CNS4+ Bookfile.Indb

Total Page:16

File Type:pdf, Size:1020Kb

CNS4+ Bookfile.Indb Contents WHO classifi cation 10 Anaplastic ganglioglioma 141 Introduction: WHO classifi cation and grading of tumours Dysplastic cerebellar gangliocytoma of the central nervous system 12 ( Lhermitte–Duclos disease) 142 Desmoplastic infantile astrocytoma and ganglioglioma 144 1 Diffuse astrocytic and oligodendroglial tumours 15 Papillary glioneuronal tumour 147 Introduction 16 Rosette-forming glioneuronal tumour 150 Diffuse astrocytoma, IDH-mutant 18 Diffuse leptomeningeal glioneuronal tumour 152 Gemistocytic astrocytoma, IDH-mutant 22 Central neurocytoma 156 Diffuse astrocytoma, IDH-wildtype 23 Extraventricular neurocytoma 159 Diffuse astrocytoma, NOS 23 Cerebellar liponeurocytoma 161 Anaplastic astrocytoma, IDH-mutant 24 Paraganglioma 164 Anaplastic astrocytoma, IDH-wildtype 27 Anaplastic astrocytoma, NOS 27 7 Tumours of the pineal region 169 Glioblastoma, IDH-wildtype 28 Pineocytoma 170 Giant cell glioblastoma 46 Pineal parenchymal tumour of intermediate differentiation 173 Gliosarcoma 48 Pineoblastoma 176 Epithelioid glioblastoma 50 Papillary tumour of the pineal region 180 Glioblastoma, IDH-mutant 52 Glioblastoma, NOS 56 8 Embryonal tumours 183 Diffuse midline glioma, H3 K27M–mutant 57 Medulloblastoma 184 Oligodendroglioma, IDH-mutant and 1p/19q-codeleted 60 Medulloblastoma, NOS 186 Oligodendroglioma, NOS 69 Medulloblastomas, genetically defi ned 188 Anaplastic oligodendroglioma, IDH-mutant and Medulloblastoma, WNT-activated 188 1p/19q-codeleted 70 Medulloblastoma, SHH-activated and TP53-mutant 190 Anaplastic oligodendroglioma, NOS 74 Medulloblastoma, SHH-activated and TP53-wildtype 190 Oligoastrocytoma, NOS 75 Medulloblastoma, non-WNT/non-SHH 193 Anaplastic oligoastrocytoma, NOS 76 Medulloblastomas, histologically defi ned 194 Medulloblastoma, classic 194 2 Other astrocytic tumours 79 Desmoplastic/nodular medulloblastoma 195 Pilocytic astrocytoma 80 Medulloblastoma with extensive nodularity 198 Pilomyxoid astrocytoma 88 Large cell / anaplastic medulloblastoma 200 Subependymal giant cell astrocytoma 90 Embryonal tumour with multilayered rosettes, Pleomorphic xanthoastrocytoma 94 C19MC-altered 201 Anaplastic pleomorphic xanthoastrocytoma 98 Embryonal tumour with multilayered rosettes, NOS 205 Other CNS embryonal tumours 206 3 Ependymal tumours 101 Medulloepithelioma 207 Subependymoma 102 CNS neuroblastoma 207 Myxopapillary ependymoma 104 CNS ganglioneuroblastoma 207 Ependymoma 106 CNS embryonal tumour, NOS 208 Papillary ependymoma 111 Atypical teratoid/rhabdoid tumour 209 Clear cell ependymoma 111 CNS embryonal tumour with rhabdoid features 212 Tanycytic ependymoma 111 Ependymoma, RELA fusion–positive 112 9 Tumours of the cranial and paraspinal nerves 213 Anaplastic ependymoma 113 Schwannoma 214 Cellular schwannoma 216 4 Other gliomas 115 Plexiform schwannoma 217 Chordoid glioma of the third ventricle 116 Melanotic schwannoma 218 Angiocentric glioma 119 Neurofi broma 219 Astroblastoma 121 Atypical neurofi broma 220 Plexiform neurofi broma 220 5 Choroid plexus tumours 123 Perineurioma 222 Choroid plexus papilloma 124 Hybrid nerve sheath tumours 224 Atypical choroid plexus papilloma 126 Malignant peripheral nerve sheath tumour (MPNST) 226 Choroid