Genomic and Clinical Characteristics of Microduplications in Chromosome 17 Oleg A

Total Page:16

File Type:pdf, Size:1020Kb

Genomic and Clinical Characteristics of Microduplications in Chromosome 17 Oleg A RESEARCH REVIEW Genomic and Clinical Characteristics of Microduplications in Chromosome 17 Oleg A. Shchelochkov,1,2 S.W. Cheung,1 and J.R. Lupski1,2,3* 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 2Division of Genetics, Department of Pediatrics, University of Iowa, Iowa City, Iowa 3Department of Pediatrics, Baylor College of Medicine, Houston, Texas Received 2 August 2009; Accepted 13 November 2009 Genomic disorders have been increasingly recognized as a sig- nificant source of clinically relevant phenotypes largely fostered How to Cite this Article: by advances in technologies for genome-wide analyses. Molecu- Shchelochkov OA, Cheung SW, Lupski JR. lar and clinical studies of copy number variants involving 2010. Genomic and clinical characteristics of chromosome 17 began with locus-specific studies of Charcot- microduplications in chromosome 17. –Marie–Tooth disease type 1A (CMT1A, OMIM #118220) and Am J Med Genet Part A 152A:1101–1110. hereditary neuropathy with liability to pressure palsies (HNPP, OMIM #162500), which laid the foundation for the paradigm of duplication/deletion and gene-dosage for our understanding of genomic disorders. With the clinical introduction of high-reso- conditions caused by genomic rearrangements are collectively lution array comparative genomic hybridization (aCGH) the defined as genomic disorders [Lupski, 1998, 2009]. Due to the number of recognized genomic disorders including microdupli- limited resolution of conventional cytogenetic techniques, the cations has been increasing rapidly. A relatively high proportion majority of genomic disorders were missed in the past, because of disease-associated copy number variants map to chromosome the genomic rearrangements were not cytogenetically visible. How- 17. This may result from its unique structural features, such as ever, high-resolution array comparative genomic hybridization relative abundance of segmental duplications and interspersed (aCGH) techniques have revolutionized the approach to diagnosis repetitive elements, high gene content, and the presence of of genomic disorders, and enabled the screen of the entire human dosage-sensitive genes. These genomic rearrangements are me- genome for CNVs. Improved detection of various CNVs, both gains diated by diverse mechanisms including Non-Allelic Homolo- and losses, sometimes presents a challenge to determine their gous Recombination (NAHR), Non-Homologous End-Joining potential role in human diseases. (NHEJ), and Fork Stalling and Template Switching (FoSTeS). We Duplications or deletions of regions on chromosome 17 have provide specific examples of chromosome 17 microduplications been implicated in a number of genomic disorders in humans with the emphasis on their phenotype, specific clinical features [Lupski and Stankiewicz, 2005]. Genomic studies have provided us aiding in their diagnosis, and counseling. Ó 2010 Wiley-Liss, Inc. with insight into the complex genomic structure of chromosome 17. This elucidated the framework for our understanding of the Key words: chromosome 17; microduplication; genomotype; mechanisms underlying genomic rearrangements in chromosome NAHR; NJEH; FoSTeS; MMBIR; mechanisms of rearrangement; 17 and their contribution to the clinical phenotypes. This article Potocki–Lupski syndrome; 17p13.3 duplication syndrome reviews (1) clinically relevant microduplications in chromosome 17, (2) discusses the genomic architecture predisposing chromo- some 17 to recurrent and non-recurrent rearrangements, (3) describes Charcot–Marie–Tooth syndrome type 1a (CMT1A) and INTRODUCTION hereditary neuropathy with liability to pressure