The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health Philip J

Total Page:16

File Type:pdf, Size:1020Kb

The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health Philip J A Section 508–conformant HTML version of this article is available at http://dx.doi.org/10.1289/ehp.1409247. Commentary The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health Philip J. Landrigan,1 Robert O. Wright,1 Jose F. Cordero,2 David L. Eaton,3 Bernard D. Goldstein,4 Bernhard Hennig,5 Raina M. Maier,6 David M. Ozonoff,7 Martyn T. Smith,8 and Robert H. Tukey9 1Icahn School of Medicine at Mount Sinai, New York, New York, USA; 2University of Puerto Rico Graduate School of Public Health, San Juan, Puerto Rico; 3School of Public Health, University of Washington, Seattle, Washington, USA; 4Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; 5University of Kentucky College of Agriculture, Food and Environment, Lexington, Kentucky, USA; 6Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona, USA; 7Boston University School of Public Health, Boston, Massachusetts, USA; 8School of Public Health, University of California, Berkeley, Berkeley, California, USA; 9University of California, San Diego, La Jolla, California, USA petroleum industries, the two major producers BACKGROUND: The Superfund Research Program (SRP) is an academically based, multidisciplinary, of toxic wastes. Many of the new sites then translational research program that for 25 years has sought scientific solutions to health and being recognized were the result of actions environmental problems associated with hazardous waste sites. SRP is coordinated by the by parties long gone. The purpose of the tax National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business was to provide resources to remediate these Innovation Research (SBIR) and Technology Transfer Research (STTR) grants. orphaned sites. One of the first actions taken under RESULTS: SRP has had many successes: discovery of arsenic’s toxicity to the developing human central nervous system; documentation of benzene toxicity to hematologic progenitor cells in the Superfund Act was the expenditure of human bone marrow; development of novel analytic techniques such as the luciferase expression more than $100 million to clean up dioxin- assay and laser fragmentation fluorescence spectroscopy; demonstration that PCBs can cause contaminated waste oil that had been developmental neurotoxicity at low levels and alter the genomic characteristics of sentinel animals; dumped to control dust on dirt roads in the elucidation of the neurodevelopmental toxicity of organophosphate insecticides; documentation rural community of Times Beach, Missouri. of links between antimicrobial agents and alterations in hormone response; discovery of biological The U.S. EPA purchased the entire town for mechanisms through which environmental chemicals may contribute to obesity, atherosclerosis, $35 million and then bulldozed it down. diabetes, and cancer; tracking the health and environmental effects of the attacks on the World Huge incinerators were built to burn not Trade Center and Hurricane Katrina; and development of novel biological and engineering only all of the homes and belongings in the techniques to facilitate more efficient and lower-cost remediation of hazardous waste sites. community, but the topsoil from the dirt CONCLUSION: SRP must continue to address the legacy of hazardous waste in the United States, roads (Hernan 2010). respond to new issues caused by rapid advances in technology, and train the next generation of The Superfund tax on the oil and leaders in environmental health science while recognizing that most of the world’s worst toxic hot chemical industries expired in 1995. Today, spots are now located in low- and middle-income countries. cleanup of hazardous waste sites is funded CITATION: Landrigan PJ, Wright RO, Cordero JF, Eaton DL, Goldstein BD, Hennig B, Maier RM, through general tax revenues, but the other Ozonoff DM, Smith MT, Tukey RH. 2015. The NIEHS Superfund Research Program: 25 years important components of CERCLA have of translational research for public health. Environ Health Perspect 123:909–918; http://dx.doi. org/10.1289/ehp.1409247 survived. In 1986, major enhancements were put in place via the Superfund Amendments and Reauthorization Act (SARA) of 1986 Introduction sludge to bubble up into the basements of (U.S. EPA 1986), the version of the law Twenty-five years ago, the U.S. Congress the overlying homes. Waste chemicals also currently in force. The U.S. EPA was assigned first set aside funds to address fundamental contaminated nearby streams. By the time responsibility for identifying, listing, cleaning research needs for the nation’s hazardous it was recognized as a hazardous waste site, up, and remediating hazardous waste sites waste problem with the Comprehensive Love Canal contained an estimated 21,000 through its Office of Solid Waste and Environmental Response, Compensation, tons of discarded chemicals consisting of Emergency Response (OSWER). The list and Liability Act (CERCLA) of 1980 [U.S. “caustics, alkalines, fatty acids and chlorinated was known as The National Priorities List Environmental Protection Agency (EPA) hydrocarbons” and was linked to a high rate (NPL) (U.S. EPA 2013b). A new agency, 2011]. At the time, the United States was of miscarriages, birth defects, and other health the Agency for Toxic Substances and Disease galvanized by the discovery of a massive disorders in surrounding neighborhoods (New Registry (ATSDR), was created under the act chemical waste disposal site at the Love Canal York State