plexus carcinoma 128 MPNST with divergent differentiation 227 Epithelioid MPNST 228 6 Neuronal and mixed neuronal–glial tumours 131 MPNST with perineurial differentiation 228 Dysembryoplastic neuroepithelial tumour 132 Gangliocytoma 136 10 Meningiomas 231 Ganglioglioma 138 Meningioma 232 Meningioma variants 237 Intravascular large B-cell lymphoma 276 Meningothelial meningioma 237 Miscellaneous rare lymphomas in the CNS 276 Fibrous meningioma 237 Low-grade B-cell lymphomas 276 Transitional meningioma 238 T-cell and NK/T-cell lymphomas 276 Psammomatous meningioma 238 Anaplastic large cell lymphoma (ALK+/ALK–) 277 Angiomatous meningioma 238 MALT lymphoma of the dura 277 Microcystic meningioma 239 Secretory meningioma 239 14 Histiocytic tumours 279 Lymphoplasmacyte-rich meningioma 240 Langerhans cell histiocytosis 280 Metaplastic meningioma 240 Erdheim–Chester disease 281 Chordoid meningioma 240 Rosai–Dorfman disease 282 Clear cell meningioma 241 Juvenile xanthogranuloma 282 Atypical meningioma 241 Histiocytic sarcoma 283 Papillary meningioma 242 Rhabdoid meningioma 243 15 Germ cell tumours 285 Anaplastic (malignant) meningioma 244 Germinoma 288 Embryonal carcinoma 289 11 Mesenchymal, non-meningothelial tumours 247 Yolk sac tumour 290 Solitary fi brous tumour / haemangiopericytoma 249 Choriocarcinoma 290 Haemangioblastoma 254 Teratoma 291 Haemangioma 258 Mature teratoma 291 Epithelioid haemangioendothelioma 258 Immature teratoma 291 Angiosarcoma 259 Teratoma with malignant transformation 291 Kaposi sarcoma 259 Mixed germ cell tumour 291 Ewing sarcoma / peripheral primitive neuroectodermal tumour 259 16 Familial tumour syndromes 293 Lipoma 260 Neurofi bromatosis type 1 294 Angiolipoma 260 Neurofi bromatosis type 2 297 Hibernoma 260 Schwannomatosis 301 Liposarcoma 260 Von Hippel–Lindau disease 304 Desmoid-type fi bromatosis 260 Tuberous sclerosis 306 Myofi broblastoma 260 Li–Fraumeni syndrome 310 Infl ammatory myofi broblastic tumour 261 Cowden syndrome 314 Benign fi brous histiocytoma 261 Turcot syndrome 317 Fibrosarcoma 261 Mismatch repair cancer syndrome 317 Undifferentiated pleomorphic sarcoma / malignant Familial adenomatous polyposis 318 fi brous histiocytoma 261 Naevoid basal cell carcinoma syndrome 319 Leiomyoma 262 Rhabdoid tumour predisposition syndrome 321 Leiomyosarcoma 262 Rhabdomyoma 262 17 Tumours of the sellar region 323 Rhabdomyosarcoma 262 Craniopharyngioma 324 Chondroma 262 Adamantinomatous craniopharyngioma 327 Chondrosarcoma 263 Papillary craniopharyngioma 328 Osteoma 264 Granular cell tumour of the sellar region 329 Osteochondroma 264 Pituicytoma 332 Osteosarcoma 264 Spindle cell oncocytoma 334 12 Melanocytic tumours 265 18 Metastatic tumours 337 Meningeal melanocytosis 267 Meningeal melanomatosis 267 Contributors 342 Meningeal melanocytoma 268 Declaration of interest statements 349 Meningeal melanoma 269 IARC/WHO Committee for ICD-O 350 Sources of fi gures and tables 351 13 Lymphomas 271 References 356 Diffuse large B-cell lymphoma of the CNS 272 Subject index 402 Corticoid-mitigated lymphoma 275 List of abbreviations 408 Sentinel lesions 275 Immunodefi ciency-associated CNS lymphomas 275 AIDS-related diffuse large B-cell lymphoma 275 EBV+ diffuse large B-cell lymphoma, NOS 276 Lymphomatoid granulomatosis 276.
