Araneae Biodiversity in the Amazonian Foothills: an Analysis of Family and Guild Presence Across Habitat Types
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Common Spiders of Antelope Island State Park
THE COMMON SPIDERS OF ANTELOPE ISLAND STATE PARK by Stephanie M Cobbold Web-building Spiders ______________________________________________________________________________ Family Araneidae (orb web spiders) Build a circular spiral web on support lines that radiate out from the center The spider is often found waiting for prey in the center of its web Typical eye pattern: 4 median eyes clustered in a square shape Eye pattern Orb web SMC SMC Neoscona (back and front views) Banded Garden Spider (Argiope) 1 ______________________________________________________________________________ Family Theridiidae (cob web spiders) Abdomen usually ball or globe-shaped Have bristles on legs called combs. These combs are used to fling silk strands over captive prey. Web is loose, irregular and 3-dimensional commons.wikimedia.org Black Widow (Latrodectus hesperus) Theridion ________________________________________________________________________ Family Linyphiidae (sheet web spiders) Build flat, sheet-like or dome-shaped webs under which the spider hangs upside- down. Abdomen is usually longer than wide SMC Sheet web spider hanging under its web 2 ________________________________________________________________________ Family Dictynidae (mesh web spiders) Make small, irregular webs of hackled threads Often found near the tips of plants SMC ________________________________________________________________________ Family Agelenidae (funnel web spiders) Web is a silk mat with a funnel-shaped retreat at one end in which the spider waits in ambush -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
A Summary List of Fossil Spiders
A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature. -
Life-History Constraints in Inaccurate Batesian Myrmecomorphic Spiders (Araneae: Corinnidae, Gnaphosidae)
Eur. J. Entomol. 108: 255–260, 2011 http://www.eje.cz/scripts/viewabstract.php?abstract=1614 ISSN 1210-5759 (print), 1802-8829 (online) Life-history constraints in inaccurate Batesian myrmecomorphic spiders (Araneae: Corinnidae, Gnaphosidae) STANO PEKÁR and MARTIN JARAB Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlá Ĝská 2, 611 37 Brno, Czech Republic; e-mail: [email protected] Key words. Formicidae, prey, trophic niche, clutch size, copulation, courtship Abstract. Accurate Batesian mimicry is known to impose constraints on some traits of the mimic, such as foraging or reproductive behaviour. It is not known whether life-history traits of inaccurate Batesian mimics are constrained as well. We studied selected life- history traits of three spider species, Liophrurillus flavitarsis, Phrurolithus festivus (both Corinnidae), and Micaria sociabilis (Gna- phosidae), that are inaccurate mimics of ants. Namely, we were interested in how myrmecomorphy (ant-like resemblance) constrains their circadian activity, trophic niche and reproductive behaviour. The spiders were found to have diurnal activity like their models, whereas their close relatives have nocturnal activity. The three mimics do not catch ants, nor do they use food resources of ants, but catch various tiny invertebrates that occur in the vicinity of their models. Their trophic niche seems to be constrained by occurrence among ants. Absence of courtship and long lasting copulation, in a position that does not provide protective resemblance, do not seem to be constrained by mimicry in the three species. Comparative analysis of fecundity in mimetic and non-mimetic spiders showed that clutch size is also not constrained. Unlike in accurate mimics, life-history traits of inaccurate myrmecomorphs appear not to be constrained. -
140063122.Pdf
