Well Completion & Hydraulic Fracturing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydraulic Fracturing
www.anadarko.com | NYSE: APC The Equipment: From Rig to Producing Well Hydraulic Fracturing Producing Well: 20+ Years Drilling Rig Anadarko Petroleum Corporation 13 www.anadarko.com | NYSE: APC Horizontal Drilling . Commences with Common Rotary Vertical Drilling . Wellbore then Reaches a “Kickoff Kickoff Point Point” ~6,300 feet Entry Point . Drill Bit Angles Diaggyonally Until ~7,000 feet the “Entry Point” . Wellbore Becomes Fully Horizontal to Maximize Contact Lateral Length with Productive Zones Anadarko Petroleum Corporation 14 www.anadarko.com | NYSE: APC Horizontal Drilling – Significant Surface‐Space Reduction Traditional Vertical Wells Horizontal Drilling Anadarko Petroleum Corporation www.anadarko.com | NYSE: APC Hydraulic Fracturing . Essential Technology in Oil and Natural Gas Production from Tight Sands and Shales . Involves Injecting a Mixture of Water, Sand and a Relatively Small Multiple Layers of 1+ Mile Separates Aquifer Amount of Additives Protective from Fractured Formation Under Pressure into Steel and Cement Targeted Formations . Pressure Creates Pathways, Propped Open by Sand, for Oil or Natural Gas to Flow to the Wellbore Anadarko Petroleum Corporation 16 www.anadarko.com | NYSE: APC Hydraulic Fracturing Equipment Water tanks Blender Blender Frac Van ellheadW ellheadW SdtkSand tanks Pump trucks 17 Anadarko Petroleum Corporation 17 www.anadarko.com | NYSE: APC Hydraulic Fracturing Technology Equipment Water Tanks Pump Trucks Sand Movers Blenders Frac Design Primarily Water and Sand Additives Include: . Gel (ice cream) . Biocide (bleach) . Friction reducer (polymer used in make‐up, nail and skin products) Anadarko Publicly Shares the Ingredients of All Hydraulic Fracturing Operations at www.FracFocus.org Anadarko Petroleum Corporation 18 www.anadarko.com | NYSE: APC Hydraulic Fracturing is Transparent . -
Information on Hydraulic Fracturing
an open pathway to the well. This allows the oil migration of fluids associated with oil and gas and gas to seep from the rock into the pathway, development. After it is determined that the well up the well and to the surface for collection. In is capable of producing oil or natural gas, a Colorado, the targeted formations for hydraulic production casing is set to provide an added fracturing are often more than 7,000 feet layer of separation between the oil or natural underground, and some 5,000 feet below any gas stream and freshwater aquifer. A well drinking water aquifers. survey called a cement bond log is performed to ensure the cement is properly sealed around the The process of hydraulic fracturing has been casing. Additionally, the COGCC requires that used for decades in Colorado, dating to the prior to hydraulic fracturing, the casing be 1970s. Hydraulic fracturing continues to be pressure tested with fluid to the maximum Colorado Department of Natural Resources refined and improved and is now standard for pressure that will ever be applied to the casing. virtually all oil and gas wells in our state, and The well’s construction design is reviewed by across much of the country. Hydraulic fracturing the professional engineering staff at the has made it possible to get the oil and gas out of COGCC. Any flaw in the design will be Information on rocks that were not previously considered as corrected prior to issuing the required drilling likely sources for fossil fuels. permit. Hydraulic Fracturing Common questions and answers about Q: What kinds of fluids do operators use to What is hydraulic fracturing? hydraulic fracturing. -
Drilling Deeper
Drilling deeper Nia Kajastie looks at the evolution of underground drilling machinery and technologies, as well as the latest equipment releases for exploration, development and production applications Nia Kajastie 19 Dec 2016 10:00 Feature Underground drilling is a vital part of exploration and hard-rock mining activities across a wide range of applications, from diamond coring, short-hole drilling for development and long-hole drilling for production, to ground support to install rock bolts or cable bolts, secondary drilling and blasting to reduce oversize, or simply utility drilling. In line with the variety of possible functions, the Figure 1A Joy DR-1SB hydraulic jumbo drill, which features Intelsense drilling control system and hydrostatic drive for a requirements of drilling equipment for lower profile and tighter turning radius exploration, development and production are dependent on a number of factors. When it comes to exploration drilling, for example, target hole depths and core size are critical to choosing the best rig and tooling. The size of the drilling stations or tunnels is also important to the selection process. According to Boart Longyear, tooling is specific to the core size required. Rods come in different lengths – so you can use 5ft (1.5m) rods if you are drilling in a confined space. Likewise, core barrels come in 5ft or 10ft lengths (1.5m and 3m). On smaller, less powerful rigs, the company recommends freer cutting bits, while also considering the geological formation. The other factor to consider when selecting the right method, rig and tooling is the angle or dip of the hole. -
Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Onshore Oil and Natural Gas Industries
Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Onshore Oil and Natural Gas Industries March 2014 Prepared for Environmental Defense Fund 257 Park Avenue South New York, NY 10010 Prepared by ICF International 9300 Lee Highway Fairfax, VA 22031 blank page Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Onshore Oil and Natural Gas Industries Contents 1. Executive Summary .................................................................................................................... 1‐1 2. Introduction ............................................................................................................................... 2‐1 2.1. Goals and Approach of the Study .............................................................................................. 2‐1 2.2. Overview of Gas Sector Methane Emissions ............................................................................. 2‐2 2.3. Climate Change‐Forcing Effects of Methane ............................................................................. 2‐5 2.4. Cost‐Effectiveness of Emission Reductions ............................................................................... 2‐6 3. Approach and Methodology ....................................................................................................... 3‐1 3.1. Overview of Methodology ......................................................................................................... 3‐1 3.2. Development of the 2011 Emissions Baseline .......................................................................... -
Circular 17 of Double Check)
GEOLOGICAL SURVEY DIVISION operations, (Courtesy of NL Shaffer)................................7 Figure 12. Time/pressure chart of BOP system test. (Courtesy Circular 17 of Double Check) .............................................................9 BLOWOUT PREVENTION Figure 13. Pressure test of blind rams and outer valves on Equipment, Use and Testing spool. (Courtesy of NL Shaffer).......................................9 by Figure 14. Pressure test of blind rams and inner valves on Daniel T. Bertalan spool. (Courtesy of NL Shaffer).....................................10 Lansing, Michigan 1979 Figure 15. Test plug set on drill pipe and pipe rams closed. (Courtesy of NL Shaffer) ................................................10 Figure 16. Pressure test of annular preventer closed on drill Contents pipe. (Courtesy NL Shaffer)...........................................10 INTRODUCTION............................................................... 1 Figure 17. Example of BOP Test Report. (Courtesy of Double Check)............................................................................11 BLOWOUTS ..................................................................... 1 Figure 18. Trip Tank Work Sheet. .........................................12 BLOWOUT PREVENTERS - FUNCTION ........................ 3 Figure 19. Tables for use with Trip Tank Work Sheet. ..........12 RAM PREVENTERS......................................................... 3 Figure 20. 24-hour chart from Pit Volume Totalizer...............13 ANNULAR PREVENTERS.............................................. -
Reserve Pits Mortality Risks to Birds
U.S. Fish & Wildlife Service Reserve Pits Mortality Risks to Birds What is a Reserve Pit? How Do Reserve Pits A reserve pit is an earthen pit Kill Birds? excavated adjacent to a drilling rig and If the reserve pit is commonly used for the disposal of contains oil or oil- drilling muds and fluids in natural gas based products (i.e. or oil fields. The contents of a reserve oil-based drilling pit depends on the type of drilling mud fluids), the pit can used, the formation drilled, and other entrap and kill chemicals added to the well bore during migratory birds and the drilling process. other wildlife. During the drilling process, What is in a Reserve Pit? reserve pits probably Drilling fluids in reserve pits contain do not attract aquatic barium sulfate or barite, bentonite clay, migratory birds such lignosulfonates, and lignites. Drilling as waterfowl due to fluids in reserve pits can also contain human activity and diesel, mineral oil, glycols, chromium, noise. However, once zinc, polypropylene glycol, and the drilling rig and acrylamide copolymers. other equipment are Pedro Ramirez/USFWS Pedro removed from the Reserve pits remaining after well completion attract Fluids used in the hydraulic fracturing well pad, the reserve birds and other wildlife. of a well are sometimes stored in pit is attractive to reserve pits. Hydraulic fracturing birds and other wildlife. entraps birds in the pits and they die fluids can contain surfactants and from exposure and exhaustion. Birds other chemicals used to stimulate oil or Birds are attracted to reserve pits and other wildlife can also fall into natural gas flow. -
