Thesis Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Introduction TEMPORAL CHANGES IN REPRODUCTION, COMPETITION, AND PREDATION AFTER ESTABLISHMENT OF INTRODUCED POPULATIONS OF THE GREATER EUROPEAN PINE SHOOT BEETLE, TOMICUS PINIPERDA (L.) (COLEOPTERA: CURCULIONIDAE, SCOLYTINAE) BY NICHOLAS JAMES RUDZIK A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Faculty of Forestry University of Toronto © 2009 Copyright by Nicholas James Rudzik Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-61075-6 Our file Notre référence ISBN: 978-0-494-61075-6 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author’s permission. In compliance with the Canadian Conformément à la loi canadienne sur la Privacy Act some supporting forms protection de la vie privée, quelques may have been removed from this formulaires secondaires ont été enlevés de thesis. cette thèse. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n’y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. Temporal Changes in Reproduction, Competition and Predation After Establishment of Introduced Populations of the Greater European Pine Shoot Beetle, Tomicus piniperda (L.) (Col.: Cur., Scol.) PhD 2009, Nicholas James Rudzik, Faculty of Forestry, University of Toronto Abstract The establishment of exotic species in novel environments is a major environmental concern, however, few long-term studies have examined the effects of these species on their host environment and community, especially in forest ecosystems. The arrival and subsequent spread of the greater European pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Curculionidae, Scolytinae), into southern Ontario pine forests provided a natural experiment to assess biotic interactions between an exotic species and its new community over several years. Reproductive success of Tomicus piniperda colonies of various ages was studied between 2001 and 2004. The size and composition of competitor and natural enemy complexes present in these communities were also quantified over time. The impact of the natural enemy complexes on T. piniperda reproduction was assessed, Brood production (no. eggs and galleries/female) by T. piniperda populations rapidly approached those reported from its native range in Europe, with lower densities of parental adults. Thus, reproduction remained consistently above the replacement level for this beetle over all four years of study suggesting that these recently-introduced populations were growing rapidly and at a greater rate than in their country of origin. Tomicus piniperda successfully integrated into a large bark beetle community, and appeared to be capable of displacing native beetles to more marginal bark habitats, however, these competitors were not eliminated during the course of the study. The long-term effect of this marginalization on populations of native beetles is ii uncertain. Tomicus piniperda rapidly acquired natural enemies in the introduced areas, however, natural enemy-caused mortality did not show a regulating effect on its populations. It seems that intraspecific competition, rather than predation, regulates T. piniperda populations following introduction. The implications of these findings for the establishment and spread of exotic species in forest systems are examined, especially with reference to a prominent theory for success, the Enemy Release Hypothesis. In short, the Enemy Release Hypothesis is not applicable to an exotic species that is not regulated by natural enemies in its native range, and assessments of the Enemy Release Hypothesis should always include a determination of enemy regulation of the exotic in its native range. iii Acknowledgements There are many people who have influenced me over the course of my degree, and I wish to take this opportunity to mention them. First off, I would like to thank my supervisor, Sandy Smith, for giving me the opportunity to conduct this research and extending my student experience. My committee members (Chris Darling, Don Jackson, Jennifer Thaler in the beginning, and Peter Kotanen at the end) provided advice and helpful comments. I would also like to thank Sharon Cowling my internal examiner and Therese Poland from USFS and Michigan State, my external examiner. I am grateful to Ian Kennedy and John McCarron, for giving me invaluable field and technical support. I wish to acknowledge the owners and managers of the sites I visited in the course of my field work for their kind permission to use their land: Mr. and Mrs. Gotz, Mr. and Mrs. Hawriko, Dr. and Mrs. Chute, Gary Lammers, Bill Huff, Terry Schwann, Gord Costie, Darren Rogerson, James Lane, and Mr. and Mrs. Deller. I would like to thank my colleagues in the Smith lab for useful discussions, particularly Krista Ryall (whose M.Sc. research on the ecology of Tomicus piniperda in Ontario provided the starting point for this project), and Michelle Yakimchuk and Ryan Morgan, who worked on other aspects of Tomicus piniperda ecology. Thank you to Md. Nurul Islam for assistance with insect identification. This research was funded by a grant from the Ontario Ministry of Natural Resources, and tuition support was provided by the Faculty of Forestry and by the School of Graduate Studies, University of Toronto, for all of which I am indebted. I must also thank my roommates, the Men of 510 (especially Matthew Doyle, Dan MacQueen, and Mounir Bashour), for cheerfully putting up with me for so many years. Similarly, the members of the University of