Distal Mediator-Enriched, Placental Transcriptome-Wide Analyses Illustrate The

Total Page:16

File Type:pdf, Size:1020Kb

Distal Mediator-Enriched, Placental Transcriptome-Wide Analyses Illustrate The medRxiv preprint doi: https://doi.org/10.1101/2021.04.12.21255170; this version posted April 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 Distal mediator-enriched, placental transcriptome-wide analyses illustrate the 2 Developmental Origins of Health and Disease 3 4 Arjun Bhattacharya, PhD1*, Anastasia N. Freedman, BA2, Vennela Avula2, Rebeca Harris, BS3, Weifang 5 Liu, BA4, Robert M. Joseph, PhD5, Lisa Smeester, PhD2,6,7, Hadley J. Hartwell, MS2, Karl C.K. Kuban, 6 MD8, Carmen J. Marsit, PhD9, Yun Li, PhD4,10,11, T. Michael O’Shea, MD, MPH12, Rebecca C. Fry, 7 PhD2,6,7*†, Hudson P. Santos Jr., PhD, RN3,6*† 8 9 1. Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of 10 California, Los Angeles, CA, USA 11 2. Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 12 University of North Carolina, Chapel Hill, NC, USA 13 3. Biobehavioral Laboratory, School of Nursing, University of North Carolina, Chapel Hill, NC, USA 14 4. Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, 15 Chapel Hill, NC, USA 16 5. Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA 17 6. Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of 18 North Carolina, Chapel Hill, NC, USA 19 7. Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, 20 USA 21 8. Department of Pediatrics, Division of Pediatric Neurology, Boston University Medical Center, Boston, 22 MA, USA 23 9. Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 24 Atlanta, GA, USA 25 10. Department of Genetics, University of North Carolina, Chapel Hill, NC, USA 26 11. Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA 27 12. Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA 28 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.04.12.21255170; this version posted April 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 †Equal contribution 2 *Please direct correspondence to AB ([email protected]), RCF ([email protected]), HPS 3 ([email protected]). 4 5 ABSTRACT 6 As the master regulator of the intrauterine environment, the placenta is core to the Developmental Origins 7 of Health and Disease (DOHaD) but is understudied in relation to tissue-specific gene and trait regulation. 8 We performed distal mediator-enriched transcriptome-wide association studies (TWAS) for 40 health 9 traits across 5 physiological categories, using gene expression models trained with multi-omic data from 10 the Extremely Low Gestational Age Newborn Study (푁 = 272). At 푃 < 2.5 × 10−6, we detected 248 11 gene-trait associations (GTAs) across 176 genes, mostly for metabolic and neonatal traits and enriched 12 for cell growth and immunological pathways. Of these GTAs, 89 showed significant mediation through 13 genetic variants distal to the gene, identifying potential targets for functional validation. Functional 14 validation of a mediator gene (EPS15) in human placenta-derived JEG-3 trophoblasts resulted in 15 increased expression of its predicted targets, SPATA13 and FAM214A, both associated with the trait of 16 waist-hip ratio in TWAS. These results illustrate the profound health impacts of placental genetic and 17 genomic regulation in developmental programming across the life course. 18 19 KEYWORDS 20 transcriptome-wide association study, placental biology, in utero development, developmental origins of 21 health and disease, developmental programming, multi-omics integration 2 medRxiv preprint doi: https://doi.org/10.1101/2021.04.12.21255170; this version posted April 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 MAIN 2 The placenta serves as the master regulator of the intrauterine environment via nutrient transfer, 3 metabolism, gas exchange, neuroendocrine signaling, growth hormone production, and immunologic 4 control1–5. Due to strong influences on postnatal health, the placenta is central to the Developmental 5 Origins of Health and Disease (DOHaD) hypothesis, which purports that the in utero experience has 6 lifelong impacts on child health by altering developmental programming and influencing risk of common, 7 noncommunicable health conditions6. For example, placental biology has been linked to neuropsychiatric, 8 developmental, and metabolic diseases or health traits (collectively referred to as traits) that manifest 9 throughout the life course, either early- or later-in-life (Figure 1)7–10. Despite its long-lasting influences on 10 health, the placenta has not been well-studied in large consortia studies of multi-tissue gene 11 regulation11,12. Studying regulatory mechanisms in the placenta underlying biological processes in 12 developmental programming will provide novel insight into health and disease etiology. 