palsies (HNPP) as a Genomic rearrangements describe mutational changes that alter paradigm for reciprocal rearrangement mechanisms, and (4) pro- genome structure (e.g., duplication, deletion, insertion, and inversion). Theseare different fromthe traditional mutation caused by Watson–Crick base pair alterations. Each of these rearrange- *Correspondence to: J.R. Lupski, M.D., Ph.D., CullenProfessor and Vice Chairman, Department ments, excepting inversions, result in copy number variation of Molecular and Human Genetics, Baylor College of Medicine, One Baylor (CNV) or change from the usual copy number of two for a given Plaza, Houston, TX 77050. E-mail: [email protected] genomic segment or genetic locus of our diploid genome. Genomic Published online 7 April 2010 in Wiley InterScience rearrangements can represent polymorphisms that are neutral in (www.interscience.wiley.com) function, or may produce abnormal phenotypes. The pathological DOI 10.1002/ajmg.a.33248 Ó 2010 Wiley-Liss, Inc. 1101 1102 AMERICAN JOURNAL OF MEDICAL GENETICS PART A vides specific examples of microduplications with the emphasis on NAHR resulting in non-recurrent rearrangements can be medi- their genomotype–phenotype correlations. ated by areas of homology between repetitive elements such as For the purpose of this manuscript, we will be using the term LINEs and SINEs. LINEs are a class of transposable genomic ‘‘genomotype’’ as opposed to ‘‘genotype,’’ to emphasize that a elements of approximately 6 kb in size. They are abundantly present genomic change may convey phenotype irrespective of its gene in chromosome 17 constituting approximately 14% of its final content through either position effects or a regulatory region (e.g., a sequence [Zody et al., 2006]. The most abundant form of LINE, conserved non-coding sequence) encompassed by CNV. Further- retrotransposition-competent L1 contains a 50-UTR segment with more, the phenotypic consequences may relate to the copy number promoter activity, two open reading frames, and a 30-UTR ending change of more than one gene in cis position contained within or with a poly(A). The open reading frames encode proteins with flanking the CNV (i.e., ‘‘cis-genetics’’ as opposed to the ‘‘trans- RNA-binding, endonuclease, and reverse transcriptase activities genetics’’ focus of Mendelism) [Bi et al., 2009]. The need for the new [Hulme et al., 2006]. Autonomous promoter, endonuclease, and term arose from the observation that phenotypes can result from reverse transcriptase activities facilitate random integration of various genomic changes, which may not encompass known transposons instigating LINE-mediated recombination and mobi- genes or may contain multiple genes, only one or some of lization of non-autonomous retrotransposons such as Alu [Hulme which could contribute to the same phenotype. The focus on et al., 2006]. genomotype–phenotype correlations will help elucidate the SINEs are short non-coding retrotransposons, 300–500 bp in ‘‘genomic code’’ of the entire genome, as opposed to the focus on length, thought to have had originated from the RN7SL1 non- the coding sequences, which account for less than 2% of the genome coding RNA [Eickbush and Jamburuthugoda, 2008]. Compared to to which the genetic code and the term ‘‘genotype’’ apply. the average 13% of the human genome content, SINEs form about 22% of the finished chromosome 17 sequence [Zody et al., 2006]. In GENOMIC STRUCTURE OF CHROMOSOME 17 contrast to LINEs, SINEs lack a sequence encoding reverse tran- scriptase, and therefore rely on cellular or autonomous LINE- The finished sequence of human chromosome 17 presented by derived endonuclease and reverse transcriptase activity for genomic Zody et al. [2006] provided us further insight into how its structure integration [Deininger, 2006]. B1 and Alu are the most common