Trends in U.S. Oil and Natural Gas Upstream Costs
Trends in U.S. Oil and Natural Gas Upstream Costs March 2016 Independent Statistics & Analysis U.S. Department of Energy www.eia.gov Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. U.S. Energy Information Administration | Trends in U.S. Oil and Natural Gas Upstream Costs i March 2016 Contents Summary .................................................................................................................................................. 1 Onshore costs .......................................................................................................................................... 2 Offshore costs .......................................................................................................................................... 5 Approach .................................................................................................................................................. 6 Appendix ‐ IHS Oil and Gas Upstream Cost Study (Commission by EIA) ................................................. 7 I. Introduction……………..………………….……………………….…………………..……………………….. IHS‐3 II. Summary of Results and Conclusions – Onshore Basins/Plays…..………………..…….… -
Standard Operating Procedure Nine Drilling
STANDARD OPERATING PROCEDURE NINE DRILLING METHODS Modified from U.S. Environmental Protection Agency Environmental Response Team Response Engineering and Analytical Contract Standard Operating Procedures Drilling and Monitoring Well Installation at Hazardous Waste Sites in South Dakota SOP 2150 Version 2.0 (3/18/2003) TABLE OF CONTENTS Page 1.0 SCOPE AND APPLICATION ...............................................................................................1 2.0 METHODS .............................................................................................................................1 2.1 Drilling Methods .............................................................................................................2 2.1.1 Hollow-Stem auger...............................................................................................2 2.1.2 Solid-Stem auger...................................................................................................3 2.1.3 Bucket auger .........................................................................................................4 2.1.4 Direct-Mud rotary.................................................................................................5 2.1.5 Reverse-Air rotary.................................................................................................6 2.1.6 Cable tool..............................................................................................................7 3.0 ADVANTAGES, DISADVANTAGES, AND INTERFERENCES OF THE DRILLING METHODS..........................................................8 -
Drilling Activity
Oil and Gas Wells: Drilling Activity What is Drilling? In the oil and gas industry, drilling is a process that utilizes a mechanical rig Certificate of Restoration (CoR) - that is configured to bore a hole into the earth’s subsurface. Well activities are A CoR is a document issued by the Commission most commonly associated with drilling as wells are used in drilling operations certifying that an abandoned wellsite has been 17.4% for obtaining, developing, storing, injecting and/or the production of oil and restored to meet regulatory requirements. gas. Drilling Operations Abandoned - A well that is permanently closed off when no viable hydrocarbons are discovered or it Drilling operations require an enormous amount of resources, preparation, 13.0 % is depleted and no longer capable of producing expertise and personnel. A number of steps are required to prepare a location profitably. for drilling, to operate a drill site and finally to ultimately reclaim the site. A drilling rig typically consists of power system, hoisting system, rotating Inactive - A well that has not been decommissioned system and circulating system. The power system provides the main power but has not been active for 12 consecutive months. for the rig. The hoisting system raises and lowers the drill string in and out 28.9 % This number includes suspended wells which may of the hole and controls the weight on the drill bit during drilling. The rotating still have equipment on site as the permit holder may system turns the drill string and the drill bit to break the formation rocks. resume drilling in future. -
A Guide to Water Well Casing and Screen Selection