13 14 The complex interplay between genetics and placental transcriptomics and epigenomics has strong 15 effects on gene expression that may explain variation in gene-trait associations (GTAs). Quantitative trait 16 loci (QTL) analyses have identified a strong influence of cis-genetic variants on both placental gene 17 expression and DNA methylation13,14. Furthermore, there is growing evidence that the placental 18 epigenome influences gene regulation, often distally (more than 1-3 Megabases away in the genome)15, 19 and that placental DNA methylation and microRNA (miRNA) expression are associated with health traits 20 in children16–18. Dysfunction of transcription factor regulation in the placenta has also shown profound 21 effects on childhood traits19–22. Although combining genetics, transcriptomics, and epigenomics lends 22 insight into the influence of placental genomics on complex traits23, genome-wide screens for GTAs that 23 integrate different molecular profiles and generate functional hypotheses require more sophisticated 24 computational methods. 25 26 To this end, advances in transcriptome-wide association studies (TWAS) have allowed for integration of 27 genome-wide association studies (GWAS) and eQTL datasets to boost power in identifying GTAs, 28 specific to a relevant tissue24–26. However, traditional methods for TWAS largely overlook genetic variants 3 medRxiv preprint doi: https://doi.org/10.1101/2021.04.12.21255170; this version posted April 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 distal to genes of interest, ostensibly mediated through regulatory biomarkers (e.g., transcription factors, 2 miRNAs, and DNA methylation sites)27,28. Not only may these distal biomarkers explain a significant 3 portion of both gene expression heritability and trait heritability on the tissue-specific expression level29–32, 4 they may also influence tissue-specific trait associations for individual genes. Due to the strong interplay 5 of regulatory elements in placental gene regulation, we sought to systematically characterize portions of 6 gene expression that are influenced by these distal regulatory elements. 7 8 Here, we investigate three broad questions: (1) which genes show associations between their placental 9 genetically-regulated expression (GReX) and various traits across the life course, (2) which traits along 10 the life course can be explained by placental GReX, in aggregate, and (3) which transcription factors, 11 miRNAs, or CpG sites potentially regulate trait-associated genes in the placenta (Figure 1). We 12 leveraged gene expression, CpG methylation, and miRNA expression data from fetal-side placenta tissue 13 from the Extremely Low Gestational Age Newborn (ELGAN) Cohort Study33. We trained predictive models 14 of gene expression, enriched for distal SNPs using MOSTWAS, a recent TWAS extension that integrates 15 multi-omic data34. Re-analyzing 40 GWAS of European-ancestry subjects from large consortia35–39, we 16 performed a series of TWAS for non-communicable health traits and disorders that may be influenced by 17 the placenta to identify GTAs and functional hypotheses for regulation (Figure 2). To our knowledge, this 18 is the first distal mediator-enriched TWAS of health traits that integrates placental multi-omics. Results 19 from our analysis can be explored at our Shiny R app, the ELGAN DOHaD Atlas: https://elgan- 20 twas.shinyapps.io/dohad/. 21 22 RESULTS 23 Genetic heritability and correlations across traits 24 From large consortia35–39, we curated GWAS summary statistics from subjects of European ancestry for 25 40 complex, non-communicable traits and
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Produktinformation
