Chapter 1 Introduction and Literature Review 1.1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade. -
Reproductionreview
REPRODUCTIONREVIEW Wombat reproduction (Marsupialia; Vombatidae): an update and future directions for the development of artificial breeding technology Lindsay A Hogan1, Tina Janssen2 and Stephen D Johnston1,2 1Wildlife Biology Unit, Faculty of Science, School of Agricultural and Food Sciences, The University of Queensland, Gatton 4343, Queensland, Australia and 2Australian Animals Care and Education, Mt Larcom 4695, Queensland, Australia Correspondence should be addressed to L A Hogan; Email: [email protected] Abstract This review provides an update on what is currently known about wombat reproductive biology and reports on attempts made to manipulate and/or enhance wombat reproduction as part of the development of artificial reproductive technology (ART) in this taxon. Over the last decade, the logistical difficulties associated with monitoring a nocturnal and semi-fossorial species have largely been overcome, enabling new features of wombat physiology and behaviour to be elucidated. Despite this progress, captive propagation rates are still poor and there are areas of wombat reproductive biology that still require attention, e.g. further characterisation of the oestrous cycle and oestrus. Numerous advances in the use of ART have also been recently developed in the Vombatidae but despite this research, practical methods of manipulating wombat reproduction for the purposes of obtaining research material or for artificial breeding are not yet available. Improvement of the propagation, genetic diversity and management of wombat populations requires a thorough understanding of Vombatidae reproduction. While semen collection and cryopreservation in wombats is fairly straightforward there is currently an inability to detect, induce or synchronise oestrus/ovulation and this is an impeding progress in the development of artificial insemination in this taxon. -
Teacher Notes and Parent Support Material Learning Activities
TEACHER NOTES AND PARENT SUPPORT MATERIAL LEARNING ACTIVITIES © Queensland Museum 2011; Author Donna Dyson. ANIMALS of Australia Teacher Notes and Parent Support Material Learning Activities PAGES TEACHING LEARNING Cover and title page Text prediction from title 1. Children discuss the possum on the cover and predict where possums lives and which country it is from. Discuss how students can check their knowledge and ideas. 2. Children discuss if there are any animals which they may have as pets. 3. Children discuss different types of animals habitats All pages • Excursion. Children visit each animal species in this book. Mammals are found on level three of Queensland Museum. All pages Make a list Australian Mammals in both 1. Listing information this book and an extensional list. 2. Researching for further information 3. Presenting findings All pages Onomatopoeia and alliteration Children learn some words sound like the actions (onomatopoeia). Children discover every action word is of the same letter (alliteration) and that they all start with “S”. All pages Students collate the S words as a list and Students make a list of more S words which may describe extend their vocabulary by thinking up an action or a sound. new S words. All pages Graphs and Statistics -Chance and Data Using the table below, children vote on their favourite animal Mathematics in the book. Class counts the votes for each bird and discovers which bird is the most popular in the class. All pages Music Download the music for this book and learn it as a lullaby/ waltz. All pages Science: Australian Animals and Endan- Educational Audience: ages 6-8 yrs gered Species: Yr 3 All pages Science: Habitat, Ecology and Environ- Educational Audience: ages 6-8 yrs mental Sciences Yr.2-3 © Queensland Museum 2011; Author Donna Dyson. -
ESCCAP Guidelines Final
ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ First Published by ESCCAP 2012 © ESCCAP 2012 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-40-1 ESCCAP Guideline 3 Control of Ectoparasites in Dogs and Cats Published: December 2015 TABLE OF CONTENTS INTRODUCTION...............................................................................................................................................4 SCOPE..............................................................................................................................................................5 PRESENT SITUATION AND EMERGING THREATS ......................................................................................5 BIOLOGY, DIAGNOSIS AND CONTROL OF ECTOPARASITES ...................................................................6 1. Fleas.............................................................................................................................................................6 2. Ticks ...........................................................................................................................................................10 -
Adaptations of Large Marsupials to Survival in Winter Snow Cover: Locomotion and Foraging