predisposes to genomic rearrangements. Structural features of types of SINEs [Goodier and Kazazian, 2008], which due to high chromosome 17 which may predispose to clinically relevant geno- sequence identity can facilitate ectopic homologous recombination mic rearrangements include high gene density, dosage sensitive or NAHR [Deininger and Batzer, 1999]. Interspersed repetitive genes, excess of segmental duplications (SD), and relative abun- elements are sometimes utilized as recombination substrate in dance of short interspersed nucleotide elements (SINE). chromosome band 17p11.2 leading to deletions associated with Chromosome 17 has the second highest gene content amongst all SMS [Shaw and Lupski, 2005], or chromosome band 17p13.3 chromosomes [Zody et al., 2006]. It harbors several dosage-sensi- resulting in either Miller–Dieker syndrome (MDS) or dup(17)- tive genes, including PMP22, PAFAH1B1, YWHAE, RAI1, and NF1, (p13.3) [Bi et al., 2009]. which have been implicated in a number of genomic disorders Another structural feature of chromosome 17 predisposing to [Lupski, 1998, 2009]. Flanked by SD, alternatively termed low-copy non-recurrent rearrangements includes the pericentromeric and repeats (LCRs), these genes are frequently affected by recurrent centromeric regions of 17p and 17q, one of the most variable duplications or deletions resulting in recognizable phenotypes genomic structures in the human genome. They are enriched in [Lupski and Stankiewicz, 2005]. Decreased expression resulting LCRs. Proximal 17p is one of the sixteen pericentromeric regions from a gene deletion causes a phenotype usually similar to that with the most extensive zones of duplications [She et al., 2004]. observed with loss-of-function point mutations, for example, These LCRs are likely responsible for instigating multiple copy nonsense and frame-shift alleles for a ‘‘dosage-sensitive’’ gene. number variants in this genomic region and recurrent i(17q) Increased expression of a dosage-sensitive gene resulting from a rearrangement seen in the human neoplastic cells
Recommended publications
  • Human OMG Blocking Peptide (CDBP2120) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Human OMG blocking peptide (CDBP2120) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Blocking/Immunizing peptide for anti-OMG antibody Antigen Description OMG (oligodendrocyte myelin glycoprotein) is a protein-coding gene. Diseases associated with OMG include patulous eustachian tube, and internuclear ophthalmoplegia, and among its related super-pathways are p75NTR regulates axonogenesis and Development MAG-dependent inhibition of neurite outgrowth. GO annotations related to this gene include identical protein binding. Nature Synthetic Expression System N/A Species Human Species Reactivity Human Conjugate Unconjugated Applications Apuri, BL, ELISA Procedure None Format Lyophilized powder Size 100 μg Preservative None Storage Shipped at ambient temperature, store at -20°C. ANTIGEN GENE INFORMATION Gene Name OMG oligodendrocyte myelin glycoprotein [ Homo sapiens ] Official Symbol OMG Synonyms OMG; oligodendrocyte myelin glycoprotein; oligodendrocyte-myelin glycoprotein; OMGP; Entrez Gene ID 4974 mRNA Refseq NM_002544 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Protein Refseq NP_002535 UniProt ID P23515 Chromosome Location 17q11-q12 Pathway Axonal growth inhibition (RHOA activation), organism-specific biosystem; Signal Transduction, organism-specific biosystem; Signalling by NGF, organism-specific biosystem; p75 NTR receptor-mediated signalling, organism-specific biosystem; p75(NTR)-mediated signaling, organism-specific biosystem; p75NTR regulates axonogenesis, organism-specific biosystem; Function identical protein binding; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 2 © Creative Diagnostics All Rights Reserved.
