Tsukushi Functions As a Wnt Signaling Inhibitor by Competing with Wnt2b for Binding to Transmembrane Protein Frizzled4

Total Page:16

File Type:pdf, Size:1020Kb

Tsukushi Functions As a Wnt Signaling Inhibitor by Competing with Wnt2b for Binding to Transmembrane Protein Frizzled4 Tsukushi functions as a Wnt signaling inhibitor by competing with Wnt2b for binding to transmembrane protein Frizzled4 Kunimasa Ohtaa,b,1,2, Ayako Itoa,c,1, Sei Kuriyamaa,d,3, Giuseppe Lupoe,f, Mitsuko Kosakag,4, Shin-ichi Ohnumah, Shinichi Nakagawai, and Hideaki Tanakaa,c,d aDepartment of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; bPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; cGlobal Center of Excellence, Kumamoto University, Kumamoto 860-8556, Japan; d21st Century Center of Excellence, Kumamoto University, Kumamoto 860-8556, Japan; eDepartment of Biology and Biotechnology “C. Darwin,” University of Rome “La Sapienza,” 00185 Rome, Italy; fIstituto Pasteur–Fondazione Cenci Bolognetti, 00185, Rome, Italy; gRIKEN Center for Developmental Biology, Kobe 650-0047, Japan; hInstitute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and IRIKEN Advanced Science Institute, Nakagawa RNA Biology Laboratory, Saitama 351-0198, Japan Edited* by Lynn T. Landmesser, Case Western Reserve University, Cleveland, OH, and approved July 8, 2011 (received for review January 11, 2011) The Wnt signaling pathway is essential for the development of We previously described the isolation of Tsukushi (TSK) protein diverse tissues during embryogenesis. Signal transduction is acti- isoforms (13), soluble molecules belonging to the small leucine- vated by the binding of Wnt proteins to the type I receptor low- rich proteoglycan (SLRP) family (14), and showed that they work density lipoprotein receptor–related protein 5/6 and the seven-pass as extracellular modulators of pivotal signaling cascades during transmembrane protein Frizzled (Fzd), which contains a Wnt- early embryonic development in chicks and frogs (13, 15–17). We binding site in the form of a cysteine-rich domain. Known extracel- also observed that TSK rescues Xenopus embryos from the lular antagonists of the Wnt signaling pathway can be subdivided hyperdorsalized effects induced by Wnts (Fig. S1). In this study, we into two broad classes depending on whether they bind primarily to show that TSK functions as a novel Wnt signaling inhibitor by Wntortolow-densitylipoproteinreceptor–related protein 5/6. We competing with Wnt2b for binding to Fzd4. Our biochemical show that the secreted protein Tsukushi (TSK) functions as a Wnt analysis demonstrates direct binding between TSK and Fzd4 with −10 signaling inhibitor by binding directly to the cysteine-rich domain of an affinity of 2.3 × 10 M. Using overexpression assays in chicken − Fzd4 with an affinity of 2.3 × 10 10 M and competing with Wnt2b. In embryonic retinal cells, we found that TSK inhibits Wnt2b activity the developing chick eye, TSK is expressed in the ciliary/iris epithe- both in vitro and in vivo and represses Wnt2b-dependent induction lium, whereas Wnt2b is expressed in the adjacent anterior rim of the of peripheral eye character. Conversely, TSK inactivation results in optic vesicle, where it controls the differentiation of peripheral eye expansion of the CB in mice. Consequently, TSK is an important structures, such as the ciliary body and iris. TSK overexpression ef- component of the molecular pathways controlling retinal and pe- fectively antagonizes Wnt2b signaling in chicken embryonic retinal ripheral eye development. fi cells both in vivo and in vitro and represses Wnt-dependent speci - Results cation of peripheral eye fates. Conversely, targeted inactivation of the TSK gene in mice causes expansion of the ciliary body and up- Expression of TSK at the Peripheral Chick Retina. There is substantial regulation of Wnt2b and Fzd4 expression in the developing periph- evidence that the Wnt signaling pathway controls the development eral eye. Thus, we uncover a crucial role for TSK as a Wnt signaling of peripheral eye structures in several animal models (8, 12, 18– inhibitor that regulates peripheral eye formation. 