Dtet specia|isatlon and ďverslÍlcatlon oftlrc sf,der genrs Dysdara (Araneae: Dysdertdae) Summaryof PhD. thesis Tho main aim of my sfudy is to pr€s€nt now knowledge about the diet specialisation antl diversiÍicationóf ttre ipider genusDys&ra. This PhD. lhesis, ďvided in two parts' is tre summary of Íive papers. 1. Diet specialisatlon 1.1. Řezíě M., Pekór s. & I'bin Y.: Morphologlcal and behavlourď adapations for onlscophagr lnDysderassden (Araneae: Dysdertnne) [acoeptedby Journal of Zoologfl Very little is known about predators feeding on woodlioe. Spiders of the genus Dyidera (Dysderidae) were long suspeotedto be onisoophagous,but evidenoe for lheir díet speoialisation hás beenrlaoking. These spidas are chareotorised by an unusual morphological variability oftheir mouth-parts,partioularly tho ohelioaae, suggosting dietary sfrcialisation któróukazuje na potavní specializaci. Thus, we investigatedthe rebtiónsirip between mouthpertmorphology, prey pÍeferenoeand predatory belraviour of ťrvespecies represerrtingdiffoent chelioenď types. Resulb obtained sugg€st that sfudiedĎysdera spidas diffo in prey specialisetion for woďlioo. The species with unmodified chelicerae reatlity oapturedvarious artkopďs but refused woodlice while speoieswith modified ohetóerae oapfuredwoodlice' Particularly,Dysdera erythrina ind D. spinrcrus captured woodlioe as freque,lrtý as ďternativo pfey typ€s. Dysdera abdomiialis andD. dubrovnlnrii sigrificantly preforred woodlice to alternative prey. Cheliooď modifioations were found to detormine the grasping bohaviour. Species 'pinoers with elongated chelicerae used a taotio" i.e. insertd one chelicera into the soft ventil side and plaoed lhe olher on the dorsal side of woodlouse. Species with .fork dorsally ooncave chálicerae used a tactio': they fuckod thom quiokly under woodlóuse in order to bite the vental side of woodlouse body. Specios with flattonď .key chelicerae usď a tactic': lhey inserted a flattraredchelicera betweon sclerites of the armouredwoodlouse. -
Araneae, Corinnidae, Castianeirinae), a New Polymorphic Ground Sac Spider from the Southern Western Ghats of India
Zootaxa 3964 (5): 569–576 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3964.5.7 http://zoobank.org/urn:lsid:zoobank.org:pub:BFB58A5F-8D45-4A38-B16A-B9FB1E80ABE6 Castianeira furva sp. nov. (Araneae, Corinnidae, Castianeirinae), a new polymorphic ground sac spider from the southern Western Ghats of India PRADEEP M. SANKARAN1, JOBI J. MALAMEL, MATHEW M. JOSEPH & POTHALIL A. SEBASTIAN Division of Arachnology, Department of Zoology, Sacred Heart College, Thevara, Cochin, Kerala 682 013, India 1Corresponding author. E-mail: [email protected] Introduction The ground-dwelling, ant-mimicking corinnid spider genus Castianeira, with Castianeira rubicunda as type species, was erected by Keyserling (1879). Members of the genus are closely related to the Afrotropical genus Cambalida Simon, 1910 (Haddad 2012a) and are distributed mainly in tropical and temperate regions of the world except for Australia and nearby islands (World Spider Catalog 2015). The genus was revised from the Nearctic Region and south-east Asia (Reiskind 1969 and Deeleman-Reinhold 2001, respectively) and currently includes 126 described species, making it as the largest genus within the family Corinnidae (World Spider Catalog 2015). Even though the genus is rich in species, the validity and placement of majority of the species are still doubtful and questionable. For example, according to Haddad (2012b), many of the Afrotropical species, as well as majority of the species described from India (Haddad, pers. comm.) are misplaced or synonyms of previously described ones (e.g. Haddad 2012a, 2013a). The genus thus will remain as a trash-can until all the species described so far can be revised. -
Spiders 27 November-5 December 2018 Submitted: August 2019 Robert Raven
Bush Blitz – Namadgi, ACT 27 Nov-5 Dec 2018 Namadgi, ACT Bush Blitz Spiders 27 November-5 December 2018 Submitted: August 2019 Robert Raven Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 12 Bush Blitz – Namadgi, ACT 27 Nov-5 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 2 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 4 2.1 Site selection ............................................................................................................. 4 2.2 Survey techniques ..................................................................................................... 4 2.2.1 Methods used at standard survey sites ................................................................... 5 2.3 Identifying the collections ......................................................................................... -