Recommended publications
  • Neurofibromatosis Type 2 (NF2)
    International Journal of Molecular Sciences Review Neurofibromatosis Type 2 (NF2) and the Implications for Vestibular Schwannoma and Meningioma Pathogenesis Suha Bachir 1,† , Sanjit Shah 2,† , Scott Shapiro 3,†, Abigail Koehler 4, Abdelkader Mahammedi 5 , Ravi N. Samy 3, Mario Zuccarello 2, Elizabeth Schorry 1 and Soma Sengupta 4,* 1 Department of Genetics, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; [email protected] (S.B.); [email protected] (E.S.) 2 Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA; [email protected] (S.S.); [email protected] (M.Z.) 3 Department of Otolaryngology, University of Cincinnati, Cincinnati, OH 45267, USA; [email protected] (S.S.); [email protected] (R.N.S.) 4 Department of Neurology, University of Cincinnati, Cincinnati, OH 45267, USA; [email protected] 5 Department of Radiology, University of Cincinnati, Cincinnati, OH 45267, USA; [email protected] * Correspondence: [email protected] † These authors contributed equally. Abstract: Patients diagnosed with neurofibromatosis type 2 (NF2) are extremely likely to develop meningiomas, in addition to vestibular schwannomas. Meningiomas are a common primary brain tumor; many NF2 patients suffer from multiple meningiomas. In NF2, patients have mutations in the NF2 gene, specifically with loss of function in a tumor-suppressor protein that has a number of synonymous names, including: Merlin, Neurofibromin 2, and schwannomin. Merlin is a 70 kDa protein that has 10 different isoforms. The Hippo Tumor Suppressor pathway is regulated upstream by Merlin. This pathway is critical in regulating cell proliferation and apoptosis, characteristics that are important for tumor progression.
    [Show full text]
  • Central Nervous System Cancers Panel Members Can Be Found on Page 1151
    1114 NCCN David Tran, MD, PhD; Nam Tran, MD, PhD; Frank D. Vrionis, MD, MPH, PhD; Patrick Y. Wen, MD; Central Nervous Nicole McMillian, MS; and Maria Ho, PhD System Cancers Overview In 2013, an estimated 23,130 people in the United Clinical Practice Guidelines in Oncology States will be diagnosed with primary malignant brain Louis Burt Nabors, MD; Mario Ammirati, MD, MBA; and other central nervous system (CNS) neoplasms.1 Philip J. Bierman, MD; Henry Brem, MD; Nicholas Butowski, MD; These tumors will be responsible for approximately Marc C. Chamberlain, MD; Lisa M. DeAngelis, MD; 14,080 deaths. The incidence of primary brain tumors Robert A. Fenstermaker, MD; Allan Friedman, MD; Mark R. Gilbert, MD; Deneen Hesser, MSHSA, RN, OCN; has been increasing over the past 30 years, especially in Matthias Holdhoff, MD, PhD; Larry Junck, MD; elderly persons.2 Metastatic disease to the CNS occurs Ronald Lawson, MD; Jay S. Loeffler, MD; Moshe H. Maor, MD; much more frequently, with an estimated incidence ap- Paul L. Moots, MD; Tara Morrison, MD; proximately 10 times that of primary brain tumors. An Maciej M. Mrugala, MD, PhD, MPH; Herbert B. Newton, MD; Jana Portnow, MD; Jeffrey J. Raizer, MD; Lawrence Recht, MD; estimated 20% to 40% of patients with systemic cancer Dennis C. Shrieve, MD, PhD; Allen K. Sills Jr, MD; will develop brain metastases.3 Abstract Please Note Primary and metastatic tumors of the central nervous system are The NCCN Clinical Practice Guidelines in Oncology a heterogeneous group of neoplasms with varied outcomes and (NCCN Guidelines®) are a statement of consensus of the management strategies.