Department of Health 1981). and assigned responsibility for conducting in Niagara Falls, New York (New York State Within a few years a second major waste site health assessments of populations living near Department of Health 1981), an event that was discovered near Louisville, Kentucky. hazardous waste sites, with special emphasis forcefully put the legacy of many years of Known as the “Valley of the Drums,” the site on children. ATSDR is co-located in Atlanta, improper waste disposal on the public agenda. contained thousands of 55-gal drums full of Georgia, with the Centers for Disease The Love Canal, an unused conduit between chemical wastes that had accumulated over Control and Prevention (CDC). Lake Erie and Lake Ontario, had been used many decades. by the Hooker Chemical Company (later At that time, it became clear to policy Address correspondence to P.J. Landrigan, a subsidiary of the Occidental Petroleum makers and the American public that Department of Preventive Medicine, Icahn School of Company) since the 1940s as a dumping hazardous waste was an environmental Medicine at Mount Sinai, One Gustave L. Levy Place, ground for toxic waste. Once filled with and public health emergency. In response, Box 1057, New York, NY 10029 USA. Telephone: chemical waste, the canal was covered with the U.S. Congress passed CERCLA on (212) 824-7018. E-mail: [email protected] a clay seal in 1953, and homes and a school 11 December 1980. This law became known The authors declare they have no actual or potential competing financial interests. were built atop it. The waste did not stay as the Superfund Act because it authorized Received: 22 September 2014; Accepted: 12 May underground. The canal filled with water, and the creation of a large fund supported by a 2015; Advance Publication: 15 May 2015; Final by 1976 heavy rains regularly caused toxic tax on the chemical manufacturing and Publication: 1 October 2015. Environmental Health Perspectives • VOLUME 123 | NUMBER 10 | October 2015 909 Landrigan et al. The Superfund Research Program (SRP). One unique aspect is the requirement for that can be applied in the United States. For SRP was launched in 1987. It was established an integrated suite of research projects that example, the UC San Diego SRP represents by the Congress to provide scientific support includes a minimum of two biomedical SRP on the Good Neighbor Environmental for the U.S. EPA and ATSDR hazardous projects and two environmental science or Board (GNEB), an independent federal waste programs and funded through a small engineering projects (Suk and Anderson advisory committee that provides guidance set-aside from the Superfund Trust. SRP’s 1999; Suk et al. 1999). There may be as to the President and the Congress on envi- mission is to “seek solutions to the complex many as 12 components organized around a ronmental challenges along the U.S.–Mexico health and environmental issues associated common theme and supported by core facili- border (U.S. EPA 2014). Another major with the nation’s hazardous waste sites with ties. The mandatory pairing of environmental SRP presence on the U.S.–Mexico border the ultimate goal of improving public health.” research with biomedical research is unique in is the Dean Carter Binational Center for It has worked to provide answers to impor- the NIH portfolio. Environmental Health Sciences, a partner- tant scientific questions: How clean must a Each SRP must include a) an ship between the University of Arizona, UC site be? And how might a site be remediated Administrative Core that promotes cross- San Diego, and Texas A&M SRPs and 11 to maximum effect and at minimum cost? disciplinary interactions, and is responsible Mexican universities and research institutes Chemical mixtures posed a particular chal- for oversight and liaison; b) a Research (University of Arizona 2014). Its goal is to lenge
Recommended publications
  • Toxic Residents: Health and Citizenship at Love Canal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bucknell University Bucknell University Bucknell Digital Commons Faculty Journal Articles Faculty Scholarship Fall 2016 Toxic Residents: Health and Citizenship at Love Canal Jennifer Thomson Bucknell University, [email protected] Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_journ Part of the Other History Commons, and the United States History Commons Recommended Citation Thomson, Jennifer. "Toxic Residents: Health and Citizenship at Love Canal." Journal of Social History (2016) : 204-223. This Article is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It has been accepted for inclusion in Faculty Journal Articles by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. Journal of Social History Advance Access published December 19, 2015 JENNIFER THOMSON Toxic Residents: Health and Citizenship at Love Canal Abstract Downloaded from This article investigates the relationship between American political culture and grassroots environmentalism in the 1970s. To do so, it examines how the white working class residents of Love Canal, New York, claimed health and a healthy en- vironment as rights of citizenship. To date, the Canal has remained a sore spot for environmental scholarship; this article demonstrates how the analytic difficulties http://jsh.oxfordjournals.org/ posed by the Canal stem from the crosscurrents of American political culture in the late 1970s. Canal residents put their local experience into several larger frames of reference: the rights and responsibilities of citizenship, the plight of Cuban and Vietnamese refugees, and a culture of skepticism toward government and medical authority.
