstract. Let 5 denote the Sorgenfrey line. Then the following results are proved in this paper: (i) If X is a nonempty subspace of 5*°, then dim X = 0. (ii) For any nonempty separable space X c 5"°, dimA""1 = 0 for any cardinal m. 1. Introduction. The question of whether dimiA' X Y) < dim X + dim Y for topological spaces X and Y has long been considered (see e.g., [G, pp. 263 and 277]). By dim X, or the covering dimension of X, we mean the least integer, tj, such that each finite cozero cover of X has a finite cozero refinement of order n. (A cover is of order n if and only if each point of the space is contained in at most n + 1 elements of the cover. All spaces considered are completely regular.) Researchers have long worked on the above problem, and only recently Wage [W] and Przymusinski [P] constructed a Lindelöf space X such that dim X = 0 and X2 is normal but has dim X2 > 0. The aim of this paper is to prove that no product of subspaces of Sorgenfrey lines can serve as a counterexample to the product conjecture. Another aim is to give a full answer to one of the questions raised by Mrowka [Mr2J in the conference of 1972 which says: "We still do not know if subspaces of S" (n = 2, 3, . -
Completeness Properties of the Generalized Compact-Open Topology on Partial Functions with Closed Domains
Topology and its Applications 110 (2001) 303–321 Completeness properties of the generalized compact-open topology on partial functions with closed domains L’ubica Holá a, László Zsilinszky b;∗ a Academy of Sciences, Institute of Mathematics, Štefánikova 49, 81473 Bratislava, Slovakia b Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA Received 4 June 1999; received in revised form 20 August 1999 Abstract The primary goal of the paper is to investigate the Baire property and weak α-favorability for the generalized compact-open topology τC on the space P of continuous partial functions f : A ! Y with a closed domain A ⊂ X. Various sufficient and necessary conditions are given. It is shown, e.g., that .P,τC/ is weakly α-favorable (and hence a Baire space), if X is a locally compact paracompact space and Y is a regular space having a completely metrizable dense subspace. As corollaries we get sufficient conditions for Baireness and weak α-favorability of the graph topology of Brandi and Ceppitelli introduced for applications in differential equations, as well as of the Fell hyperspace topology. The relationship between τC, the compact-open and Fell topologies, respectively is studied; moreover, a topological game is introduced and studied in order to facilitate the exposition of the above results. 2001 Elsevier Science B.V. All rights reserved. Keywords: Generalized compact-open topology; Fell topology; Compact-open topology; Topological games; Banach–Mazur game; Weakly α-favorable spaces; Baire spaces; Graph topology; π-base; Restriction mapping AMS classification: Primary 54C35, Secondary 54B20; 90D44; 54E52 0. -
Applications of the Stone-Cech Compactification to Free Topological Groups
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 55, Number 1, February 1976 APPLICATIONS OF THE STONE-CECH COMPACTIFICATION TO FREE TOPOLOGICAL GROUPS J. P. L. HARDY, SIDNEY A. MORRIS1 AND H. B. THOMPSON Abstract. In this note the Stone-Cech compactification is used to produce short proofs of two theorems on the structure of free topological groups. The first is: The free topological group on any Tychonoff space X contains, as a closed subspace, a homeomorphic copy of the product space X". This is a generalization of a result of B. V. S. Thomas. The second theorem proved is C. Joiner's, Fundamental Lemma. 1. Introduction. Definition. Let A be any topological space. Then the compact Hausdorff space BX is said to be the Stone-Cech compactification of X if there exists a continuous map B: X —»BX such that for any continuous map of A into any compact Hausdorff space ATthere exists a unique continuous map $: BX -» K such that <&B= <j>. While BX exists and is unique for any topological space A, it is of particular interest when A is a Tychonoff (= completely regular Hausdorff) space, for then B is an embedding of A in BX and we can consider A to be a subspace of BX. (For details, see Kelley [5].) Definition. Let A be any Tychonoff space. Then the Hausdorff topological group F(A) is said to be the free topological group on A if A is a subspace of F(A") and for any continuous map <bof A into any topological group G there exists a unique continuous homomorphism 4>: F(A) —*G such that $|A = <f>. -