A New Spider Species, Harpactea Asparuhi Sp. Nov., from Bulgaria (Araneae: Dysderidae)
XX…………………………………… ARTÍCULO: A new spider species, Harpactea asparuhi sp. nov., from Bulgaria (Araneae: Dysderidae) Stoyan Lazarov ARTÍCULO: A new spider species, Harpactea asparuhi sp. nov., from Bulgaria (Araneae: Dysderidae) Stoyan Lazarov Institute of Zoology Abstract Bulgarian Academy of Sciences A new species, Harpactea asparuhi sp. nov. (Araneae: Dysderidae), is de- 1, Tsar Osvoboditel Blvd, scribed and illustrated by male specimens collected in Bulgaria (Eastern 1000 Sofia Bulgaria. Rhodopi Mountain). The male palps of this species are similar to H. samuili La- E-mail: [email protected] zarov, 2006, but conductor is lanceolate. Key words: Harpactea, Eastern Rhodopi, Bulgaria, Boynik. Taxonomy: Harpactea asparuhi sp. nov. Revista Ibérica de Aracnología ISSN: 1576 - 9518. Dep. Legal: Z-2656-2000. Una nueva especie de araña de Bulgaria, Harpactea asparuhi sp. Vol. 15, 30-VI-2007 nov., (Araneae: Dysderidae) Sección: Artículos y Notas. Pp: 25 − 27. Resumen Fecha publicación: 30 Abril 2008 Se describe e ilustra una nueva especie de araña a partir de ejemplares machos procedentes de Bulgaria (Montes Rhodopi orientales). El palpo del macho de esta especie es similar a H. samuili Lazarow, 2006. Se diferencia de esta espe- cie por poseer el conductor lanceolado. Edita: Palabras clave: Harpactea, Rhodopi, Bulgaria, Boynik. Grupo Ibérico de Aracnología (GIA) Taxonomía: Harpactea asparuhi sp. nov. Grupo de trabajo en Aracnología de la Sociedad Entomológica Aragonesa (SEA) Avda. Radio Juventud, 37 50012 Zaragoza (ESPAÑA) Tef. 976 324415 Fax. 976 535697 C-elect.: [email protected] Director: Carles Ribera C-elect.: [email protected] Introduction Indice, resúmenes, abstracts vols. publicados: The Dysderidae, a rather species rich spider family from the Mediterranean http://entomologia.rediris.es/sea/ region, shows remarkable diversity in south-eastern Europe, and especially publicaciones/ria/index.htm on the Balkan Peninsula (Platnick 2006, Deltshev 1999). -
Deinopidae \ 91
Spiders of North America • Deinopidae \ 91 FROM: Ubick, D., P. Paquin, P.E. Cushing, and V. Roth (eds). 2005. Spiders of North America: an identification manual. American Arachnological Society. 377 pages. Chapter 23 DEINOPIDAE 1 genus, 1 species Jonathan A. Coddington Common name • Ogre-faced spiders, net-casting spiders. Similar families • None, although some Tetragnathidae (p. 232) also adopt similar resting postures along twigs. Diagnosis • All instars of this cribellate, orbicularian family can be distinguished by the extremely large posterior median eyes (Fig. 23.2) or by the web architecture. In the field, Deinopis spin highly modified orbwebs placed slightly above or to the side of the substrate, and whose catching area is much smaller than the spider. Characters • body size: males 10-14 mm; females 12-17 mm. color: carapace tan, sparse black lateral mottling, abdomen with broad light median dorsal band and tan cardiac mark, faint posterior folium. carapace: flat, less than half the length of the abdomen (Fig. 23.1). sternum: broad white central region, gray borders. eyes: eight, PME massive. chelicerae: 6 pro-and retrolateral teeth. legs: unusually long and thin, tarsi with three claws. abdomen: fusiform, twice as long as carapace. spinnerets: six spinnerets, entire cribellum in front of ante- rior spinnerets. respiratory system: paired book lungs and median tra- cheal spiracle opening just anterior to spinnerets. genitalia: entelegyne; female have an anchor-shaped epigy- Fig. 23.1 Deinopis spinosa MARX 1889b num with lateral copulatory slits (Fig. 23.3) leading to spiraled ducts; male have a simple, round tegulum with a centrally placed apophysis, around which the fiat, thin, blade-like embolus tightly spirals (Fig. -
Checklist of Australian Spiders (Total of 3,935 Species in 677 Genera and 87 Families* by Volker W