    [Show full text]
  • Noninvasive Sleep Monitoring in Large-Scale Screening of Knock-Out Mice
    bioRxiv preprint doi: https://doi.org/10.1101/517680; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Noninvasive sleep monitoring in large-scale screening of knock-out mice reveals novel sleep-related genes Shreyas S. Joshi1*, Mansi Sethi1*, Martin Striz1, Neil Cole2, James M. Denegre2, Jennifer Ryan2, Michael E. Lhamon3, Anuj Agarwal3, Steve Murray2, Robert E. Braun2, David W. Fardo4, Vivek Kumar2, Kevin D. Donohue3,5, Sridhar Sunderam6, Elissa J. Chesler2, Karen L. Svenson2, Bruce F. O'Hara1,3 1Dept. of Biology, University of Kentucky, Lexington, KY 40506, USA, 2The Jackson Laboratory, Bar Harbor, ME 04609, USA, 3Signal solutions, LLC, Lexington, KY 40503, USA, 4Dept. of Biostatistics, University of Kentucky, Lexington, KY 40536, USA, 5Dept. of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA. 6Dept. of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA. *These authors contributed equally Address for correspondence and proofs: Shreyas S. Joshi, Ph.D. Dept. of Biology University of Kentucky 675 Rose Street 101 Morgan Building Lexington, KY 40506 U.S.A. Phone: (859) 257-2805 FAX: (859) 257-1717 Email: [email protected] Running title: Sleep changes in knockout mice bioRxiv preprint doi: https://doi.org/10.1101/517680; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Loss of the Tumor Suppressor Spinophilin (PPP1R9B) Increases the Cancer Stem Cell Population in Breast Tumors
    Oncogene (2016) 35, 2777–2788 © 2016 Macmillan Publishers Limited All rights reserved 0950-9232/16 www.nature.com/onc ORIGINAL ARTICLE Loss of the tumor suppressor spinophilin (PPP1R9B) increases the cancer stem cell population in breast tumors I Ferrer1, EM Verdugo-Sivianes1, MA Castilla1, R Melendez1, JJ Marin1,2, S Muñoz-Galvan1, JL Lopez-Guerra3, B Vieites4, MJ Ortiz-Gordillo3, JM De León5, JM Praena-Fernandez6, M Perez1, J Palacios7 and A Carnero1,8 The spinophilin (Spn, PPP1R9B) gene is located at 17q21.33, a region frequently associated with microsatellite instability and loss of heterozygosity, especially in breast tumors. Spn is a regulatory subunit of phosphatase1a (PP1), which targets the catalytic subunit to distinct subcellular locations. Spn downregulation reduces PPP1CA activity against the retinoblastoma protein, pRb, thereby maintaining higher levels of phosphorylated pRb. This effect contributes to an increase in the tumorigenic properties of cells in certain contexts. Here, we explored the mechanism of how Spn downregulation contributes to the malignant phenotype and poor prognosis in breast tumors and found an increase in the stemness phenotype. Analysis of human breast tumors showed that Spn mRNA and protein are reduced or lost in 15% of carcinomas, correlating with a worse prognosis, a more aggressive tumor phenotype and triple-negative tumors, whereas luminal tumors showed high Spn levels. Downregulation of Spn by shRNA increased the stemness properties along with the expression of stem-related genes (Sox2, KLF4, Nanog and OCT4), whereas ectopic overexpression of Spn cDNA reduced these properties. Breast tumor stem cells appeared to have low levels of Spn mRNA, and Spn loss correlated with increased stem-like cell appearance in breast tumors as indicated by an increase in CD44+/CD24- cells.
    [Show full text]
  • Spinophilin-Dependent Regulation of The
    SPINOPHILIN-DEPENDENT REGULATION OF THE PHOSPHORYLATION, PROTEIN INTERACTIONS, AND FUNCTION OF THE GLUN2B SUBUNIT OF THE NMDAR AND ITS IMPLICATIONS IN NEURONAL CELL DEATH by Asma Beiraghi Salek A Dissertation Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy Department of Biology at IUPUI Indianapolis, Indiana December 2020 THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL Dr. AJ Baucum II, Chair Department of Biology Dr. Theodore Cummins Department of Biology Dr. Nicolas Berbari Department of Biology Dr. Yvonne Lai Department of Psychological and Brain Sciences Dr. Andy Hudmon Department of Medicinal Chemistry and Molecular Pharmacology Dr. Jason Meyer Department of Medical and Molecular Genetics Approved by: Dr. Theodore Cummins 2 �ﻮ � ﻮ �ای ﻣﺎ� و �ﺪر و �ای روز� �ﺨﺎ�� ��ﻖ و �ﻤﺎی� ﮫﺎی �ﯽ ��ﻎ و �ﺨﺎ�� � ﻮدﺷﺎن �� �� � ﺧﺎ�ﻢ �ﺸﺎش ﻌ�ﻢ ��� م �ﻪ ﺑﺎ ��ﺮ و ا�تﯿﺎق و �ایت � ﮑﺎو�ﻢ �ای ﻋ�ﻮم ز �ﯽ را �ورا�ﺪ �� و د��ﺮ �ع�� و�ﻦ ��ﺖ �ﻪ ﺑﺎ �ﺮا�ت و دا�ﺶ و �ﮔﺎ�ﯽ �ﻌ� ﻪ ��ﻘﺎت ���و ا�ﺼﺎب را � ذ��ﻢ �ا��و�ﺖ 3 ا�ﺮار ازل را � �ﻮ دا�ﯽ و � �ﻦ � و�ﻦ ﻞ ��ﻤﺎ � �ﻮ �ﻮا�ﯽ و � �ﻦ �� �سﺖ �ز �ﺲ �ده ��ﻮی �ﻦ و � ﻮ �ﻮن �ده �ا��ﺪ � �ﻮ ﻣﺎ�ﯽ و � �ﻦ ﺣ��ﻢ ��� �ﯿﺎم 4 If you keep knocking on a door long enough, sooner or later someone will answer you. 5 ACKNOWLEDGMENTS I would like to acknowledge Dr. A.J.