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic SANTA CRUZ BIOTECHNOLOGY, INC. FAM214A siRNA (m): sc-141565 BACKGROUND STORAGE AND RESUSPENSION FAM214A, also known as BC031353 or KIAA1370, is a 1,076 amino acid Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least protein that is alternatively spliced into two isoforms. The gene encoding one year from the date of shipment. Once resuspended, store at -20° C, KIAA1370 maps to human chromosome 15, which encodes more than avoid contact with RNAses and repeated freeze thaw cycles. 700 genes and comprises about 3% of the human genome. Angelman and Resuspend lyophilized siRNA duplex in 330 µl of the RNAse-free water Prader-Willi syndromes are associated with loss of function or deletion of provided. Resuspension of the siRNA duplex in 330 µl of RNAse-free water genes in the 15q11-q13 region. In Angelman syndrome, this loss is due to makes a 10 µM solution in a 10 µM Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM inactivity of the maternal 15q21.2 encoded UBE3A gene in the brain by EDTA buffered solution. either chromosomal deletion or mutation.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • PDF Datasheet
    Product Datasheet FAM214A Antibody NBP1-83797 Unit Size: 0.1 ml Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBP1-83797 Updated 9/16/2020 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBP1-83797 Page 1 of 2 v.20.1 Updated 9/16/2020 NBP1-83797 FAM214A Antibody Product Information Unit Size 0.1 ml Concentration Concentrations vary lot to lot. See vial label for concentration. If unlisted please contact technical services. Storage Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles. Clonality Polyclonal Preservative 0.02% Sodium Azide Isotype IgG Purity Immunogen affinity purified Buffer PBS (pH 7.2) and 40% Glycerol Product Description Host Rabbit Gene ID 56204 Gene Symbol FAM214A Species Human Specificity/Sensitivity Specificity of human FAM214A antibody verified on a Protein Array containing target protein plus 383 other non-specific proteins. Immunogen This antibody was developed against Recombinant Protein corresponding to amino acids: TNEGKIRLKPETPRSETCISNDFYSHMPVGETNPLIGSLLQERQDVIARIAQHLE HIDPTASHIPRQSFNMHDSSSVASKVFRSSYEDKNLLKKNKDESSVSISHT Product Application Details Applications Immunohistochemistry, Immunohistochemistry-Paraffin Recommended Dilutions Immunohistochemistry 1:20 - 1:50, Immunohistochemistry-Paraffin 1:20 - 1:50 Application Notes For IHC-Paraffin, HIER pH 6 retrieval is recommended. Immunocytochemistry/Immunofluorescence Fixation Permeabilization: Use PFA/Triton X-100. Images Immunohistochemistry-Paraffin: FAM214A Antibody [NBP1-83797] - Staining of human stomach shows strong cytoplasmic and membranous positivity in glandular cells. Novus Biologicals USA Bio-Techne Canada 10730 E.
    [Show full text]
  • PRODUCT SPECIFICATION Prest Antigen FAM214A Product
    PrEST Antigen FAM214A Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen FAM214A Product Number APrEST81419 Gene Description family with sequence similarity 214, member A Alternative Gene FLJ10980, KIAA1370 Names Corresponding Anti-FAM214A (HPA040180) Antibodies Description Recombinant protein fragment of Human FAM214A Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: EVLRTTLKHSNVWRKHNFHSLDGTSTRAFHPQTGLPLLSSPVPQRKTQSG CFDLDSSLLHLKSFSSRSPRPCLNIEDDPDIHEKPFLSSSAPPI Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 28 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Transcription Factor RFX7 Governs a Tumor Suppressor Network in Response to P53 and Stress Luis Coronel1, Konstantin Riege1
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436917; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 2 Transcription factor RFX7 governs a tumor suppressor network in response to p53 3 and stress 4 5 Luis Coronel1, Konstantin Riege1, Katjana Schwab1, Silke Förste1, David Häckes1, Lena 6 Semerau1, Stephan H. Bernhart2, Reiner Siebert3, Steve Hoffmann1,*, Martin Fischer1,* 7 8 9 1 Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 10 Beutenbergstraße 11, 07745 Jena, Germany 11 2 Transcriptome Bioinformatics Group, Department of Computer Science and Interdisciplinary 12 Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany 13 3 Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert- 14 Einstein-Allee 23, 89081 Ulm, Germany 15 16 17 Running title: p53 employs RFX7 18 19 20 *To whom correspondence should be addressed. Email: [email protected], 21 [email protected] 22 23 Keywords 24 RFX7, p53, tumor suppressor, gene regulation, apoptosis 25 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436917; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.