18 | Compactification
18 | Compactification We have seen that compact Hausdorff spaces have several interesting properties that make this class of spaces especially important in topology. If we are working with a space X which is not compact we can ask if X can be embedded into some compact Hausdorff space Y . If such embedding exists we can identify X with a subspace of Y , and some arguments that work for compact Hausdorff spaces will still apply to X. This approach leads to the notion of a compactification of a space. Our goal in this chapter is to determine which spaces have compactifications. We will also show that compactifications of a given space X can be ordered, and we will look for the largest and smallest compactifications of X. 18.1 Proposition. Let X be a topological space. If there exists an embedding j : X → Y such that Y is a compact Hausdorff space then there exists an embedding j1 : X → Z such that Z is compact Hausdorff and j1(X) = Z. Proof. Assume that we have an embedding j : X → Y where Y is a compact Hausdorff space. Let j(X) be the closure of j(X) in Y . The space j(X) is compact (by Proposition 14.13) and Hausdorff, so we can take Z = j(X) and define j1 : X → Z by j1(x) = j(x) for all x ∈ X. 18.2 Definition. A space Z is a compactification of X if Z is compact Hausdorff and there exists an embedding j : X → Z such that j(X) = Z. 18.3 Corollary. -
Essays on Topological Vector Spaces Quasi-Complete
Last revised 11:47 a.m. January 7, 2017 Essays on topological vector spaces Bill Casselman University of British Columbia [email protected] Quasi-complete TVS Suppose G to be a locally compact group. In the theory of representations of G, an indispensable role is played by an action of the convolution algebra Cc(G) on the space V of a continuous representation of G. In order to define this, one must know how to make sense of integrals f(x) dx ZG where f is a continuous function of compact support on G with values in V . This is not quite a trivial matter. If V is assumed to be complete, a definition by Riemann sums works quite well, but this is an unnecessarily strong requirement. The natural condition on V seems to be that it be quasi-complete, a somewhat technical but nonetheless valuable condition. Continuous representations of a locally compact group are almost always assumed to be on a quasi•complete topological vector space. I can illustrate here quite briefly what the problem is. Suppose M to be a manifold assigned a smooth measure dm, and suppose f a continuous, compactly supported function on M with values in the TVS (i.e. locally convex, Hausdorff, topological vector space) V . How is one to define the integral I = f(m) dm ? ZM If V is complete, as I say, this is not difficult. In general, what one can do, according to the Hahn•Banach Theorem, is characterize the integral uniquely by the condition that F, I = F, f(m) dm = F,f(m) dm D ZM E ZM for any F in the continuous linear dual of V . -
Locally Compact Simple Rings Having Minimal Left Ideals
LOCALLY COMPACT SIMPLE RINGS HAVING MINIMAL LEFT IDEALS BY SETH WARNERC) Let A be an indiscrete locally compact primitive ring having minimal left ideals. Algebraically, A may be regarded as a dense ring of linear operators containing nonzero linear operators of finite rank on a vector space E over a division ring K, and furthermore if A is simple, then A contains only linear operators of finite rank. The topology of A induces topologies on F and A"in a natural way, so that K becomes a locally compact division ring and E a locally compact vector space over K. Theorems about locally compact division rings and locally compact vector spaces imply that if K is indiscrete, then E is necessarily finite dimensional over K, and thus A is the ring of all linear operators on a finite-dimensional vector space over a locally compact division ring. Kaplansky proved that if A has characteristic zero, then K is indeed indiscrete, but he showed by an example that E could be infinite dimensional. Kaplansky remarked [9, p. 459], however, that if A is simple, it seemed unlikely that F could be infinite dimensional, since otherwise "complete- ness appears to require the presence of linear transformations with infinite- dimensional range." Our principal result in §1 is the verification of this conjecture; however, our argument is based not on the fact that a locally compact ring is complete, but rather on the fact that a locally compact space is a Baire space and on the symmetry between minimal left and right ideals in a simple ring.