    [Show full text]
  • Malignant Glioma Arising at the Site of an Excised Cerebellar Hemangioblastoma After Irradiation in a Von Hippel-Lindau Disease Patient
    DOI 10.3349/ymj.2009.50.4.576 Case Report pISSN: 0513-5796, eISSN: 1976-2437 Yonsei Med J 50(4): 576-581, 2009 Malignant Glioma Arising at the Site of an Excised Cerebellar Hemangioblastoma after Irradiation in a von Hippel-Lindau Disease Patient Na-Hye Myong1 and Bong-Jin Park2 1Department of Pathology, Dankook University College of Medicine, Cheonan; 2Department of Neurosurgery, Kyunghee University Hospital, Seoul, Korea. We describe herein a malignant glioma arising at the site of the resected hemangioblastoma after irradiation in a patient with von Hippel-Lindau disease (VHL). The patient was a 25 year-old male with multiple heman- gioblastomas at the cerebellum and spinal cord, multiple pancreatic cysts and a renal cell carcinoma; he was diagnosed as having VHL disease. The largest hemangioblastoma at the right cerebellar hemisphere was completely removed, and he received high-dose irradiation postoperatively. The tumor recurred at the same site 7 years later, which was a malignant glioma with no evidence of hemangioblastoma. The malignant glioma showed molecular genetic profiles of radiation-induced tumors because of its diffuse p53 immunostaining and the loss of p16 immunoreactivity. The genetic study to find the loss of heterozygosity (LOH) of VHL gene revealed that only the cerebellar hemangioblastoma showed allelic losses for the gene. To the best of our knowledge, this report is the first to show a malignant glioma that developed in a patient with VHL disease after radiation therapy at the site of an excised hemangioblastoma. This report also suggests that radiation therapy should be performed very carefully in VHL patients with hemangioblastomas.
    [Show full text]
  • Information About Mosaic Neurofibromatosis Type 2 (NF2)
    Information about mosaic Neurofibromatosis type 2 (NF2) NF2 occurs because of a mutation (change) in the NF2 gene. When this change is present at the time of conception the changed gene will be present in all the cells of the baby. When this mutation occurs later in the development of the forming embryo, the baby will go on to have a mix of cells: some with the “normal” genetic information and some with the changed information. This mix of cells is called mosaicism. Approximately half the people who have a diagnosis of NF2 have inherited the misprinted NF2 gene change from their mother or father who will also have NF2. They will have that misprinted gene in all the cells of their body. When they have their children, there will be a 1 in 2 chance of passing on NF2 to each child they have. However about half of people with NF2 are the first person in the family to be affected. They have no family history and have not inherited the condition from a parent. When doctors studied this group of patients more closely they noticed certain characteristics. Significantly they observed that fewer children had inherited NF2 than expected some people in this group had relatively mild NF2 NF2 tumours in some patients tended to grow on one side of their body rather than both sides that when a blood sample was tested to identify the NF2 gene, the gene change could not be found in 30-40% of people This lead researchers to conclude that this group of people were most likely to be mosaic for NF2 i.e.
    [Show full text]
  • Simultaneous Neurofibroma and Schwannoma of the Sciatic Nerve
    Simultaneous Neurofibroma and Schwannoma of the Sciatic Nerve 1 4 1 1 2 3 1 S. A. Sintzoff, Jr.,I.5 W . 0. Bank, · P. A. Gevenois, C. Matos, J. Noterman, J. Flament-Durand, and J. Struyven Summary: The authors report a case of simultaneously occur­ MR imaging was performed on a 0.5-T system (Gyro­ ring neurofibroma and schwannoma of the sciatic nerve and scan T5, Philips Medical Systems, Eindhoven, The Neth­ discuss the complementary aspects of MR and OS. The Schwan­ erlands) using a wrap-around knee surface coil in order to norna was well-defined and showed distal enhancement on better define the relationships between the tumors and the sonographic evaluation, whereas the neurofibroma was ill-de­ nerve. Each tumor was isointense to the normal nerve on fined; both tumors were hypoechoic. Tl- and T2-weighted MR T1-weighted images and hyperintense to it on proton Images revealed similar signal characteristics of the two tumors, density and T2-weighted images (Fig. 2A-2C). After intra­ but Intense enhancement following administration of gadolin­ venous gadolinium-DTPA injection, the distal mass showed ium-DTPA distinguished the schwannoma from the neurofi­ intense enhancement, conserving a thin hypointense border broma. (Fig. 2D). Physical and neurologic examination, MR of the central nervous system and skeletal radiographs failed to Index terms: Nerves, sciatic; Neuroma; Schwannoma demonstrate any additional lesions, permitting the reason­ able exclusion of neurofibromatosis types 1 and 2. Schwannomas and neurofibromas are com­ Surgical exposure demonstrated the two tumors on the external popliteal nerve (Fig. 3). The distal tumor could be (1, mon peripheral nerve neoplasms 2).