A Guide To Water Well Casing and Screen Selection A Note About Roscoe Moss Company Roscoe Moss Company, publisher of this guide, has been engaged in the development of ground water since the 1890's. Originating as a water well drilling contractor operating in the Southwest, the firm has constructed thousands of wells throughout the United States and in ten foreign countries. In 1926, Roscoe Moss began the manufacture of water well casing and screens. Emphasis on the development of these products has brought the company to the forefront of specialists in the marketing of these materials. Completing its uniqueness as a firm engaged in all phases of ground-water development, Roscoe Moss has an active interest in two large California water utilities serving 1.8 million people. Included in their supply sources are over 500 high capacity water wells. The material contained in this pamphlet is in based on a broad practical knowledge of water well design, construction, operation and maintenance, as well as steel products manufacture. These resources are enhanced by an ongoing systematic research and evaluation program. We are pleased to share the information following, some of which represents proprietary company knowledge and has never before been published. A Guide To Water Well Casing and Screen Selection Table of Contents 1.0..INTRODUCTION ...............................…....................................................... 4 2.0 METHODS OF WELL CONSTRUCTION ...…............................................ 6 2.1 Cable Tool ................................................…..................................... -
Oil Depletion and the Energy Efficiency of Oil Production
Sustainability 2011, 3, 1833-1854; doi:10.3390/su3101833 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Oil Depletion and the Energy Efficiency of Oil Production: The Case of California Adam R. Brandt Department of Energy Resources Engineering, Green Earth Sciences 065, 367 Panama St., Stanford University, Stanford, CA 94305-2220, USA; E-Mail: [email protected]; Fax: +1-650-724-8251 Received: 10 June 2011; in revised form: 1 August 2011 / Accepted: 5 August 2011 / Published: 12 October 2011 Abstract: This study explores the impact of oil depletion on the energetic efficiency of oil extraction and refining in California. These changes are measured using energy return ratios (such as the energy return on investment, or EROI). I construct a time-varying first-order process model of energy inputs and outputs of oil extraction. The model includes factors such as oil quality, reservoir depth, enhanced recovery techniques, and water cut. This model is populated with historical data for 306 California oil fields over a 50 year period. The model focuses on the effects of resource quality decline, while technical efficiencies are modeled simply. Results indicate that the energy intensity of oil extraction in California increased significantly from 1955 to 2005. This resulted in a decline in the life-cycle EROI from ≈6.5 to ≈3.5 (measured as megajoules (MJ) delivered to final consumers per MJ primary energy invested in energy extraction, transport, and refining). Most of this decline in energy returns is due to increasing need for steam-based thermal enhanced oil recovery, with secondary effects due to conventional resource depletion (e.g., increased water cut). -
EXPLORING for OIL and GAS the Earliest Access to Oil and Gas Was Through Surface Such As Canada, Tar Sands Are Mined Similarly to the Expressions
EXPLORING FOR OIL AND GAS The earliest access to oil and gas was through surface such as Canada, tar sands are mined similarly to the expressions. Shallow deposits, along with shallow way coal and metal ores are mined. Today, however, faulting, allowed oil and gas to migrate to the surface almost all commercial oil and gas exploration is from of the land. Societies have accessed oil and gas for wells many thousands of feet deep. (Daniel Yergin, millennia. The Bible, for example, records Noah The Prize: The Epic Quest for Oil, Money and Power, covering the ark with pitch. Similarly, Moses was Free Press, New York, 1990) delivered from death in a basket coated with tar and pitch. Historians believe that the Chinese drilled brine Conventional oil and gas deposits, as opposed to resource plays such as shale oil and gas, are located in (notmodern oil and oil well, gas) drilledwells as by early “Colonel” as 2000 Edwin B.C. TheDrake first permeable rocks, such as sandstone, and are held in near Titusville, Pennsylvania, in 1859 was placed place by a trap. A trap is simply a means of preventing near oil seeps, which were known to both Native further migration of the oil or gas. Four simple traps Americans and European settlers. In some regions, are illustrated (FIGURE 1). FIGURE 1. OIL AND GAS NATURAL GAS TRAPS OIL NATURAL OIL GAS FAULT ANTICLINE TRAP FAULT TRAP FAULT SALT DOME NATURAL NATURAL OIL GAS OIL GAS OIL TRAPS ON SALT DOME FLANKS STRATIGRAPHC TRAP 2 FIGURE 2. SEISMIC SURVEY RECEIVERS RECEIVERS SOURCE A development team, consisting of geoscientists specially equipped to provide the vibrational and engineers, will study the subsurface, consider energy (FIGURE 2).