20). TSK is expressed in the peripheral region of the developing chick eye at E6 (Fig. S2 A and B). As shown in Fig. S2C,Wnt2b eye development | signaling modulator | small leucine-rich proteoglycan expression is localized to the anteriormost tip of the optic cup, whereas chick TSKB (C-TSKB) (15) is expressed in the adjacent ciliary/iris epithelium (Fig. S2B). Comparing C-TSKB expression nt signaling is involved in multiple developmental events with the expression pattern of collagen IX (Fig. S2F), a marker of during embryogenesis and it has also been implicated in W the neighboring ciliary/iris epithelium (8, 21), shows that C-TSKB adult tissue homeostasis (1, 2). Wnt proteins act on target cells by binding to the Frizzled (Fzd)/low-density lipoprotein receptor– expression does not extend into the ciliary epithelium region. Other Wnt ligands, such as Wnt3a and Wnt6, are not transcribed related protein (LRP) complex at the cell surface, which trans- G duces Wnt signals into the target cells (3, 4). Extracellular antag- in the developing peripheral eye (Fig. S2 ). Fzd1, 3, and 4 are onists of the Wnt signaling pathway can be subdivided into two expressed in both the ciliary and the iris epithelia, whereas Fzd5 is D E G broad classes: the secreted Fzd-related protein class and the not expressed in either of these areas (Fig. S2 , ,and ). These Dikkopf class (5). The members of the secreted Fzd-related pro- expression patterns suggest that Wnt2b and C-TSKB could func- tein class bind directly to Wnts and alter their ability to bind to the Wnt receptor complex, whereas members of the Dikkopf family inhibit Wnt signaling by binding to the LRP5/LRP6 component of Author contributions: K.O., A.I., G.L., S.-i.O., and H.T. designed research; K.O., A.I., and the Wnt receptor complex. A Wnt inhibitor that specifically binds S.K. performed research; M.K. and S.N. contributed new reagents/analytic tools; K.O., A.I., to the Fzd receptor has not yet been identified, however. and S.K. analyzed data; and K.O. and G.L. wrote the paper. The peripheral rim of the optic cup is a unique region of the The authors declare no conflict of interest. developing eye that forms two of the peripheral support tissues, *This Direct Submission article had a prearranged editor. the ciliary body (CB) and the iris (6). These tissues are composed 1K.O. and A.I. contributed equally to this work. of a nonpigmented inner layer, which is continuous with the retina, 2To whom correspondence should be addressed. E-mail: [email protected]. and a pigmented outer layer, which is continuous with the retinal jp. pigmented epithelium (7). Cho and Cepko (8) performed gain-of- 3Present address: Department of Molecular Medicine and Biochemistry, Akita University function analyses in vivo and found that retinal cells exposed to Graduate School of Medicine and Faculty of Medicine, Akita 010-8543, Japan. high levels of Wnt signaling are induced to acquire CB and iris cell 4Present address: Okayama University Graduate School of Medicine, Dentistry and Phar- fates. Thus, Wnt signaling is involved in the differentiation of maceutical Sciences, Okayama 700-8558, Japan. peripheral eye structures, but the molecular interactions involved This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. are not yet clearly understood (8–12). 1073/pnas.1100513108/-/DCSupplemental. 