    [Show full text]
  • Charts Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart
    Charts Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart Glial Tumor Neuronal and Neuronal‐ Ependymomas glial Neoplasms Subependymoma Subependymal Giant (9383/1) Cell Astrocytoma(9384/1) Myyppxopapillar y Desmoplastic Infantile Ependymoma Astrocytoma (9412/1) (9394/1) Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart Glial Tumor Neuronal and Neuronal‐ Ependymomas glial Neoplasms Subependymoma Subependymal Giant (9383/1) Cell Astrocytoma(9384/1) Myyppxopapillar y Desmoplastic Infantile Ependymoma Astrocytoma (9412/1) (9394/1) Use this chart to code histology. The tree is arranged Chart Instructions: Neuroepithelial in descending order. Each branch is a histology group, starting at the top (9503) with the least specific terms and descending into more specific terms. Ependymal Embryonal Pineal Choro id plexus Neuronal and mixed Neuroblastic Glial Oligodendroglial tumors tumors tumors tumors neuronal-glial tumors tumors tumors tumors Pineoblastoma Ependymoma, Choroid plexus Olfactory neuroblastoma Oligodendroglioma NOS (9391) (9362) carcinoma Ganglioglioma, anaplastic (9522) NOS (9450) Oligodendroglioma (9390) (9505 Olfactory neurocytoma Ganglioglioma, malignant (()9521) anaplastic (()9451) Anasplastic ependymoma (9505) Olfactory neuroepithlioma Oligodendroblastoma (9392) (9523) (9460) Papillary ependymoma (9393) Glioma, NOS (9380) Supratentorial primitive Atypical EdEpendymo bltblastoma MdllMedulloep ithliithelioma Medulloblastoma neuroectodermal tumor tetratoid/rhabdoid (9392) (9501) (9470) (PNET) (9473) tumor
    [Show full text]
  • Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
    Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma,
    [Show full text]
  • A Rare Disease in Pediatric Patients
    Cartas ao Editor Jornal de Pediatria - Vol. 85, Nº 3, 2009 277 Resposta do autor Gliomatose leptomeníngea primária difusa: uma doença rara em pacientes pediátricos Prezado Editor, Recebemos com prazer os comentários acima. Os autores esclarecem que, em momento algum, focaram suas preo- Prezado Editor, cupações em critérios para definir síndrome metabólica, até mesmo porque se ela existe1, não existem critérios de consenso O recente relato de caso de Val Filho & Avelar1 sobre um para o diagnóstico em adultos2,3 tampouco em adolescentes. raro tumor cerebral pediátrico é interessante e merece grande Preocupamo-nos sim, em mostrar a presença de fatores de consideração no contexto da literatura publicada sobre esse risco em uma amostra selecionada ao acaso, que eles existem assunto, já que representa um evento muito incomum. Em em proporções tais que podem até ser agrupados, e, por um nome da precisão científica, devemos, portanto, fazer uma dos muitos critérios sugeridos na literatura, com valores de importante correção no que se refere ao diagnóstico. referências pediátricos, dar origem ao que se denomina sín- Os autores fizeram uma revisão breve e adequada sobre a drome metabólica. Não nos propusemos, portanto, a estudar gliomatose cerebral; uma doença rara, classificada pela edição associações entre fatores de risco. de 2007 da Organização Mundial da Saúde (OMS)2 como uma Os autores acreditam que discutir critérios para o que não lesão de grau III com prognóstico reservado. A gliomatose 2,3 existe consenso é desfocar a atenção da gravidade
    [Show full text]
  • 6 Magnetic Resonance Imaging