Checklist of Australian Spiders (total of 3,935 species in 677 genera and 87 families* by Volker W. Framenau Version 1.43: Saturday, 17 October 2020 For feedback and corrections please contact: [email protected] *The family Stenochilidae occurs in Australia (Framenau, Baehr, Zborowski 2014) but since no species have been published for this country, this family is currently not listed with any species below. this page: Araneomorphae Agelenidae Oramia Araneomorphae Agelenidae C. L. Koch, 1837 Modern Funnel-web Spiders Oramia Forster, 1964 frequens (Rainbow, 1920) Tegenaria Latreille, 1804 domestica (Clerck, 1758) Amaurobiidae Thorell, 1870 Mesh-web Weavers Dardurus Davies, 1976 agrestis Davies, 1976 nemoralis Davies, 1976 saltuosus Davies, 1976 silvaticus Davies, 1976 spinipes Davies, 1976 tamborinensis Davies, 1976 Daviesa Koçal & Kemal, 2008 gallonae (Davies, 1993) lubinae (Davies, 1993) Oztira Milledge, 2011 affinis (Hickman, 1981) aquilonaria (Davies, 1986) kroombiti Milledge, 2011 summa (Davies, 1986) Storenosoma Hogg, 1900 altum Davies, 1986 bifidum Milledge, 2011 bondi Milledge, 2011 forsteri Milledge, 2011 grayi Milledge, 2011 grossum Milledge, 2011 hoggi (Roewer, 1942) picadilly Milledge, 2011 smithae Milledge, 2011 supernum Davies, 1986 tasmaniensis Milledge, 2011 terraneum Davies, 1986 Page 1 of 100 this page: Araneomorphae Amaurobiidae Storenosoma victoria Milledge, 2011 Tasmabrochus Davies, 2002 cranstoni Davies, 2002 montanus Davies, 2002 turnerae Davies, 2002 Tasmarubrius Davies, 1998 hickmani Davies, 1998 milvinus -
Spiders of Alberta: from Agelenidae to Uloboridae
Spiders of Alberta: from Agelenidae to Uloboridae Dr. Heather Proctor University of Alberta for the Edmonton Nature Club, 7 Feb 2019 (selected slides for posting; photos (c) H. Proctor unless otherwise noted) Canadian and Albertan diversity • 1477 species of spiders in 45 families known from Canada – may be up to 1800 spp. • 657 species in 28 families known from Alberta 631 of the 657 species are included here from https://www.albertaparks.ca/media/6255191/list-of-elements-ab-invertebrates-spiders.xlsx The 28 families of spiders known from Alberta • no mygalomorph spiders in AB, only araneomorph • Division Synspermiata – Pholcioidea: Pholcidae, Telemidae • Division Entelegynae – Araneoidea: Theridiidae, Araneidae, Linyphiidae, Mysmenidae, Mimetidae, Tetragnathidae – Uloboroidea: Uloboridae – Titanoecoidea: Titanoecidae – Amaurobioidea: Amaurobiidae – Desoidea: Desidae – Agelenoidea: Dictynidae, Cybaeidae, Hahniidae, Agelenidae – Lycosoidea: Oxyopidae, Thomisidae, Pisauridae, Lycosidae – Salticoidea: Salticidae, Philodromidae, Corinnidae, Eutichuridae – Anyphaenoidea: Anyphaenidae, Clubionidae – Liocranoidea: Liocranidae – Trochanteroidea: Phrurolithidae, Gnaphosidae mygalomorphs from BC, Antrodiaetus sp. Linyphiidae 261 Gnaphosidae 51 Lycosidae 50 Salticidae 45 Number of species known Dictynidae 36 from each family in Alberta Thomisidae 37 Theridiidae 36 (based on Robb Bennett’s Araneidae 32 personal list, 7 Feb 2019) Philodromidae 29 Clubionidae 17 Tetragnathidae 14 Hahniidae 10 Amaurobiidae 7 Agelenidae 6 Corinnidae 3 Phrurolithidae -
Nocturnal Foraging Enhanced by Enlarged Secondary Eyes in a Net-Casting Spider Jay A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Eileen Hebets Publications Papers in the Biological Sciences 5-2016 Nocturnal foraging enhanced by enlarged secondary eyes in a net-casting spider Jay A. Stafstrom University of Nebraska–Lincoln, [email protected] Eileen A. Hebets University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscihebets Part of the Animal Sciences Commons, Behavior and Ethology Commons, Biology Commons, Entomology Commons, and the Genetics and Genomics Commons Stafstrom, Jay A. and Hebets, Eileen A., "Nocturnal foraging enhanced by enlarged secondary eyes in a net-casting spider" (2016). Eileen Hebets Publications. 67. http://digitalcommons.unl.edu/bioscihebets/67 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Biology Letters 12: 20160152. doi 10.1098/rsbl.2016.0152 Copyright © 2016 Jay A. Stafstrom and Eileen A. Hebets. Published by the Royal Society. Used by permission. Submitted February 20, 2016; accepted April 22, 2016. digitalcommons.unl.edu Nocturnal foraging enhanced by enlarged secondary eyes in a net-casting spider Jay A. Stafstrom and Eileen A. Hebets School of Biological Sciences, University of Nebraska–Lincoln Manter Hall, 1104T Street, Lincoln, NE, USA ORCID for JAS: 0000-0001-5190-9757 Corresponding author — Jay A. Stafstrom, email [email protected] Abstract Animals that possess extreme sensory structures are predicted to have a related extreme behavioral function.