14962e14967 | PNAS | September 6, 2011 | vol. 108 | no. 36 www.pnas.org/cgi/doi/10.1073/pnas.1100513108 Downloaded by guest on September 25, 2021 tionally interact with each other and regulate Fzd-dependent sig- Wnt2b in the chick optic vesicle and observed the effects on the naling in the peripheral eye. proliferation of retinal explants and the expression of the CB marker collagen IX, both of which are stimulated by Wnt2b (22). TSK Inhibits Wnt2b Activity in Vitro. To address whether TSK We first electroporated the optic vesicles of E1.5 chicken embryos functions as a Wnt inhibitor, we co-overexpressed C-TSKB with with a Wnt2b-expressing provirus as described previously (22). We then dissected explants of the electroporated retinal tissues (250 × 250 μm2 surface area) from the central region of E5.5 retinas and cultured them in vitro for 8 d (Fig. 1A). Confirming the results of A 2days 4days layer formation control Wnt2b Wnt2b + C-TSKB B DF GFP C EG BMP7 HKN GFP ILO collagen IX JMP DAPI NEUROSCIENCE Q m) μ 180 * * 150 * 120 90 60 30 Thickness of retinal layer ( 0 Wnt2b C-TSKB control-GFP Wnt2b + C-TSKB Wnt2b + C-TSKB-LRR6Wnt2b + C-TSKB-LRR4Wnt2b + C-TSKB-LRR3Wnt2b + C-TSKB-LRR2 Fig. 1. TSK inhibits Wnt activity in vitro. (A) Schematic of the experimental Fig. 2. TSK inhibits Wnt activity in vivo. (A) Schematic of the experimental procedure. (B–G) BrdU incorporation was increased in the explants expressing procedure. (B–P) Histological sections of central retinal regions from chicken Wnt2b. (B and C) DAPI. (D and E)GFP.(F and G) BrdU. (Scale bar: 100 μm.) (H– embryos electroporated with the indicated DNA constructs plus RCAS:GFP at J) Retinal explants of control (H), Wnt2b- (I), and Wnt2b+C-TSKB–expressing E1.5 and incubated for 6 d in vivo. (B, D, F, H, K,andN) GFP expression. (C, E, chick retinas (J), which were dissected out at E5.5 and cultured for 8 d in vitro and G) Expression of BMP7 detected by in situ hybridization. (I, L, and O)Ex- after electroporation at E1.5. The arrow in H points to an explant immediately pression of collagen IX detected by immunohistochemistry. White arrowheads after dissection. RCAS:GFP was cotransfected to visualize electroporated cells. indicate the immunoreactivity of anti-collagen IX antibody on the choroid. (K–P) Expression of collagen IX in the explants expressing Wnt2b. (K, M,and (J, M,andP) DAPI. Note that the thinning and folding of the retinal epithelium O) DAPI.
Recommended publications
  • Genetic Variants in WNT2B and BTRC Predict Melanoma Survival
    ACCEPTED MANUSCRIPT Genetic Variants in WNT2B and BTRC Predict Melanoma Survival Qiong Shi1, 2, 3, 9, Hongliang Liu2, 3, 9, Peng Han2, 3, 4, 9, Chunying Li1, Yanru Wang2, 3, Wenting Wu5, Dakai Zhu6, Christopher I. Amos6, Shenying Fang7, Jeffrey E. Lee7, Jiali Han5, 8* and Qingyi Wei2, 3* 1Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China; 2Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA, 3Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA, 4Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, China; 5Department of Epidemiology, Fairbanks School of Public Health, Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis,MANUSCRIPT IN 46202, USA 6Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; 7Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. 8Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA 9These authors contributed equally to this work. ACCEPTED *Correspondence: Qingyi Wei, M.D., Ph.D., Duke Cancer Institute, Duke University Medical Center and Department of Medicine, Duke School of Medicine, 905 S LaSalle Street, Durham, NC 27710, USA, Tel.: (919) 660-0562, E-mail: [email protected] and Jiali Han, M.D., Ph.D., 1 _________________________________________________________________________________ This is the author's manuscript of the article published in final edited form as: Shi, Q., Liu, H., Han, P., Li, C., Wang, Y., Wu, W., … Wei, Q.
