Chapter 5 Connectedness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide to Topology
i i “topguide” — 2010/12/8 — 17:36 — page i — #1 i i A Guide to Topology i i i i i i “topguide” — 2011/2/15 — 16:42 — page ii — #2 i i c 2009 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2009929077 Print Edition ISBN 978-0-88385-346-7 Electronic Edition ISBN 978-0-88385-917-9 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “topguide” — 2010/12/8 — 17:36 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY MAA Guides # 4 A Guide to Topology Steven G. Krantz Washington University, St. Louis ® Published and Distributed by The Mathematical Association of America i i i i i i “topguide” — 2010/12/8 — 17:36 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Paul Zorn, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Patricia B. Humphrey Virginia E. Knight Mark A. Peterson Jonathan Rogness Thomas Q. Sibley Joe Alyn Stickles i i i i i i “topguide” — 2010/12/8 — 17:36 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni- versity of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successfulexpositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition. -
Open 3-Manifolds Which Are Simply Connected at Infinity
OPEN 3-MANIFOLDS WHICH ARE SIMPLY CONNECTED AT INFINITY C H. EDWARDS, JR.1 A triangulated open manifold M will be called l-connected at infin- ity il each compact subset C of M is contained in a compact poly- hedron P in M such that M—P is connected and simply connected. Stallings has shown that, if M is a contractible open combinatorial manifold which is l-connected at infinity and is of dimension ra^5, then M is piecewise-linearly homeomorphic to Euclidean re-space E" [5]. Theorem 1. Let M be a contractible open 3-manifold, each of whose compact subsets can be imbedded in £3. If M is l-connected at infinity, then M is homeomorphic to £3. Notice that, in order to prove the 3-dimensional Poincaré conjec- ture, it would suffice to prove Theorem 1 without the hypothesis that each compact subset of M can be imbedded in £3. For, if M is a simply connected closed 3-manifold and p is a point of M, then M —p is a contractible open 3-manifold which is clearly l-connected at infinity. Conversely, if the 3-dimensional Poincaré conjecture were known, then the hypothesis that each compact subset of M can be imbedded in £3 would be unnecessary. All spaces and mappings in this paper are considered in the poly- hedral or piecewise-linear sense, unless otherwise stated. As usual, by an open re-manifold is meant a noncompact connected space triangu- lated by a countable simplicial complex without boundary, such that the link of each vertex is piecewise-linearly homeomorphic to the usual (re—1)-sphere. -
MS Word Template for CAD Conference Papers
382 Title: Regularized Set Operations in Solid Modeling Revisited Authors: K. M. Yu, [email protected], The Hong Kong Polytechnic University K. M. Lee, [email protected], The Hong Kong Polytechnic University K. M. Au, [email protected], HKU SPACE Community College Keywords: Regularised Set Operations, CSG, Solid Modeling, Manufacturing, General Topology DOI: 10.14733/cadconfP.2019.382-386 Introduction: The seminal works of Tilove and Requicha [8],[13],[14] first introduced the use of general topology concepts in solid modeling. However, their works are brute-force approach from mathematicians’ perspective and are not easy to be comprehended by engineering trained personnels. This paper reviewed the point set topological approach using operational formulation. Essential topological concepts are described and visualized in easy to understand directed graphs. These facilitate subtle differentiation of key concepts to be recognized. In particular, some results are restated in a more mathematically correct version. Examples to use the prefix unary operators are demonstrated in solid modeling properties derivations and proofs as well as engineering applications. Main Idea: This paper is motivated by confusion in the use of mathematical terms like boundedness, boundary, interior, open set, exterior, complement, closed set, closure, regular set, etc. Hasse diagrams are drawn by mathematicians to study different topologies. Instead, directed graph using elementary operators of closure and complement are drawn to show their inter-relationship in the Euclidean three- dimensional space (E^3 is a special metric space formed from Cartesian product R^3 with Euclid’s postulates [11] and inheriting all general topology properties.) In mathematics, regular, regular open and regular closed are similar but different concepts. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