    Chapter 6 / MRI 105 6 Magnetic Resonance Imaging Paul M. Ruggieri Summary Magnetic resonance (MR) is clearly the accepted imaging standard for the preliminary evalua- tion, peri-operative management, and routine longitudinal follow-up of patients with high-grade glio- mas (HGG). The purpose of this chapter is to review the imaging characteristics of HGG using conventional MR imaging techniques. Whereas the newer techniques of MR diffusion, perfusion, diffusion tensor imaging, and MR spectroscopy will be included as part of this discussion of the high grade neoplasms, the detailed concepts of such studies will be discussed elsewhere in this text. Key Words: MR imaging; anaplastic astrocytoma; glioblastoma multiforme; gliosarcoma; gliomatosis cerebri; oligodendroglioma. INTRODUCTION Magnetic resonance (MR) is clearly the accepted imaging standard for the preliminary evaluation, peri-operative management, and routine longitudinal follow-up of patients with high-grade gliomas (HGG). The purpose of this chapter is to review the imaging characteristics of HGG using conventional MR imaging techniques. Whereas the newer techniques of MR diffusion, perfusion, diffusion tensor imaging, and MR spectroscopy will be included as part of this discussion of the high grade neoplasms, the detailed concepts of such studies will be discussed elsewhere in this text. In general terms, high-grade glial neoplasms are conventionally thought of as infiltrative parenchymal masses that are hyperintense on FLAIR fluid-attenuated inversion recovery (FLAIR) and T2-weighted images, hypointense on unenhanced T1-weighted images, may or may not extend into the corpus callosum, are surrounded by extensive vasogenic edema, and prominently enhance following gadolinium administration. It must be pointed out that this description is clearly just a generalization as many high-grade neoplasms clearly do not follow these “rules” and some of these characteristics may even be seen in low-grade neoplasms.
    [Show full text]
  • Risk-Adapted Therapy for Young Children with Embryonal Brain Tumors, High-Grade Glioma, Choroid Plexus Carcinoma Or Ependymoma (Sjyc07)
    SJCRH SJYC07 CTG# - NCT00602667 Initial version, dated: 7/25/2007, Resubmitted to CPSRMC 9/24/2007 and 10/6/2007 (IRB Approved: 11/09/2007) Activation Date: 11/27/2007 Amendment 1.0 dated January 23, 2008, submitted to CPSRMC: January 23, 2008, IRB Approval: March 10, 2008 Amendment 2.0 dated April 16, 2008, submitted to CPSRMC: April 16, 2008, (IRB Approval: May 13, 2008) Revision 2.1 dated April 29, 2009 (IRB Approved: April 30, 2009 ) Amendment 3.0 dated June 22, 2009, submitted to CPSRMC: June 22, 2009 (IRB Approved: July 14, 2009) Activated: August 11, 2009 Amendment 4.0 dated March 01, 2010 (IRB Approved: April 20, 2010) Activated: May 3, 2010 Amendment 5.0 dated July 19, 2010 (IRB Approved: Sept 17, 2010) Activated: September 24, 2010 Amendment 6.0 dated August 27, 2012 (IRB approved: September 24, 2012) Activated: October 18, 2012 Amendment 7.0 dated February 22, 2013 (IRB approved: March 13, 2013) Activated: April 4, 2013 Amendment 8.0 dated March 20, 2014. Resubmitted to IRB May 20, 2014 (IRB approved: May 22, 2014) Activated: May 30, 2014 Amendment 9.0 dated August 26, 2014. (IRB approved: October 14, 2014) Activated: November 4, 2014 Un-numbered revision dated March 22, 2018. (IRB approved: March 27, 2018) Un-numbered revision dated October 22, 2018 (IRB approved: 10-24-2018) RISK-ADAPTED THERAPY FOR YOUNG CHILDREN WITH EMBRYONAL BRAIN TUMORS, HIGH-GRADE GLIOMA, CHOROID PLEXUS CARCINOMA OR EPENDYMOMA (SJYC07) Principal Investigator Amar Gajjar, M.D. Division of Neuro-Oncology Department of Oncology Section Coordinators David Ellison, M.D., Ph.D.