    [Show full text]
  • Identification of Novel Sleep Related Genes from Large Scale Phenotyping Experiments in Mice
    University of Kentucky UKnowledge Theses and Dissertations--Biology Biology 2017 IDENTIFICATION OF NOVEL SLEEP RELATED GENES FROM LARGE SCALE PHENOTYPING EXPERIMENTS IN MICE Shreyas Joshi University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.159 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Joshi, Shreyas, "IDENTIFICATION OF NOVEL SLEEP RELATED GENES FROM LARGE SCALE PHENOTYPING EXPERIMENTS IN MICE" (2017). Theses and Dissertations--Biology. 42. https://uknowledge.uky.edu/biology_etds/42 This Doctoral Dissertation is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Bioinformatic
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Bioinformatic Comparison of the EVI2A Promoter and Coding Regions A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology By Max Weinstein May 2020 The thesis of Max Weinstein is approved: Professor Rheem D. Medh Date Professor Virginia Oberholzer Vandergon Date Professor Cindy Malone, Chair Date California State University Northridge ii Table of Contents Signature Page ii List of Figures v Abstract vi Introduction 1 Ecotropic Viral Integration Site 2A, a Gene within a Gene 7 Materials and Methods 11 PCR and Cloning of Recombinant Plasmid 11 Transformation and Cell Culture 13 Generation of Deletion Constructs 15 Transfection and Luciferase Assay 16 Identification of Transcription Factor Binding Sites 17 Determination of Region for Analysis 17 Multiple Sequence Alignment (MSA) 17 Model Testing 18 Tree Construction 18 Promoter and CDS Conserved Motif Search 19 Results and Discussion 20 Choice of Species for Analysis 20 Mapping of Potential Transcription Factor Binding Sites 20 Confirmation of Plasmid Generation through Gel Electrophoresis 21 Analysis of Deletion Constructs by Transient Transfection 22 EVI2A Coding DNA Sequence Phylogenetics 23 EVI2A Promoter Phylogenetics 23 EVI2A Conserved Leucine Zipper 25 iii EVI2A Conserved Casein kinase II phosphorylation site 26 EVI2A Conserved Sox-5 Binding Site 26 EVI2A Conserved HLF Binding Site 27 EVI2A Conserved cREL Binding Site 28 EVI2A Conserved CREB Binding Site 28 Summary 29 Appendix: Figures 30 Literature Cited 44 iv List of Figures Figure 1. EVI2A is nested within the gene NF1 30 Figure 2 Putative Transcriptions Start Site 31 Figure 3. Gel Electrophoresis of pGC Blue cloned, Restriction Digested Plasmid 32 Figure 4.