Canadian Journal of Zoology Adaptations of large marsupials to survival in winter snow cover: locomotion and foraging. Journal: Canadian Journal of Zoology Manuscript ID cjz-2016-0097.R2 Manuscript Type: Article Date Submitted by the Author: 07-Sep-2016 Complete List of Authors: Green, K.; National Parks and Wildlife Service, Snowy Mountains Region, FEEDING < Discipline, FORAGING < Discipline, LOCOMOTION < Discipline, Keyword: MORPHOLOGYDraft < Discipline, SNOW < Discipline, ALPINE < Habitat https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 34 Canadian Journal of Zoology 1 Adaptations of large marsupials to survival in winter snow cover: locomotion and foraging. Running head: Adaptations of marsupials to snow K. Green National Parks and Wildlife Service, Snowy Mountains Region, PO Box 2228, Jindabyne, NSW 2627, Australia Draft Corresponding author. Email [email protected] Abstract: The small extent of seasonally snow-covered Australian mountains means that there has not been a great selective pressure on the mammalian fauna for adaptations to this environment. Only one large marsupial, the common wombat (Vombatus ursinus (Shaw, 1800)), is widespread above the winter snowline. In the past 20 years, with snow depth and duration declining, the swamp wallaby ( Wallabia bicolor (Desmarest, 1804)) has become more common above the winter snowline. The red-necked wallaby ( Macropus rufogriseus (Desmarest, 1817)) is common in alpine Tasmania where seasonal snow cover is neither as deep nor as long-lasting as on the mainland, but has only been recorded regularly above the winter snowline in the mainland Snowy Mountains since 2011. This study examines morphological https://mc06.manuscriptcentral.com/cjz-pubs Canadian Journal of Zoology Page 2 of 34 2 aspects of locomotion of these three herbivorous marsupials in snow. -
Bearing up Well? Understanding the Past, Present and Future of Australia's Koalas
Gondwana Research 25 (2014) 1186–1201 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr GR focus review Bearing up well? Understanding the past, present and future of Australia's koalas Karen H. Black a,⁎, Gilbert J. Price b, Michael Archer a, Suzanne J. Hand a a School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia b Department of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia article info abstract Article history: The modern Koala Phascolarctos cinereus is the last surviving member of a once diverse family Phascolarctidae Received 20 October 2013 (Marsupialia, Phascolarctomorphia). Nine genera and at least 16 species of koala are known. Late Oligocene sed- Received in revised form 17 December 2013 iments of central Australia record the oldest fossils and highest species diversity. Five species are known from the Accepted 22 December 2013 early to middle Miocene rainforest assemblages of the Riversleigh World Heritage Area, Queensland. With the Available online 30 December 2013 onset of dryer conditions after the middle Miocene climatic optimum (~16 Ma), rainforest habitats contracted Handling Editor: M. Santosh resulting in the apparent extinction of three koala lineages (Litokoala, Nimiokoala, Priscakoala). Phascolarctos first appears in the fossil record during the Pliocene and the modern species around 350 ka. Despite a dramatic Keywords: decline in taxonomic diversity to a -
Ecology of the Western Gray Squirrel in South-Central Washington
STATE OF WASHINGTON January 2005 ECOLOGY OF THE WESTERN GRAY SQUIRREL IN SOUTH-CENTRAL WASHINGTON 1.20 Females 1.00 Males 0.80 0.60 Survival 0.40 0.20 0.00 0 50 100 150 200 250 300 350 400 Julian day By W. Matthew Vander Haegen, Gene R. Orth and Liana M. Aker Washington Department of Fish and Wildlife Wildlife Program Wildlife Science Division Progress Report Suggested citation: Vander Haegen, W. M., G. R. Orth and L. M. Aker. 2005. Ecology of the western gray squirrel in south-central Washington. Progress report. Washington Department of Fish and Wildlife, Olympia. 41pp. Ecology of the western gray squirrel in south-central Washington Progress Report January 2005 W. Matthew Vander Haegen, Gene R. Orth, and Liana M. Aker Washington Department of Fish and Wildlife Wildlife Program, Science Division 600 Capitol Way North Olympia, WA 98501 Table of Contents ABSTRACT ................................................................................................................. 5 ACKNOWLEDGEMENTS ................................................................................. 6 INTRODUCTION .................................................................................................... 7 STUDY AREA AND GENERAL METHODS ....................................... 10 SURVIVAL ................................................................................................................ 14 PRODUCTIVITY ................................................................................................... 21 ABUNDANCE ESTIMATES ......................................................................... -
Wildlife Carers Dictionary
Your guide to using the Wildlife Carers Dictionary. The Each dictionary word is highlighted in bold text . The phonetic pronunciation of a word is highlighted in italic text . Wild life Diseases and illnesses are highlighted in red text . Medications are highlighted in green text . Scientific names of Australian native animals most regularly Carers into care are highlighted in purple text . Native animals often have more than one “common” name which are used in different areas of Australia. Some names Dictionary can be quite quirky! You can find these names in blue text . Nouns – a naming word are coded (n.). Verbs – a doing word are coded (v.). Adjectives – a describing word are coded (adj.). Information on Australian habitats can be found in the green boxes. Photographs of Australia’s native animals can be found in the blue boxes. Please note: photos are not necessarily in alphabetical order. Did you know? Quirky, interesting wildlife facts can be found in the orange boxes with red text. Fauna First Aid is supported by the Wildlife Preservation by Linda Dennis Society of Australia and the Australian Geographic Society. Version One 2011 With thanks... About Linda Dennis... This dictionary has been a labour of love and has taken me quite My passion for Australian native animals started nearly 20 some time to write. I’ve loved each and every challenging minute of years ago with my very first raptor experience at Eagle it! Heritage near Margaret River in Western Australia. After an up close and personal experience with a Black Kite perching on I’m excited to bring you this wildlife resource as it’s so very new, to my gloved hand I vowed that I would soon work closely with my knowledge nothing like it has been done in the wildlife community these magnificent creatures. -