Toronto fencing team who kept me active and provided relaxation and good fellowship – chief among them Thomas Nguyen and Alex Pekurar. Lena Quinto provided encouragement and support during the final stages of the work. My sister Alanna was always ready for a cup of coffee and a chat, when things were good or bad. Finally, I would like to thank my parents, without whose love and support I could not have finished my work. I dedicate this thesis to them. My thesis is finished. DG iv TABLE OF CONTENTS Abstract ii Acknowledgements iv List of Figures ix List of Tables xii Chapter 1: Biotic Interactions of Invasive Species with Particular Reference to the Greater Pine Shoot Beetle, Tomicus piniperda Abstract 1 Invasive Exotic Species 2 Stages of Exotic Immigration 4 Effects of Invasive Species on Their Host Ecosystems 5 i. Ecosystem-Level Impacts 6 ii. Genetic Effects 6 iii. Indirect Species Effects 8 iv. Biotic Interactions 8 Evaluation of the Enemy Release Hypothesis 12 Natural Enemy Accumulation 13 Evolution of Exotic Species 15 Research on the Effects of Exotic Species 17 Biology of Tomicus piniperda in its Native Range 18 Tomicus piniperda in North America 20 Thesis Objectives and Structure 22 Chapter 2: General Methods 24 Introduction 24 Site Characteristics 24 Standard Collection Procedures 28 Trap logs for Tomicus piniperda 28 Insect collection and log metrics 32 v Data analysis 33 Multiple regression 33 Specific analyses 34 Chapter 3: Changes in Tomicus piniperda Reproduction 35 Abstract 35 Introduction 35 Materials and Methods 37 Study areas 37 Data collection 37 Data analysis 37 Statistics 37 Multiple regression models 38 Analysis of Variance and General linear models 38 Population increase 39 Software 39 Results 39 Summary statistics 39 Multiple regression models 41 ANOVA and GLM 41 Population increase 47 Discussion 55 Chapter 4: Effects of Tomicus piniperda on the Native Scolytid Community 59 Abstract 59 Introduction 59 Materials and Methods 61 Study sites 61 Data collection 61 Insect identification and species abundance 61 Data analysis 61 vi Effects of Tomicus piniperda on the abundance of native scolytids 61 Effects of Tomicus piniperda on scolytid diversity 62 Effects of native scolytids on Tomicus piniperda brood production 63 Software 63 Results 64 Scolytid species present 64 Effects of Tomicus piniperda gallery density on scolytid numbers 67 Effects of Tomicus piniperda on scolytid diversity 77 Effects of native scolytids on Tomicus piniperda brood production 78 Discussion 84 Chapter 5: Accumulation of Native Natural Enemies on an Exotic Beetle 89 Abstract 89 Introduction 89 Materials and Methods 92 Study sites 92 Data collection 92 Insect identification
Recommended publications
  • Co-Adaptations Between Ceratocystidaceae Ambrosia Fungi and the Mycangia of Their Associated Ambrosia Beetles
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles Chase Gabriel Mayers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Biology Commons, Developmental Biology Commons, and the Evolution Commons Recommended Citation Mayers, Chase Gabriel, "Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles" (2018). Graduate Theses and Dissertations. 16731. https://lib.dr.iastate.edu/etd/16731 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles by Chase Gabriel Mayers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Thomas C. Harrington, Major Professor Mark L. Gleason Larry J. Halverson Dennis V. Lavrov John D. Nason The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Chase Gabriel Mayers, 2018.
    [Show full text]
  • Weevils) of the George Washington Memorial Parkway, Virginia
    September 2020 The Maryland Entomologist Volume 7, Number 4 The Maryland Entomologist 7(4):43–62 The Curculionoidea (Weevils) of the George Washington Memorial Parkway, Virginia Brent W. Steury1*, Robert S. Anderson2, and Arthur V. Evans3 1U.S. National Park Service, 700 George Washington Memorial Parkway, Turkey Run Park Headquarters, McLean, Virginia 22101; [email protected] *Corresponding author 2The Beaty Centre for Species Discovery, Research and Collection Division, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, ON. K1P 6P4, CANADA;[email protected] 3Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, Virginia 24112; [email protected] ABSTRACT: One-hundred thirty-five taxa (130 identified to species), in at least 97 genera, of weevils (superfamily Curculionoidea) were documented during a 21-year field survey (1998–2018) of the George Washington Memorial Parkway national park site that spans parts of Fairfax and Arlington Counties in Virginia. Twenty-three species documented from the parkway are first records for the state. Of the nine capture methods used during the survey, Malaise traps were the most successful. Periods of adult activity, based on dates of capture, are given for each species. Relative abundance is noted for each species based on the number of captures. Sixteen species adventive to North America are documented from the parkway, including three species documented for the first time in the state. Range extensions are documented for two species. Images of five species new to Virginia are provided. Keywords: beetles, biodiversity, Malaise traps, national parks, new state records, Potomac Gorge. INTRODUCTION This study provides a preliminary list of the weevils of the superfamily Curculionoidea within the George Washington Memorial Parkway (GWMP) national park site in northern Virginia.