    [Show full text]
  • Discoveryspace: an Interactive Data Analysis Application
    Open Access Software2007RobertsonetVolume al. 8, Issue 1, Article R6 DiscoverySpace: an interactive data analysis application comment Neil Robertson, Mehrdad Oveisi-Fordorei, Scott D Zuyderduyn, Richard J Varhol, Christopher Fjell, Marco Marra, Steven Jones and Asim Siddiqui Address: Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre (BCCRC), British Columbia Cancer Agency (BCCA), Vancouver, BC, Canada. reviews Correspondence: Neil Robertson. Email: [email protected]. Mehrdad Oveisi-Fordorei. Email: [email protected]. Asim Siddiqui. Email: [email protected] Published: 08 January 2007 Received: 24 March 2006 Revised: 4 July 2006 Genome Biology 2007, 8:R6 (doi:10.1186/gb-2007-8-1-r6) Accepted: 8 January 2007 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2007/8/1/R6 reports © 2007 Robertson et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Interactive<p>DiscoverySpace, data analysis a graphical application for bioinformatics data analysis, in particular analysis of SAGE data, is described</p> deposited research Abstract DiscoverySpace is a graphical application for bioinformatics data analysis. Users can seamlessly traverse references between biological databases and draw together annotations in an intuitive tabular interface. Datasets can be compared using a suite of novel tools to aid in the identification of significant patterns. DiscoverySpace is of broad utility and its particular strength is in the analysis of serial analysis of gene expression (SAGE) data.
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination
    Mapping of craniofacial traits in outbred mice identifies major developmental genes involved in shape determination Luisa F Pallares1, Peter Carbonetto2,3, Shyam Gopalakrishnan2,4, Clarissa C Parker2,5, Cheryl L Ackert-Bicknell6, Abraham A Palmer2,7, Diethard Tautz1 # 1Max Planck Institute for Evolutionary Biology, Plön, Germany 2University of Chicago, Chicago, Illinois, USA 3AncestryDNA, San Francisco, California, USA 4Museum of Natural History, Copenhagen University, Copenhagen, Denmark 5Middlebury College, Department of Psychology and Program in Neuroscience, Middlebury VT, USA 6Center for Musculoskeletal Research, University of Rochester, Rochester, NY USA 7University of California San Diego, La Jolla, CA, USA # corresponding author: [email protected] short title: craniofacial shape mapping Abstract The vertebrate cranium is a prime example of the high evolvability of complex traits. While evidence of genes and developmental pathways underlying craniofacial shape determination 1 is accumulating, we are still far from understanding how such variation at the genetic level is translated into craniofacial shape variation. Here we used 3D geometric morphometrics to map genes involved in shape determination in a population of outbred mice (Carworth Farms White, or CFW). We defined shape traits via principal component analysis of 3D skull and mandible measurements. We mapped genetic loci associated with shape traits at ~80,000 candidate single nucleotide polymorphisms in ~700 male mice. We found that craniofacial shape and size are highly heritable, polygenic traits. Despite the polygenic nature of the traits, we identified 17 loci that explain variation in skull shape, and 8 loci associated with variation in mandible shape. Together, the associated variants account for 11.4% of skull and 4.4% of mandible shape variation, however, the total additive genetic variance associated with phenotypic variation was estimated in ~45%.
    [Show full text]
  • Systems Genetics Analysis of the LXS Recombinant Inbred Mouse Strains:Genetic and Molecular Insights Into Acute Ethanol Tolerance
    PLOS ONE RESEARCH ARTICLE Systems genetics analysis of the LXS recombinant inbred mouse strains:Genetic and molecular insights into acute ethanol tolerance 1,2 3,4,5 3 3 Richard A. RadcliffeID *, Robin DowellID , Aaron T. Odell , Phillip A. RichmondID , 1 1 6 1 Beth Bennett , Colin LarsonID , Katerina KechrisID , Laura M. SabaID , 7 6 Pratyaydipta RudraID , Shi WenID a1111111111 1 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America, 2 Institute for Behavioral Genetics, University of Colorado a1111111111 Boulder, Boulder CO, United States of America, 3 BioFrontiers Institute, University of Colorado Boulder, a1111111111 Boulder, CO, United States of America, 4 Department of Molecular, Cellular, and Developmental Biology, a1111111111 University of Colorado Boulder, Boulder, CO, United States of America, 5 Department of Computer Science, a1111111111 University of Colorado Boulder, Boulder, CO, United States of America, 6 Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America, 7 Department of Statistics, Oklahoma State University, Stillwater, OK, United States of America * [email protected] OPEN ACCESS Citation: Radcliffe RA, Dowell R, Odell AT, Richmond PA, Bennett B, Larson C, et al. (2020) Abstract Systems genetics analysis of the LXS recombinant inbred mouse strains:Genetic and molecular We have been using the Inbred Long- and Short-Sleep mouse strains (ILS, ISS) and a insights into acute ethanol tolerance. PLoS ONE recombinant inbred panel derived from them, the LXS, to investigate the genetic underpin- 15(10): e0240253. https://doi.org/10.1371/journal.