Chapter 7 Separation Properties
Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and . -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
Daniel Irvine June 20, 2014 Lecture 6: Topological Manifolds 1. Local
Daniel Irvine June 20, 2014 Lecture 6: Topological Manifolds 1. Local Topological Properties Exercise 7 of the problem set asked you to understand the notion of path compo- nents. We assume that knowledge here. We have done a little work in understanding the notions of connectedness, path connectedness, and compactness. It turns out that even if a space doesn't have these properties globally, they might still hold locally. Definition. A space X is locally path connected at x if for every neighborhood U of x, there is a path connected neighborhood V of x contained in U. If X is locally path connected at all of its points, then it is said to be locally path connected. Lemma 1.1. A space X is locally path connected if and only if for every open set V of X, each path component of V is open in X. Proof. Suppose that X is locally path connected. Let V be an open set in X; let C be a path component of V . If x is a point of V , we can (by definition) choose a path connected neighborhood W of x such that W ⊂ V . Since W is path connected, it must lie entirely within the path component C. Therefore C is open. Conversely, suppose that the path components of open sets of X are themselves open. Given a point x of X and a neighborhood V of x, let C be the path component of V containing x. Now C is path connected, and since it is open in X by hypothesis, we now have that X is locally path connected at x. -
Discrete Mathematics Panconnected Index of Graphs
Discrete Mathematics 340 (2017) 1092–1097 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Panconnected index of graphs Hao Li a,*, Hong-Jian Lai b, Yang Wu b, Shuzhen Zhuc a Department of Mathematics, Renmin University, Beijing, PR China b Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA c Department of Mathematics, Taiyuan University of Technology, Taiyuan, 030024, PR China article info a b s t r a c t Article history: For a connected graph G not isomorphic to a path, a cycle or a K1;3, let pc(G) denote the Received 22 January 2016 smallest integer n such that the nth iterated line graph Ln(G) is panconnected. A path P is Received in revised form 25 October 2016 a divalent path of G if the internal vertices of P are of degree 2 in G. If every edge of P is a Accepted 25 October 2016 cut edge of G, then P is a bridge divalent path of G; if the two ends of P are of degree s and Available online 30 November 2016 t, respectively, then P is called a divalent (s; t)-path. Let `(G) D maxfm V G has a divalent g Keywords: path of length m that is not both of length 2 and in a K3 . We prove the following. Iterated line graphs (i) If G is a connected triangular graph, then L(G) is panconnected if and only if G is Panconnectedness essentially 3-edge-connected. Panconnected index of graphs (ii) pc(G) ≤ `(G) C 2. -
On the Simple Connectedness of Hyperplane Complements in Dual Polar Spaces
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography On the simple connectedness of hyperplane complements in dual polar spaces I. Cardinali, B. De Bruyn∗ and A. Pasini Abstract Let ∆ be a dual polar space of rank n ≥ 4, H be a hyperplane of ∆ and Γ := ∆\H be the complement of H in ∆. We shall prove that, if all lines of ∆ have more than 3 points, then Γ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings. Keywords: diagram geometry, dual polar spaces, hyperplanes, simple connected- ness, universal embedding MSC: 51E24, 51A50 1 Introduction We presume the reader is familiar with notions as simple connectedness, hy- perplanes, hyperplane complements, full projective embeddings, hyperplanes arising from an embedding, and other concepts involved in the theorems to be stated in this introduction. If not, the reader may see Section 2 of this paper, where those concepts are recalled. The following is the main theorem of this paper. We shall prove it in Section 3. Theorem 1.1 Let ∆ be a dual polar space of rank ≥ 4 with at least 4 points on each line. If H is a hyperplane of ∆ then the complement ∆ \ H of H in ∆ is simply connected. ∗Postdoctoral Fellow on the Research Foundation - Flanders 1 Not so much is known on ∆ \ H when rank(∆) = 3. The next theorem is one of the few results obtained so far for that case. -
METRIC SPACES and SOME BASIC TOPOLOGY