    [Show full text]
  • The Wnt Signaling Pathway in Tumorigenesis, Pharmacological
    Wang et al. Biomarker Research (2021) 9:68 https://doi.org/10.1186/s40364-021-00323-7 REVIEW Open Access The Wnt signaling pathway in tumorigenesis, pharmacological targets, and drug development for cancer therapy Zhuo Wang1,2†, Tingting Zhao1,2†, Shihui Zhang3, Junkai Wang1, Yunyun Chen1,2, Hongzhou Zhao1,2, Yaxin Yang4, Songlin Shi2, Qiang Chen5 and Kuancan Liu1,2* Abstract Wnt signaling was initially recognized to be vital for tissue development and homeostasis maintenance. Further studies revealed that this pathway is also important for tumorigenesis and progression. Abnormal expression of signaling components through gene mutation or epigenetic regulation is closely associated with tumor progression and poor prognosis in several tissues. Additionally, Wnt signaling also influences the tumor microenvironment and immune response. Some strategies and drugs have been proposed to target this pathway, such as blocking receptors/ligands, targeting intracellular molecules, beta-catenin/TCF4 complex and its downstream target genes, or tumor microenvironment and immune response. Here we discuss the roles of these components in Wnt signaling pathway in tumorigenesis and cancer progression, the underlying mechanisms that is responsible for the activation of Wnt signaling, and a series of drugs targeting the Wnt pathway provide multiple therapeutic values. Although some of these drugs exhibit exciting anti-cancer effect, clinical trials and systematic evaluation should be strictly performed along with multiple-omics technology. Keywords: Wnt signaling, beta-catenin, Epigenetic modification, Tumor microenvironment, Drug development Background polyposis coli (APC), glycogen synthase kinase-3β (GSK- The Wnt signaling cascade is critical for tissue morpho- 3β), Axin, casein kinase 1(CK1). Degradation of beta- genesis, homeostasis, and regeneration.
    [Show full text]
  • Evolutionarily Conserved Tbx5–Wnt2/2B Pathway Orchestrates Cardiopulmonary Development
    Evolutionarily conserved Tbx5–Wnt2/2b pathway orchestrates cardiopulmonary development Jeffrey D. Steimlea,b,c, Scott A. Rankind,e,f,g, Christopher E. Slagleh,i,j,k, Jenna Bekenya,b,c, Ariel B. Rydeena,b,c, Sunny Sun-Kin Chanl,m, Junghun Kweona,b,c, Xinan H. Yanga,b,c, Kohta Ikegamia,b,c, Rangarajan D. Nadadura,b,c, Megan Rowtona,b,c, Andrew D. Hoffmanna,b,c, Sonja Lazarevica,b,c, William Thomasn,o, Erin A. T. Boyle Andersonp, Marko E. Horbn,o, Luis Luna-Zuritaq,r, Robert K. Hom, Michael Kybal,m, Bjarke Jensens, Aaron M. Zornd,e,f,g, Frank L. Conlonh,i,j,k, and Ivan P. Moskowitza,b,c,1 aDepartment of Pediatrics, University of Chicago, Chicago, IL 60637; bDepartment of Pathology, University of Chicago, Chicago, IL 60637; cDepartment of Human Genetics, University of Chicago, Chicago, IL 60637; dCenter for Stem Cell and Organoid Medicine, Cincinnati Children’s Research Foundation, Cincinnati, OH 45229; eDepartment of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229; fDivision of Developmental Biology, Perinatal Institute, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229; gDepartment of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229; hDepartment of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; iDepartment of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; jIntegrative Program for Biological and Genome Sciences, University of North
    [Show full text]
  • Tsukushi Functions As a Wnt Signaling Inhibitor by Competing with Wnt2b for Binding to Transmembrane Protein Frizzled4
    Tsukushi functions as a Wnt signaling inhibitor by competing with Wnt2b for binding to transmembrane protein Frizzled4 Kunimasa Ohtaa,b,1,2, Ayako Itoa,c,1, Sei Kuriyamaa,d,3, Giuseppe Lupoe,f, Mitsuko Kosakag,4, Shin-ichi Ohnumah, Shinichi Nakagawai, and Hideaki Tanakaa,c,d aDepartment of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; bPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; cGlobal Center of Excellence, Kumamoto University, Kumamoto 860-8556, Japan; d21st Century Center of Excellence, Kumamoto University, Kumamoto 860-8556, Japan; eDepartment of Biology and Biotechnology “C. Darwin,” University of Rome “La Sapienza,” 00185 Rome, Italy; fIstituto Pasteur–Fondazione Cenci Bolognetti, 00185, Rome, Italy; gRIKEN Center for Developmental Biology, Kobe 650-0047, Japan; hInstitute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and IRIKEN Advanced Science Institute, Nakagawa RNA Biology Laboratory, Saitama 351-0198, Japan Edited* by Lynn T. Landmesser, Case Western Reserve University, Cleveland, OH, and approved July 8, 2011 (received for review January 11, 2011) The Wnt signaling pathway is essential for the development of We previously described the isolation of Tsukushi (TSK) protein diverse tissues during embryogenesis. Signal transduction is acti- isoforms (13), soluble molecules belonging to the small leucine- vated by the binding of Wnt proteins to the type I receptor low- rich proteoglycan (SLRP) family (14), and showed that they work density lipoprotein receptor–related protein 5/6 and the seven-pass as extracellular modulators of pivotal signaling cascades during transmembrane protein Frizzled (Fzd), which contains a Wnt- early embryonic development in chicks and frogs (13, 15–17).