    [Show full text]
  • Weighted Gene Correlation Network Meta-Analysis Reveals Functional Candidate Genes Associated with High- and Sub-Fertile Reproductive Performance in Beef Cattle
    G C A T T A C G G C A T genes Article Weighted Gene Correlation Network Meta-Analysis Reveals Functional Candidate Genes Associated with High- and Sub-Fertile Reproductive Performance in Beef Cattle Pablo A. S. Fonseca * , Aroa Suárez-Vega and Angela Cánovas * Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; [email protected] * Correspondence: [email protected] (P.A.S.F.); [email protected] (A.C.); Tel.: +1-519-824-4120 (ext. 56295) (A.C.) Received: 22 April 2020; Accepted: 6 May 2020; Published: 12 May 2020 Abstract: Improved reproductive efficiency could lead to economic benefits for the beef industry, once the intensive selection pressure has led to a decreased fertility. However, several factors limit our understanding of fertility traits, including genetic differences between populations and statistical limitations. In the present study, the RNA-sequencing data from uterine samples of high-fertile (HF) and sub-fertile (SF) animals was integrated using co-expression network meta-analysis, weighted gene correlation network analysis, identification of upstream regulators, variant calling, and network topology approaches. Using this pipeline, top hub-genes harboring fixed variants (HF SF) were × identified in differentially co-expressed gene modules (DcoExp). The functional prioritization analysis identified the genes with highest potential to be key-regulators of the DcoExp modules between HF and SF animals. Consequently, 32 functional candidate genes (10 upstream regulators and 22 top hub-genes of DcoExp modules) were identified. These genes were associated with the regulation of relevant biological processes for fertility, such as embryonic development, germ cell proliferation, and ovarian hormone regulation.
    [Show full text]
  • Figure S1. 17-Mer Distribution in the Yangtze Finless Porpoise Genome
    Figure S1. 17-mer distribution in the Yangtze finless porpoise genome. The x-axis is 17-mer depth (X); the y-axis is the number of sequencing reads at that depth. Figure S2. Sequence depth distribution of the assembly data. The x-axis shows the sequencing depth (X) and the y-axis shows the number of bases at a given depth. The results demonstrate that 99% of bases sequencing depth is more than 20. Figure S3. Comparison of gene structure characteristics of Yangtze finless porpoise and other cetaceans. The x-axis represents the length of corresponding genetic element of exon number and the y-axis represents gene density. Figure S4. Phylogeny relationships between the Yangtze finless porpoise and other mammals reconstructed by RAxML with the GTR+G+I model. Table S1. Summary of sequenced reads Raw Reads Qualified Reads1 Total Read Sequence Physical Total Read Sequence Physical Library SRA Data Length Coverage2 Coverage2 Data Length Coverage2 Coverage2 Insert Size (bp) Number (Gb) (bp) (×) (×) (Gb) (bp) (×) (×) 289 58.94 150.00 23.67 22.80 57.84 149.75 23.23 22.41 SRR6923836 462 71.33 150.00 28.65 44.12 70.12 149.74 28.16 43.44 SRR6923837 624 67.47 150.00 27.10 56.36 63.90 149.67 25.66 53.50 SRR6923834 791 57.58 150.00 23.12 60.97 55.39 149.67 22.24 58.78 SRR6923835 4,000 108.73 150.00 43.67 582.22 70.74 150.00 28.41 378.80 SRR6923832 7,000 115.4 150.00 46.35 1,081.39 84.76 150.00 34.04 794.27 SRR6923833 11,000 107.37 150.00 43.12 1,581.08 79.78 150.00 32.04 1,174.81 SRR6923830 18,000 127.46 150.00 51.19 3,071.33 97.75 150.00 39.26 2,355.42 SRR6923831 Total 714.28 - 286.87 6,500.27 580.28 - 233.04 4,881.43 - 1Raw reads in mate-paired libraries were filtered to remove duplicates and reads with low quality and/or adapter contamination, raw reads in paired-end libraries were filtered in the same manner then subjected to k-mer-based correction.