    [Show full text]
  • Ramesh Chander Bhagat.Pdf
    Int. J. Curr. Res. Biosci. Plant Biol. 2016, 3(12): 115-123 International Journal of Current Research in Biosciences and Plant Biology ISSN: 2349-8080 (Online) ● Volume 3 ● Number 12 (December-2016) Journal homepage: www.ijcrbp.com Original Research Article doi: http://dx.doi.org/10.20546/ijcrbp.2016.312.014 An Update on Checklist and Biodiversity of Coleopteran-fauna (Insecta) of Forestry and Mulberry Importance in Jammu and Kashmir State (India) Ramesh Chander Bhagat* P.O. Box No. 1250, G.P.O., Residency Road, Srinagar, Kashmir-190 001, J & K, India *Corresponding author. A b s t r a c t Article Info The present paper deals with a total of 64 species of beetles and weevils (Coleoptera), Accepted: 29 November 2016 belonging to 52 genera, under 14 families, associated with diverse species of forest and Available Online: 06 December 2016 mulberry plantations, occurring in vast areas and localities of Jammu and Kashmir State. The Coleopteran species of forestry and mulberry importance accounts for 73.43 K e y w o r d s % and 35.93 % respectively. The Coleopteran-fauna (47 spp.), spread over 12 families, is found to be infesting forest trees,viz. Ash, Benne, Birch, Conifers, Elms, Biodiversity Ivy, Maple, Oak, Parrotia, Plane tree, Poplars, Robinia, Salix, and Yew. Of these trees, Checklist Pines showed highest number of Coleopteran species i.e. 18, under 6 families, followed Coleopteran-fauna by Poplars, with 15 spp. (4 families) and Cedars, having 14 spp. (4 families) The Forest trees Mulberry plantations Mulberry plantations (Morus spp.) both endemic as well as exotic, have been observed to be infesting 23 spp.
    [Show full text]
  • 1. Padil Species Factsheet Scientific Name: Common Name Image
    1. PaDIL Species Factsheet Scientific Name: Hylurgopinus rufipes (Eichhoff, 1868) (Coleoptera: Curculionidae: Scolytinae: Hylesinini: Tomicina) Common Name native elm bark beetle Live link: http://www.padil.gov.au/pests-and-diseases/Pest/Main/142488 Image Library Australian Biosecurity Live link: http://www.padil.gov.au/pests-and-diseases/ Partners for Australian Biosecurity image library Department of Agriculture, Water and the Environment https://www.awe.gov.au/ Department of Primary Industries and Regional Development, Western Australia https://dpird.wa.gov.au/ Plant Health Australia https://www.planthealthaustralia.com.au/ Museums Victoria https://museumsvictoria.com.au/ 2. Species Information 2.1. Details Specimen Contact: Museum Victoria - [email protected] Author: McCaffrey, Sarah Citation: McCaffrey, Sarah (2012) native elm bark beetle(Hylurgopinus rufipes)Updated on 8/13/2012 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/pests-and-diseases/Pest/Main/142488 2.3. Facets Commodity Overview: Forestry Commodity Type: Timber Distribution: USA and Canada Group: Beetles Status: Exotic species - absent from Australia 2.4. Diagnostic Notes _Hylurgopinus rufipes_ is a carrier of the Dutch Elm disease and as such is a serious pest. **Diagnosis:** Within the Tomicina, _Hylurgopinus_ can be distinguished from the similar _Xylechinus_ by its 7-segmented funicle. **Description:** This monospecific genus ranges from 2.2 to 2.5 mm in length and is approximately 2.3 times as long as wide. The color is dark brown. The pronotum is wider than long.