    [Show full text]
  • Live-Cell Imaging Rnai Screen Identifies PP2A–B55α and Importin-Β1 As Key Mitotic Exit Regulators in Human Cells
    LETTERS Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells Michael H. A. Schmitz1,2,3, Michael Held1,2, Veerle Janssens4, James R. A. Hutchins5, Otto Hudecz6, Elitsa Ivanova4, Jozef Goris4, Laura Trinkle-Mulcahy7, Angus I. Lamond8, Ina Poser9, Anthony A. Hyman9, Karl Mechtler5,6, Jan-Michael Peters5 and Daniel W. Gerlich1,2,10 When vertebrate cells exit mitosis various cellular structures can contribute to Cdk1 substrate dephosphorylation during vertebrate are re-organized to build functional interphase cells1. This mitotic exit, whereas Ca2+-triggered mitotic exit in cytostatic-factor- depends on Cdk1 (cyclin dependent kinase 1) inactivation arrested egg extracts depends on calcineurin12,13. Early genetic studies in and subsequent dephosphorylation of its substrates2–4. Drosophila melanogaster 14,15 and Aspergillus nidulans16 reported defects Members of the protein phosphatase 1 and 2A (PP1 and in late mitosis of PP1 and PP2A mutants. However, the assays used in PP2A) families can dephosphorylate Cdk1 substrates in these studies were not specific for mitotic exit because they scored pro- biochemical extracts during mitotic exit5,6, but how this relates metaphase arrest or anaphase chromosome bridges, which can result to postmitotic reassembly of interphase structures in intact from defects in early mitosis. cells is not known. Here, we use a live-cell imaging assay and Intracellular targeting of Ser/Thr phosphatase complexes to specific RNAi knockdown to screen a genome-wide library of protein substrates is mediated by a diverse range of regulatory and targeting phosphatases for mitotic exit functions in human cells. We subunits that associate with a small group of catalytic subunits3,4,17.
    [Show full text]
  • Coordinated Downregulation of Spinophilin and the Catalytic Subunits of PP1, PPP1CA/B/C, Contributes to a Worse Prognosis in Lung Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 62), pp: 105196-105210 Research Paper Coordinated downregulation of Spinophilin and the catalytic subunits of PP1, PPP1CA/B/C, contributes to a worse prognosis in lung cancer Eva M. Verdugo-Sivianes1,2, Lola Navas1,2, Sonia Molina-Pinelo1,2, Irene Ferrer2,3, Alvaro Quintanal-Villalonga3, Javier Peinado1,4, Jose M. Garcia-Heredia1,2,5, Blanca Felipe-Abrio1,2, Sandra Muñoz-Galvan1,2, Juan J. Marin1,2,6, Luis Montuenga2,7, Luis Paz-Ares2,3 and Amancio Carnero1,2 1Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain 2CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain 3H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre and CNIO, Madrid, Spain 4Radiation Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain 5Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain 6Department of Predictive Medicine and Public Health, Universidad de Sevilla, Sevilla, Spain 7Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain Correspondence to: Amancio Carnero, email: [email protected] Keywords: Spinophilin; PP1; biomarker; lung cancer; therapy Received: May 13, 2017 Accepted: September 03, 2017 Published: October 26, 2017 Copyright: Verdugo-Sivianes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]