    [Show full text]
  • Deregulated Wnt/Β-Catenin Program in High-Risk Neuroblastomas Without
    Oncogene (2008) 27, 1478–1488 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ONCOGENOMICS Deregulated Wnt/b-catenin program in high-risk neuroblastomas without MYCN amplification X Liu1, P Mazanek1, V Dam1, Q Wang1, H Zhao2, R Guo2, J Jagannathan1, A Cnaan2, JM Maris1,3 and MD Hogarty1,3 1Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA; 2Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA and 3Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA Neuroblastoma (NB) is a frequently lethal tumor of Introduction childhood. MYCN amplification accounts for the aggres- sive phenotype in a subset while the majority have no Neuroblastoma (NB) is a childhood embryonal malig- consistently identified molecular aberration but frequently nancy arising in the peripheral sympathetic nervous express MYC at high levels. We hypothesized that acti- system. Half of all children with NB present with features vated Wnt/b-catenin (CTNNB1) signaling might account that define their tumorsashigh riskwith poor overall for this as MYC is a b-catenin transcriptional target and survival despite intensive therapy (Matthay et al., 1999). multiple embryonal and neural crest malignancies have A subset of these tumors are characterized by high-level oncogenic alterations in this pathway. NB cell lines without genomic amplification of the MYCN proto-oncogene MYCN amplification express higher levels of MYC and (Matthay et al., 1999) but the remainder have no b-catenin (with aberrant nuclear localization) than MYCN- consistently identified aberration to account for their amplified cell lines.
    [Show full text]
  • Towards an Integrated View of Wnt Signaling in Development Renée Van Amerongen and Roel Nusse*
    HYPOTHESIS 3205 Development 136, 3205-3214 (2009) doi:10.1242/dev.033910 Towards an integrated view of Wnt signaling in development Renée van Amerongen and Roel Nusse* Wnt signaling is crucial for embryonic development in all animal Notably, components at virtually every level of the Wnt signal species studied to date. The interaction between Wnt proteins transduction cascade have been shown to affect both β-catenin- and cell surface receptors can result in a variety of intracellular dependent and -independent responses, depending on the cellular responses. A key remaining question is how these specific context. As we discuss below, this holds true for the Wnt proteins responses take shape in the context of a complex, multicellular themselves, as well as for their receptors and some intracellular organism. Recent studies suggest that we have to revise some of messengers. Rather than concluding that these proteins are shared our most basic ideas about Wnt signal transduction. Rather than between pathways, we instead propose that it is the total net thinking about Wnt signaling in terms of distinct, linear, cellular balance of signals that ultimately determines the response of the signaling pathways, we propose a novel view that considers the receiving cell. In the context of an intact and developing integration of multiple, often simultaneous, inputs at the level organism, cells receive multiple, dynamic, often simultaneous and of both Wnt-receptor binding and the downstream, sometimes even conflicting inputs, all of which are integrated to intracellular response. elicit the appropriate cell behavior in response. As such, the different signaling pathways might thus be more intimately Introduction intertwined than previously envisioned.