    [Show full text]
  • Phoretic on Bark Beetles (Coleoptera: Scolytinae): Global Generalists, Local Specialists?
    ARTHROPOD BIOLOGY Diversity and Host Use of Mites (Acari: Mesostigmata, Oribatida) Phoretic on Bark Beetles (Coleoptera: Scolytinae): Global Generalists, Local Specialists? 1,2,3 1 2 WAYNE KNEE, MARK R. FORBES, AND FRE´ DE´ RIC BEAULIEU Ann. Entomol. Soc. Am. 106(3): 339Ð350 (2013); DOI: http://dx.doi.org/10.1603/AN12092 ABSTRACT Mites (Arachnida: Acari) are one of the most diverse groups of organisms associated with bark beetles (Curculionidae: Scolytinae), but their taxonomy and ecology are poorly understood, including in Canada. Here we address this by describing the diversity, species composition, and host associations of mesostigmatic and oribatid mites collected from scolytines across four sites in eastern Ontario, Canada, in 2008 and 2009. Using Lindgren funnel traps baited with ␣-pinene, ethanol lures, or Ips pini (Say) pheromone lures, a total of 5,635 bark beetles (30 species) were collected, and 16.4% of these beetles had at least one mite. From these beetles, a total of 2,424 mites representing 33 species from seven families were collected. The majority of mite species had a narrow host range from one (33.3%) or two (36.4%) host species, and fewer species had a host range of three or more hosts (30.3%). This study represents the Þrst broad investigation of the acarofauna of scolytines in Canada, and we expand upon the known (worldwide) host records of described mite species by 19%, and uncover 12 new species. Half (7) of the 14 most common mites collected in this study showed a marked preference for a single host species, which contradicts the hypothesis that nonparasitic mites are typically not host speciÞc, at least locally.
    [Show full text]
  • Supporting Information
    Supporting Information McKenna et al. 10.1073/pnas.0810618106 SI Materials and Methods alX 1.831 (4) using the default settings. The resulting alignment Taxon Sampling. We analyzed up to 8 kb of DNA sequence data for each gene was adjusted ‘‘by eye’’ in the program MacClade from a worldwide sample of 135 weevil genera representing all 4.06 (5). Regions of ambiguous alignment in 16S, 18S, and 28S, 7 weevil families, all 26 weevil subfamilies, and 97 genera and introns in EF 1-␣ and AK were removed. The individual representing most major tribes in the extraordinarily diverse alignments for each gene were then concatenated in MacClade, family Curculionidae (supporting information (SI) Table S1 and and the resulting aligned matrix (6 genes, Ϸ8 kb) used in Table S3). Outgroups included 7 subfamilies of basal Chry- subsequent analyses. someloidea and Ericmodes sylvaticus (Protocucujidae), a mem- ber of the closely related superfamily Cucujoidea. Six genes (2 Phylogenetic Analyses. Phylogenetic analyses were conducted on mitochondrial and 4 nuclear) were used in this study: cytochrome the 8-kb molecular supermatrix using Bayesian and ML infer- oxidase I, 18S rDNA, 28S rDNA, 16S rDNA, Elongation Factor-1a, ence. A partitioned ML BS analysis (1,000 inferences, 12 parti- and Arginine Kinase (AK). All 16S rDNA (1), and select other tions, CAT substitution model, individual per partition branch- sequences, were obtained from GenBank. For some genera, length optimization) was implemented in the program RAxML chimeras were constructed from sequences for different species version 7.04 (6) using the CIPRES cluster at the San Diego to reduce the amount of missing data.
    [Show full text]
  • Hylastes Ater Global Invasive Species Database (GISD)
    FULL ACCOUNT FOR: Hylastes ater Hylastes ater System: Terrestrial Kingdom Phylum Class Order Family Animalia Arthropoda Insecta Coleoptera Curculionidae Common name exotic bark beetle (English), bark beetle (English), black pine bark beetle (English) Synonym Hylastes angusticollis , Eggers Hylastes pinicola , Bedel Hylesinus chloropus , Duftschmidt Ipsocossonus anomalus , Oke 1934 Similar species Summary Hylastes ater is considered a pest in many regions due to the damage that it causes to trees, specifically pine species. Although this species is native to Europe, it has recently been declared a pest there. In addition, the introduction of the species into other countries, usually by accidental means, has become an issue primarily due to the damage it causes to the species, Pinus radiata, which affects aspects of the economy as well as ecosystems. H. ater is a widespread species that could continue to cause problems if not properly inspected and managed. view this species on IUCN Red List Species Description Hylastes ater adults are cylindrical in form and are slate gray or shiny black in color. They have reddish-brown antennae and legs (CFIA, 2008). The elytra are coarsely punctate-striate, whereas the prothorax is finely punctate except for a conspicuous impunctate median ridge. The frons is marked with dense punctures (Walker, 2008). H. ater range in size from 3.5 to 5.5 mm long and 1.4 mm wide when they are adults. Viewed from above, H. ater has a small portion of head that projects beyond the pronotum. The head is projected downward and is prolonged into a short rostrum (CFIA, 2008). Eggs are pearly white in color, less than 1 mm long and about 0.4 mm wide with rounded ends and nearly parallel sides.