    [Show full text]
  • Cis-Regulatory Analysis of Onecut1 Expression in Fate-Restricted Retinal Progenitor Cells
    Patoori et al. Neural Development (2020) 15:5 https://doi.org/10.1186/s13064-020-00142-w RESEARCH ARTICLE Open Access Cis-regulatory analysis of Onecut1 expression in fate-restricted retinal progenitor cells Sruti Patoori1,2, Nathalie Jean-Charles2, Ariana Gopal2, Sacha Sulaiman2, Sneha Gopal2,3, Brian Wang2, Benjamin Souferi2,4 and Mark M. Emerson1,2,5* Abstract Background: The vertebrate retina consists of six major classes of neuronal cells. During development, these cells are generated from a pool of multipotent retinal progenitor cells (RPCs) that express the gene Vsx2. Fate-restricted RPCs have recently been identified, with limited mitotic potential and cell fate possibilities compared to multipotent RPCs. One population of fate-restricted RPCs, marked by activity of the regulatory element ThrbCRM1, gives rise to both cone photoreceptors and horizontal cells. These cells do not express Vsx2, but co-express the transcription factors (TFs) Onecut1 and Otx2, which bind to ThrbCRM1. The components of the gene regulatory networks that control the transition from multipotent to fate-restricted gene expression are not known. This work aims to identify and evaluate cis-regulatory elements proximal to Onecut1 to identify the gene regulatory networks involved in RPC fate-restriction. Method: We identified regulatory elements through ATAC-seq and conservation, followed by reporter assays to screen for activity based on temporal and spatial criteria. The regulatory elements of interest were subject to deletion and mutation analysis to identify functional sequences and evaluated by quantitative flow cytometry assays. Finally, we combined the enhancer::reporter assays with candidate TF overexpression to evaluate the relationship between the TFs, the enhancers, and early vertebrate retinal development.
    [Show full text]
  • Us 2018 / 0305689 A1
    US 20180305689A1 ( 19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0305689 A1 Sætrom et al. ( 43 ) Pub . Date: Oct. 25 , 2018 ( 54 ) SARNA COMPOSITIONS AND METHODS OF plication No . 62 /150 , 895 , filed on Apr. 22 , 2015 , USE provisional application No . 62/ 150 ,904 , filed on Apr. 22 , 2015 , provisional application No. 62 / 150 , 908 , (71 ) Applicant: MINA THERAPEUTICS LIMITED , filed on Apr. 22 , 2015 , provisional application No. LONDON (GB ) 62 / 150 , 900 , filed on Apr. 22 , 2015 . (72 ) Inventors : Pål Sætrom , Trondheim (NO ) ; Endre Publication Classification Bakken Stovner , Trondheim (NO ) (51 ) Int . CI. C12N 15 / 113 (2006 .01 ) (21 ) Appl. No. : 15 /568 , 046 (52 ) U . S . CI. (22 ) PCT Filed : Apr. 21 , 2016 CPC .. .. .. C12N 15 / 113 ( 2013 .01 ) ; C12N 2310 / 34 ( 2013. 01 ) ; C12N 2310 /14 (2013 . 01 ) ; C12N ( 86 ) PCT No .: PCT/ GB2016 /051116 2310 / 11 (2013 .01 ) $ 371 ( c ) ( 1 ) , ( 2 ) Date : Oct . 20 , 2017 (57 ) ABSTRACT The invention relates to oligonucleotides , e . g . , saRNAS Related U . S . Application Data useful in upregulating the expression of a target gene and (60 ) Provisional application No . 62 / 150 ,892 , filed on Apr. therapeutic compositions comprising such oligonucleotides . 22 , 2015 , provisional application No . 62 / 150 ,893 , Methods of using the oligonucleotides and the therapeutic filed on Apr. 22 , 2015 , provisional application No . compositions are also provided . 62 / 150 ,897 , filed on Apr. 22 , 2015 , provisional ap Specification includes a Sequence Listing . SARNA sense strand (Fessenger 3 ' SARNA antisense strand (Guide ) Mathew, Si Target antisense RNA transcript, e . g . NAT Target Coding strand Gene Transcription start site ( T55 ) TY{ { ? ? Targeted Target transcript , e .