    [Show full text]
  • Demineralized Bone Alters Expression of Wnt Network Components During Chondroinduction of Post-Natal fibroblasts Karen E
    OsteoArthritis and Cartilage (2004) 12, 497–505 © 2004 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.joca.2004.02.009 International Cartilage Repair Society Demineralized bone alters expression of Wnt network components during chondroinduction of post-natal fibroblasts Karen E. Yates Ph.D* Department of Orthopedic Surgery, Brigham and Women’s Hospital, and Skeletal Biology Research Center, Massachusetts General Hospital, Boston, USA Summary Objective: The Wnt family of secreted proteins, their receptors (Fzd proteins) and antagonists (secreted Fzd-related proteins, or Sfrp) regulate chondrocyte differentiation and chrondrogenesis during embryonic development. Here, the hypothesis that the Wnt regulatory network contributes to chondrocyte differentiation of post-natal cells was tested in an in vitro model of chondroinduction by demineralized bone powder (DBP). Design: Human dermal fibroblasts (hDFs) were cultured in porous, three-dimensional (3D) collagen sponges with or without chondroinduc- tive DBP. In some experiments, lithium chloride (LiCl), an agonist of the Wnt/-catenin signaling pathway, was added to the culture media. Sponges were cultured for intervals (0.5–21 days) before processing for molecular, histologic, and biochemical analyses. Expression of wnt, fzd, and sfrp genes was characterized by semi-quantitative RT-PCR. Fibroblasts’ contacts with DBP were documented by histology. Accumulation of proteoglycan in extracellular matrix was evaluated by histology (metachromasia in toluidine blue-stained sections) and quantitative immunoassay (chondroitin 4-sulfate ELISA). Results: Expression of 15 wnt, fzd, and sfrp family members was detected in hDFs by RT-PCR. A subset of those genes (wnt2b, wnt5b, wnt10b, fzd6, fzd7) showed altered expression in hDFs exposed to DBP for 3 days.
    [Show full text]
  • Analysis of the Canonical WNT Pathway Simona Giunta Department of Biological Sciences, Brunel University, Uxbridge, Middlesex, UK
    05-giunta 25-02-2010 15:21 Pagina 187 ACTA BIOMED 2009; 80: 187-199 © Mattioli 1885 R EVIEW A gust of WNT: analysis of the canonical WNT pathway Simona Giunta Department of Biological Sciences, Brunel University, Uxbridge, Middlesex, UK Abstract. The Wnt pathway is a signal-transduction cascade that mediates communication between cells; the Wnt pathway is involved in key steps during embryological development and in the maintenance of adult tissue homeostasis. Mutational dysregulation of Wnt cascade components has been observed in diverse hu- man pathological conditions and in oncogenic transformations. For these reasons, the Wnt signalling path- way has acquired growing interest in scientific and medical research over recent years. This review outlines the biochemical and functional features of the Wnt cascade with particular emphasis on a detailed function- al analysis of all key players. In this instance, the regulations of the pathway have also been covered, empha- sizing novelty in this regard. Furthermore, past and present studies on Wnt have been included, as well as a prediction of scientific progress, which may be made in this rapidly evolving field, in the near future; the re- view also embraces considerations on how further understanding of the Wnt pathway will provide important insight into managing human diseases. (www.actabiomedica.it) Key words: Wnt canonical pathway, b-catenin, signal transduction, haematopoietic stem cells, carcinogenesis Introduction molecules which regulate the main steps of embryoge- nesis. Multicellular organisms necessitate a communi- The Wnt family of signalling proteins has been cation system to grow and function; in complex mul- found to be involved in embryonic patterning, in the ticellular organisms, like humans, cell-to-cell commu- homeostasis of adult tissue self-renewal and in the nication becomes the basis of life.
    [Show full text]
  • Transcriptional Mechanisms of WNT5A Based on NF-Κb, Hedgehog, Tgfß, and Notch Signaling Cascades
    763-769 23/4/2009 01:21 ÌÌ Page 763 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 23: 763-769, 2009 763 Transcriptional mechanisms of WNT5A based on NF-κB, Hedgehog, TGFß, and Notch signaling cascades MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center, Tokyo 104-0045, Japan Received March 5, 2009; Accepted April 2, 2009 DOI: 10.3892/ijmm_00000190 Abstract. WNT5A is a cancer-associated gene involved in were found to upregulate WNT5A expression directly through invasion and metastasis of melanoma, breast cancer, pancreatic the Smad complex, and also indirectly through Smad- cancer, and gastric cancer. WNT5A transduces signals through induced CUX1 and MAP3K7-mediated NF-κB. Together Frizzled, ROR1, ROR2 or RYK receptors to ß-catenin-TCF/ these facts indicate that WNT5A is transcribed based on LEF, DVL-RhoA-ROCK, DVL-RhoB-Rab4, DVL-Rac-JNK, multiple mechanisms, such as NF-κB, Hedgehog, TGFß, and DVL-aPKC, Calcineurin-NFAT, MAP3K7-NLK, MAP3K7- Notch signaling cascades. NF-κB, and DAG-PKC signaling cascades in a context- dependent manner. SNAI1 (Snail), CD44, G3BP2, and YAP1 Introduction are WNT5A target genes. We and other groups previously reported that IL6- or LIF-induced signaling through JAK- WNT signaling cascades are involved in a variety of cellular STAT3 signaling cascade is involved in WNT5A upregulation processes during embryogenesis and carcinogenesis (1-4). (STAT3-WNT5A signaling loop). Here, refined integrative Because biological functions of human genes and those of genomic analyses of WNT5A were carried out to elucidate model-animal orthologs are not always conserved due to other mechanisms of WNT5A transcription.