    [Show full text]
  • The Bark Beetles (Coleoptera: Scolytidae) of the Maltese Islands (Central Mediterranean)
    BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2009) Vol. 2 : 25-52 The Bark Beetles (Coleoptera: Scolytidae) of the Maltese Islands (Central Mediterranean) David MIFSUD1 & Miloš KNÍŽEK2 ABSTRACT. The bark beetle fauna of the Maltese Islands is reviewed, based on literature records and examination of collected material. A total of twenty-one species have been recorded of which seventeen species represent new records from the Maltese archipelago. These include Hylurgus micklitzi, Kissophagus hederae, Phloeosinus thujae, Liparthrum mori, Scolytus amygdali, Scolytus rugulosus, Scolytus sulcifrons, Pityogenes calcaratus, Orthotomicus erosus, Thamnurgus characiae, Coccotrypes dactyliperda, Crypturgus cylindricollis, Crypturgus numidicus, Xyleborinus saxesenii, Hypocryphalus scabricollis comb. nov., Hypothenemus eruditus and Hypothenemus leprieuri. The earlier citation of Scolytus scolytus is incorrect and should refer to S. sulcifrons whereas the citation of Cryphalus piceae is definitely incorrect due to the absence of its host-plants in Malta. Additionally, two species, Xyleborus ferrugineus and X. volvulus were collected alive on logs originating from Tropical Africa and intended for the timber industry. So far, there were no local records of establishment of these two species in Malta. KEY WORDS. Bark beetles, Malta, Scolytidae, new records. INTRODUCTION The Scolytidae, commonly referred to as bark beetles comprise some 6,000 described species world-wide (BRIGHT & SKIDMORE, 2002; KNÍŽEK & BEAVER, 2004). Most species breed in woody plants where they feed most commonly on the phloem, however few species are known from other plant parts, such as seeds, cones, fruit and the central pith of fallen leaves. Most species prefer dying or dead host material but some species are known to cause primary attacks on healthy host plants, often leading to mortality of the attacked host plant.
    [Show full text]
  • An Analysis of the Larval Instars of the Walnut Twig Beetle, Pityophthorus Juglandis Blackman (Coleoptera: Scolytidae), in North
    An analysis of the larval instars of the walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), in northern California black walnut, Juglans hindsii, and a new host record for Hylocurus hirtellus Author(s): Paul L. Dallara, Mary L. Flint, and Steven J. Seybold Source: Pan-Pacific Entomologist, 88(2):248-266. 2012. Published By: Pacific Coast Entomological Society DOI: http://dx.doi.org/10.3956/2012-16.1 URL: http://www.bioone.org/doi/full/10.3956/2012-16.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. THE PAN-PACIFIC ENTOMOLOGIST 88(2):248–266, (2012) An analysis of the larval instars of the walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), in northern California black walnut, Juglans hindsii, and a new host record for Hylocurus hirtellus 1 1 2 PAUL L. DALLARA ,MARY L.
    [Show full text]
  • Systematics Within the Zopheridae Complex (Coleoptera: Tenebrionoidea)
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 12-1-2013 Systematics within the Zopheridae Complex (Coleoptera: Tenebrionoidea). Nathan Lord Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Lord, Nathan. "Systematics within the Zopheridae Complex (Coleoptera: Tenebrionoidea).." (2013). https://digitalrepository.unm.edu/biol_etds/71 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Nathan Patrick Lord Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Kelly B. Miller, Chairperson Dr. Christopher C. Witt Dr. Timothy K. Lowrey Dr. Joseph V. McHugh i SYSTEMATICS WITHIN THE ZOPHERID COMPLEX (COLEOPTERA: TENEBRIONOIDEA) by NATHAN PATRICK LORD B.S.E.S., Entomology, University of Georgia, 2006 M.S., Entomology, University of Georgia, 2008 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico December, 2013 ii DEDICATION I dedicate this work to my grandmother, Marjorie Heidt, who always encouraged me to follow my passions. Thank you, Grandma. You were the best. iii ACKNOWLEDGEMENTS I wish to thank my graduate advisor and dissertation committee chair, Dr. Kelly Miller, for his continual support and encouragement throughout my academic career. I would also like to thank my Master’s advisor and committee member, Dr.