    [Show full text]
  • Supplemental Material 1
    Supplemental material 1 Genes TCGA Genes TCGA Name Name early BC advanced BC phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic TP53 tumor protein p53 PIK3CA subunit alpha phosphatidylinositol-4,5-bisphosphate 3-kinase, PIK3CA TP53 tumor protein p53 catalytic subunit alpha CDH1 cadherin 1, type 1, E-cadherin (epithelial) CLIP1 CAP-GLY domain containing linker protein 1 GATA3 GATA binding protein 3 MUC1 mucin 1, cell surface associated KMT2C lysine (K)-specific methyltransferase 2C TSHR thyroid stimulating hormone receptor mitogen-activated protein kinase kinase kinase MAP3K1 FGFR2 fibroblast growth factor receptor 2 1, E3 ubiquitin protein ligase PTEN phosphatase and tensin homolog CBLB Cbl proto-oncogene B, E3 ubiquitin protein ligase NCOR1 nuclear receptor corepressor 1 IL21R interleukin 21 receptor NF1 neurofibromin 1 AMER1 APC membrane recruitment protein 1 RUNX1 runt-related transcription factor 1 NSD1 nuclear receptor binding SET domain protein 1 ARID1A AT rich interactive domain 1A (SWI-like) ETNK1 ethanolamine kinase 1 phosphoinositide-3-kinase, regulatory subunit 1 PIK3R1 AKAP9 A kinase (PRKA) anchor protein 9 (alpha) MAP2K4 mitogen-activated protein kinase kinase 4 PTPRB protein tyrosine phosphatase, receptor type, B RNF213 ring finger protein 213 ERBB2 erb-b2 receptor tyrosine kinase 2 KMT2D lysine (K)-specific methyltransferase 2D NOTCH1 notch 1 SPEN spen family transcriptional repressor TPR translocated promoter region, nuclear basket protein AKAP9 A kinase (PRKA) anchor protein 9 FLI1 Fli-1 proto-oncogene, ETS transcription
    [Show full text]
  • WO 2019/014581 Al 17 January 2019 (17.01.2019) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/014581 Al 17 January 2019 (17.01.2019) W !P O PCT (51) International Patent Classification: HOSPITAL, INC. [US/US]; 75 Francis Street, Boston, C12Q 1/6886 (2018.01) C12N 5/0783 (2010.01) Massachusetts 021 15 (US). CI2Q 1/00 (2006.01) (72) Inventors; and (21) International Application Number: (71) Applicants: KUCHROO, Vijay K. [US/US]; c/o 75 PCT/US20 18/042069 Francis Street, Boston, Massachusetts 021 15 (US). AN¬ DERSON, Ana C. [US/US]; c/o 75 Francis Street, Boston, (22) International Filing Date: Massachusetts 021 15 (US). KURTULUS, Sema [US/US]; 13 July 2018 (13.07.2018) c/o 75 Francis Street, Boston, Massachusetts 021 15 (US). (25) Filing Language: English MADI, Asaf [US/US]; c/o 75 Francis Street, Boston, Mass achusetts 021 15 (US). (26) Publication Language: English (72) Inventor: REGEV, Aviv; c/o 415 Main Street, Cambridge, (30) Priority Data: Massachusetts 02142 (US). 62/532,556 14 July 2017 (14.07.2017) 62/636,637 28 February 2018 (28.02.2018) (74) Agent: SCHER, Michael B. et al; Johnson, Marcou & Isaacs, LLC, P.O. Box 691, Hoschton, Georgia 30548 (US). (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; 415 Main Street, Cambridge, Massachusetts 02142 (US). (81) Designated States (unless otherwise indicated, for every MASSACHUSETTS INSTITUTE OF TECHNOLOGY kind of national protection available): AE, AG, AL, AM, [US/US]; 77 Massachusetts Avenue, Cambridge, Massa AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, chusetts 02139 (US).
    [Show full text]