A peer-reviewed version of this preprint was published in PeerJ on 18 February 2020. View the peer-reviewed version (peerj.com/articles/8114), which is the preferred citable publication unless you specifically need to cite this preprint. Heckeberg NS. 2020. The systematics of the Cervidae: a total evidence approach. PeerJ 8:e8114 https://doi.org/10.7717/peerj.8114 A comprehensive approach towards the systematics of Cervidae Nicola S Heckeberg Corresp., 1, 2, 3 , Gert Wörheide 1, 2, 4 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany 2 SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany 3 Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany 4 Geobio-CenterLMU, Munich, Germany Corresponding Author: Nicola S Heckeberg Email address:
[email protected] Systematic relationships of cervids have been controversial for decades. Despite new input from molecular systematics, consensus could only be partially reached. The initial, gross (sub)classification based on morphology and comparative anatomy was mostly supported by molecular data. The rich fossil record of cervids has never been extensively tested in phylogenetic frameworks concerning potential systematic relationships of fossil cervids to extant cervids. The aim of this work was to investigate the systematic relationships of extant and fossil cervids using molecular and morphological characters and make implications about their evolutionary history based on the phylogenetic reconstructions. To achieve these objectives, molecular data were compiled consisting of five nuclear markers and the complete mitochondrial genome of 50 extant and one fossil cervid species. Several analyses using different data partitions, taxon sampling, partitioning schemes, and optimality criteria were undertaken.