Sarcoptes Scabiei: an Important Exotic Pathogen of Wombats
Under the Microscope Sarcoptes scabiei: an important exotic pathogen of wombats Sarcoptes scabiei is a parasitic astigmatid favourable for survival of the mite when mite, which causes scabies in people and Lee F Skerratt off the host. It is thought that the sarcoptic mange in mammals (Figure 1). School of Veterinary and duration of mite survival off the host is a Importantly, it is an emerging disease in Biomedical Sciences key component affecting transmission James Cook University, wildlife throughout the world 1. The mite Townsville 4811 between wombats because wombats are originates from a human ancestor and is Australia. generally antisocial and avoid contact thought to have spread to domestic and Tel: 617 4781 4838 with one another 9. Wombats rely on then free-living animals 2, 3. Based on the Fax: 617 4779 1526 burrows for diurnal shelter and recent emergence of sarcoptic mange in E-mail: [email protected] transmission may occur when wombats Australian wildlife and Aboriginal share burrows. Burrows enhance the communities, it is thought that Sarcoptes Epidemiology in wombat survival of mites when off the host by scabiei was probably introduced to populations providing a stable temperate Australia by the Europeans and their environment. animals 3,4. The mitochondrial genetic Sarcoptic mange generally occurs at low similarity of mites from Australian wildlife prevalence (0 - 15%) in common wombat Epidemics of sarcoptic mange occur and domestic animals supports this 3, 5. In populations throughout southeast sporadically within wombat populations 7,8 Australian wildlife, sarcoptic mange has Australia . Its low prevalence is and appear to be mainly associated with been reported in the common wombat attributed to high mortality and immunity introduction of S. -
A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition. -
Artificial Insemination in Marsupials
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchOnline at James Cook University Available online at www.sciencedirect.com Theriogenology 71 (2009) 176–189 www.theriojournal.com Artificial insemination in marsupials John C. Rodger a,*, Damien B.B.P. Paris b, Natasha A. Czarny a, Merrilee S. Harris a, Frank C. Molinia c, David A. Taggart d, Camryn D. Allen e, Stephen D. Johnston e a School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia b Department of Equine Sciences, Faculty of Veterinary Medicine, Universiteit Utrecht, 3584 CM Utrecht, The Netherlands c Landcare Research, Private Bag 92170, Auckland 1142, New Zealand d Royal Zoological Society of South Australia, Frome Rd, Adelaide, SA 5000, Australia e School of Animal Studies, The University of Queensland, Gatton 4343, Australia Abstract Assisted breeding technology (ART), including artificial insemination (AI), has the potential to advance the conservation and welfare of marsupials. Many of the challenges facing AI and ART for marsupials are shared with other wild species. However, the marsupial mode of reproduction and development also poses unique challenges and opportunities. For the vast majority of marsupials, there is a dearth of knowledge regarding basic reproductive biology to guide an AI strategy. For threatened or endangered species, only the most basic reproductive information is available in most cases, if at all. Artificial insemination has been used to produce viable young in two marsupial species, the koala and tammar wallaby. However, in these species the timing of ovulation can be predicted with considerably more confidence than in any other marsupial. -
On the Evolution of Kangaroos and Their Kin (Family Macropodidae) Using Retrotransposons, Nuclear Genes and Whole Mitochondrial Genomes
ON THE EVOLUTION OF KANGAROOS AND THEIR KIN (FAMILY MACROPODIDAE) USING RETROTRANSPOSONS, NUCLEAR GENES AND WHOLE MITOCHONDRIAL GENOMES William George Dodt B.Sc. (Biochemistry), B.Sc. Hons (Molecular Biology) Principal Supervisor: Dr Matthew J Phillips (EEBS, QUT) Associate Supervisor: Dr Peter Prentis (EEBS, QUT) External Supervisor: Dr Maria Nilsson-Janke (Senckenberg Biodiversity and Research Centre, Frankfurt am Main) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Science and Engineering Faculty Queensland University of Technology 2018 1 Keywords Adaptive radiation, ancestral state reconstruction, Australasia, Bayesian inference, endogenous retrovirus, evolution, hybridization, incomplete lineage sorting, incongruence, introgression, kangaroo, Macropodidae, Macropus, mammal, marsupial, maximum likelihood, maximum parsimony, molecular dating, phylogenetics, retrotransposon, speciation, systematics, transposable element 2 Abstract The family Macropodidae contains the kangaroos, wallaroos, wallabies and several closely related taxa that occupy a wide variety of habitats in Australia, New Guinea and surrounding islands. This group of marsupials is the most species rich family within the marsupial order Diprotodontia. Despite significant investigation from previous studies, much of the evolutionary history of macropodids (including their origin within Diprotodontia) has remained unclear, in part due to an incomplete early fossil record. I have utilized several forms of molecular sequence data to shed