Chapter 3 METRIC SPACES and SOME BASIC TOPOLOGY Thus far, our focus has been on studying, reviewing, and/or developing an under- standing and ability to make use of properties of U U1. The next goal is to generalize our work to Un and, eventually, to study functions on Un. 3.1 Euclidean n-space The set Un is an extension of the concept of the Cartesian product of two sets that was studied in MAT108. For completeness, we include the following De¿nition 3.1.1 Let S and T be sets. The Cartesian product of S and T , denoted by S T,is p q : p + S F q + T . The Cartesian product of any ¿nite number of sets S1 S2 SN , denoted by S1 S2 SN ,is j b ck p1 p2 pN : 1 j j + M F 1 n j n N " p j + S j . The object p1 p2pN is called an N-tuple. Our primary interest is going to be the case where each set is the set of real numbers. 73 74 CHAPTER 3. METRIC SPACES AND SOME BASIC TOPOLOGY De¿nition 3.1.2 Real n-space,denotedUn, is the set all ordered n-tuples of real numbers i.e., n U x1 x2 xn : x1 x2 xn + U . Un U U U U Thus, _ ^] `, the Cartesian product of with itself n times. nofthem Remark 3.1.3 From MAT108, recall the de¿nition of an ordered pair: a b a a b . def This de¿nition leads to the more familiar statement that a b c d if and only if a bandc d. -
A Concise Form of Continuity in Fine Topological Space
Advances in Computational Sciences and Technology (ACST). ISSN 0973-6107 Volume 10, Number 6 (2017), pp. 1785–1805 © Research India Publications http://www.ripublication.com/acst.htm A Concise form of Continuity in Fine Topological Space P.L. Powar and Pratibha Dubey Department of Mathematics and Computer Science, R.D.V.V., Jabalpur, India. Abstract By using the topology on a space X, a wide class of sets called fine open sets have been studied earlier. In the present paper, it has been noticed and verified that the class of fine open sets contains the entire class of A-sets, AC-sets and αAB-sets, which are already defined. Further, this observation leads to define a more general continuous function which in tern reduces to the four continuous functions namely A-continuity, AB-continuity, AC-continuity and αAB-continuity as special cases. AMS subject classification: primary54XX; secondry 54CXX. Keywords: fine αAB-sets, fine A-sets, fine topology. 1. Introduction The concept of fine space has been introduced by Powar and Rajak in [1] is the special case of generalized topological space (see[2]). The major difference between the two spaces is that the open sets in the fine space are not the random collection of subsets of X satisfying certain conditions but the open sets (known as fine sets) have been generated with the help of topology already defined over X. It has been studied in [1] that this collection of fine open sets is really a magical class of subsets of X containing semi-open sets, pre-open sets, α-open sets, β-open sets etc. -
Maximally Edge-Connected and Vertex-Connected Graphs and Digraphs: a Survey Angelika Hellwiga, Lutz Volkmannb,∗
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 308 (2008) 3265–3296 www.elsevier.com/locate/disc Maximally edge-connected and vertex-connected graphs and digraphs: A survey Angelika Hellwiga, Lutz Volkmannb,∗ aInstitut für Medizinische Statistik, Universitätsklinikum der RWTH Aachen, PauwelsstraYe 30, 52074 Aachen, Germany bLehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany Received 8 December 2005; received in revised form 15 June 2007; accepted 24 June 2007 Available online 24 August 2007 Abstract Let D be a graph or a digraph. If (D) is the minimum degree, (D) the edge-connectivity and (D) the vertex-connectivity, then (D) (D) (D) is a well-known basic relationship between these parameters. The graph or digraph D is called maximally edge- connected if (D) = (D) and maximally vertex-connected if (D) = (D). In this survey we mainly present sufficient conditions for graphs and digraphs to be maximally edge-connected as well as maximally vertex-connected. We also discuss the concept of conditional or restricted edge-connectivity and vertex-connectivity, respectively. © 2007 Elsevier B.V. All rights reserved. Keywords: Connectivity; Edge-connectivity; Vertex-connectivity; Restricted connectivity; Conditional connectivity; Super-edge-connectivity; Local-edge-connectivity; Minimum degree; Degree sequence; Diameter; Girth; Clique number; Line graph 1. Introduction Numerous networks as, for example, transport networks, road networks, electrical networks, telecommunication systems or networks of servers can be modeled by a graph or a digraph. Many attempts have been made to determine how well such a network is ‘connected’ or stated differently how much effort is required to break down communication in the system between some vertices.