    [Show full text]
  • Downregulation of the Canonical WNT Signaling Pathway by TGF1 Inhibits Photoreceptor Differentiation of Adult Human Müller Glia with Stem Cell Characteristics
    King’s Research Portal DOI: 10.1089/scd.2015.0262 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): Angbohang, A., Wu, N., Charalambous, T., Eastlake, K., Lei, Y., Kim, Y. S., Sun, X. H., & Limb, G. A. (2015). Downregulation of the Canonical WNT Signaling Pathway by TGF1 Inhibits Photoreceptor Differentiation of Adult Human Müller Glia with Stem Cell Characteristics. STEM CELLS AND DEVELOPMENT, 25(1), 1-12. https://doi.org/10.1089/scd.2015.0262 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Single Cell Transcriptomic Analysis of Human Pluripotent Stem Cell Chondrogenesis
    ARTICLE https://doi.org/10.1038/s41467-020-20598-y OPEN Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis Chia-Lung Wu1,2,5,6, Amanda Dicks1,2,3,6, Nancy Steward1,2, Ruhang Tang1,2, Dakota B. Katz1,2,3, ✉ Yun-Rak Choi1,2,4 & Farshid Guilak 1,2,3 The therapeutic application of human induced pluripotent stem cells (hiPSCs) for cartilage regeneration is largely hindered by the low yield of chondrocytes accompanied by unpre- 1234567890():,; dictable and heterogeneous off-target differentiation of cells during chondrogenesis. Here, we combine bulk RNA sequencing, single cell RNA sequencing, and bioinformatic analyses, including weighted gene co-expression analysis (WGCNA), to investigate the gene reg- ulatory networks regulating hiPSC differentiation under chondrogenic conditions. We identify specific WNTs and MITF as hub genes governing the generation of off-target differentiation into neural cells and melanocytes during hiPSC chondrogenesis. With heterocellular signaling models, we further show that WNT signaling produced by off-target cells is responsible for inducing chondrocyte hypertrophy. By targeting WNTs and MITF, we eliminate these cell lineages, significantly enhancing the yield and homogeneity of hiPSC-derived chondrocytes. Collectively, our findings identify the trajectories and molecular mechanisms governing cell fate decision in hiPSC chondrogenesis, as well as dynamic transcriptome profiles orches- trating chondrocyte proliferation and differentiation. 1 Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO 63110, USA. 2 Shriners Hospitals for Children—St. Louis, St. Louis, MO 63110, USA. 3 Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA. 4 Dept. of Orthopaedic Surgery, Yonsei University, Seoul, South Korea.
    [Show full text]
  • Mycobacterium Tuberculosis of Wnt6 Is Expresse
    Wnt6 Is Expressed in Granulomatous Lesions of Mycobacterium tuberculosis−Infected Mice and Is Involved in Macrophage Differentiation and Proliferation This information is current as of September 27, 2021. Kolja Schaale, Julius Brandenburg, Andreas Kispert, Michael Leitges, Stefan Ehlers and Norbert Reiling J Immunol 2013; 191:5182-5195; Prepublished online 11 October 2013; doi: 10.4049/jimmunol.1201819 Downloaded from http://www.jimmunol.org/content/191/10/5182 Supplementary http://www.jimmunol.org/content/suppl/2013/10/11/jimmunol.120181 http://www.jimmunol.org/ Material 9.DC1 References This article cites 60 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/191/10/5182.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights
    [Show full text]