    [Show full text]
  • Sound Production in Bark and Ambrosia Beetles
    Bioacoustics The International Journal of Animal Sound and its Recording ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tbio20 Sound production in bark and ambrosia beetles Carol L. Bedoya , Richard W. Hofstetter , Ximena J. Nelson , Michael Hayes , Daniel R. Miller & Eckehard G. Brockerhoff To cite this article: Carol L. Bedoya , Richard W. Hofstetter , Ximena J. Nelson , Michael Hayes , Daniel R. Miller & Eckehard G. Brockerhoff (2021) Sound production in bark and ambrosia beetles, Bioacoustics, 30:1, 58-73, DOI: 10.1080/09524622.2019.1686424 To link to this article: https://doi.org/10.1080/09524622.2019.1686424 Published online: 13 Nov 2019. Submit your article to this journal Article views: 131 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tbio20 BIOACOUSTICS 2021, VOL. 30, NO. 1, 58–73 https://doi.org/10.1080/09524622.2019.1686424 Sound production in bark and ambrosia beetles Carol L. Bedoya a, Richard W. Hofstetterb, Ximena J. Nelsona, Michael Hayesc, Daniel R. Millerd and Eckehard G. Brockerhoffa,e,f aSchool of Biological Sciences, University of Canterbury, Christchurch, New Zealand; bSchool of Forestry, Northern Arizona University, Flagstaff, AZ, USA; cDepartment of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand; dUSDA Forest Service, Southern Research Station, Athens, GA, USA; eScion (New Zealand Forest Research Institute), Christchurch, New Zealand; fSwiss Federal Research Institute WSL, Birmensdorf, Switzerland ABSTRACT ARTICLE HISTORY Bark and ambrosia beetles and pinhole borers (Coleoptera: Received 9 August 2019 Curculionidae: Scolytinae and Platypodinae) are two subfamilies Accepted 24 October 2019 of weevils that use acoustic communication within plant tissue.
    [Show full text]
  • The Native and Introduced Bark and Ambrosia Beetles of Michigan (Coleoptera: Curculionidae, Scolytinae) Anthony I
    2009 THE GREAT LAKES ENTOMOLOGIST 101 The Native and Introduced Bark and Ambrosia Beetles of Michigan (Coleoptera: Curculionidae, Scolytinae) Anthony I. Cognato1, Nicolas Barc1, Michael Philip2, Roger Mech3, Aaron D. Smith1, Eric Galbraith1, Andrew J. Storer4, and Lawrence R. Kirkendall5 Abstract Our knowledge of the biogeography of Scolytinae of eastern temperate North America is very patchy. We used data from hand collecting, trapped material (from 65 of 83 counties), and museum collections, supplemented by literature records, to compile a list comprising 107 bark beetle species in 45 genera for Michigan, a state with an especially rich diversity of woody plants. We provide detailed collection data documenting 32 species not previously cata- logued for Michigan, 23 of which are new state records; the genera Trypophloeus and Trischidias are reported from Michigan for the first time. Fifteen Michigan scolytines are not native to North America; Ambrosiodmus rubricollis (Eich- hoff), Crypturgus pusillus (Gyllenhal), Euwallacea validus (Eichhoff), Xyleborus californicus Wood, Xylosandrus crassiusculus (Motschulsky) have not previously been found in the state. We report Michigan hosts for 67 species, including 49 new host associations for the 93 native species. Despite identifying over 4000 specimens for this study, we fully expect to find many more species: over 30 additional species occur in the Great Lakes region. ____________________ Faunistic studies are a first step towards a deeper understanding of the ecology of local biotic communities. These studies provide records of diversity and serve as reference points for the assessment of faunal differences due to time, space, or environmental conditions. To increase the understanding of regional scolytine faunas, we present a study begun in 1978 of the bark and ambrosia beetles of Michigan.
    [Show full text]