    [Show full text]
  • The New WHO Classification of Brain Tumors and Molecular Profiling in the Diagnosis of Gliomas
    The New WHO Classification of Brain Tumors and Molecular Profiling in the Diagnosis of Gliomas Aivi Nguyen, MD Neuropathology Fellow Division of Neuropathology Center for Personalized Diagnosis (CPD) Glial neoplasms – infiltrating gliomas Astrocytic tumors • Diffuse astrocytoma II • Anaplastic astrocytoma III • Glioblastoma • Giant cell glioblastoma IV • Gliosarcoma Oligodendroglial tumors • Oligodendroglioma II • Anaplastic oligodendroglioma III Oligoastrocytic tumors • Oligoastrocytoma II • Anaplastic oligoastrocytoma III Courtesy of Dr. Maria Martinez-Lage 2 2016 3 The 2016 WHO classification of tumours of the central nervous system Louis et al., Acta Neuropathologica 2016 4 Talk Outline Genetic, epigenetic and metabolic changes in gliomas • Mechanisms/tumor biology • Incorporation into daily practice and WHO classification Penn’s Center for Personalized Diagnostics • Tests performed • Results and observations to date Summary 5 The 2016 WHO classification of tumours of the central nervous system Louis et al., Acta Neuropathologica 2016 6 Mechanism of concurrent 1p and 19q chromosome loss in oligodendroglioma lost FUBP1 CIC Whole-arm translocation Griffin et al., Journal of Neuropathology and Experimental Neurology 2006 7 Oligodendroglioma: 1p19q co-deletion Since the 1990s Diagnostic Prognostic Predictive Li et al., Int J Clin Exp Pathol 2014 8 Mutations of Selected Genes in Glioma Subtypes GBM Astrocytoma Oligodendroglioma Oligoastrocytoma Killela et al., PNAS 2013 9 Escaping Senescence Telomerase reverse transcriptase gene
    [Show full text]
  • Malignant CNS Solid Tumor Rules
    Malignant CNS and Peripheral Nerves Equivalent Terms and Definitions C470-C479, C700, C701, C709, C710-C719, C720-C725, C728, C729, C751-C753 (Excludes lymphoma and leukemia M9590 – M9992 and Kaposi sarcoma M9140) Introduction Note 1: This section includes the following primary sites: Peripheral nerves C470-C479; cerebral meninges C700; spinal meninges C701; meninges NOS C709; brain C710-C719; spinal cord C720; cauda equina C721; olfactory nerve C722; optic nerve C723; acoustic nerve C724; cranial nerve NOS C725; overlapping lesion of brain and central nervous system C728; nervous system NOS C729; pituitary gland C751; craniopharyngeal duct C752; pineal gland C753. Note 2: Non-malignant intracranial and CNS tumors have a separate set of rules. Note 3: 2007 MPH Rules and 2018 Solid Tumor Rules are used based on date of diagnosis. • Tumors diagnosed 01/01/2007 through 12/31/2017: Use 2007 MPH Rules • Tumors diagnosed 01/01/2018 and later: Use 2018 Solid Tumor Rules • The original tumor diagnosed before 1/1/2018 and a subsequent tumor diagnosed 1/1/2018 or later in the same primary site: Use the 2018 Solid Tumor Rules. Note 4: There must be a histologic, cytologic, radiographic, or clinical diagnosis of a malignant neoplasm /3. Note 5: Tumors from a number of primary sites metastasize to the brain. Do not use these rules for tumors described as metastases; report metastatic tumors using the rules for that primary site. Note 6: Pilocytic astrocytoma/juvenile pilocytic astrocytoma is reportable in North America as a malignant neoplasm 9421/3. • See the Non-malignant CNS Rules when the primary site is optic nerve and the diagnosis is either optic glioma or pilocytic astrocytoma.
    [Show full text]