    [Show full text]
  • Approaches for Assessing Health Risks from Complex Mixtures in Indoor Air: a Panel Overview by Carol J
    Environmental Health Perspectives Vol. 95, pp. 135-143, 1991 Approaches for Assessing Health Risks from Complex Mixtures in Indoor Air: A Panel Overview by Carol J. Henry,* Lawrence Fishbein,* William J. Meggs,t Nicholas A. Ashford,' Paul A. Schulte,§ Henry Anderson,/' J. Scott Osborne,' and Daniel W. Sepkovictt Critical to a more definitive human health assessment ofthe potential health risks from exposure to complex mixtures in indoor air is the need for a more definitive clinical measure and etiology ofthe helath effects ofcomplex mixtures. This panel overview highlights six ofthe eight presentations ofthe conference panel discussion and features a number ofthe major topical areas of indoor air concern. W. G. Meggs assessed clinical research priorities with primary focus on the role ofvolatile organic chemicals in human health, recognizing the areas where definitive data are lacking. By recogniz- ing many types ofchemical sensitivity, it may be possible to design studies that can illuminate the mechanisms by which chemical exposure may cause disease. The critically important topic of multiple chemical sensitivity was discussed by N. A. Ashford, who identified four high risk groups and defined the demographics ofthese groups. P. A. Schulte address- ed the issue ofbiological markers ofsusceptibility with specific considerations ofboth methodologia and societal aspects that may be operative in the ability to detect innate or inborne differences between individuals and populations. Three case studies were reviewed. H. Anderson discussed the past and present priorities from a public health perspective, focusing on those issues dealing with exposures to environmental tobacco smoke and formaldehyde off-gassing from materials used in mobile homeconstruction.
    [Show full text]
  • AN INTRODUCTION to AQUATIC TOXICOLOGY This Page Intentionally Left Blank €ƒÂ€ an INTRODUCTION to AQUATIC TOXICOLOGY
    AN INTRODUCTION TO AQUATIC TOXICOLOGY This page intentionally left blank AN INTRODUCTION TO AQUATIC TOXICOLOGY MIKKO NIKINMAA Professor of Zoology, Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, Finland AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic press is an imprint of Elsevier Academic Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA Copyright © 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
    [Show full text]
  • Genetic and Molecular Ecotoxicology: a Research Framework
    Genetic and Molecular Ecotoxicology: A Research Framework Susan Anderson,1 Walter Sadinski,1 Lee Shugart,2 Peter Brussard,3 Michael Depledge,4 Tim Ford,5 JoEllen Hose,6 John Stegeman,7 William Suk,8 Isaac Wirgin,9 and Gerald Wogan0 1Lawrence Berkeley Laboratory, Berkeley, California; 2Oak Ridge National Laboratory, Oak Ridge, Tennessee; 3University of Nevada Reno, Reno, Nevada; 4University of Plymouth, Plymouth, UK; 5Harvard University, Cambridge, Massachusetts; 6 CCidental College, Los Angeles, California; 7Woods Hole Oceanographic Institute, Woods Hole, Massachusetts; 8National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; 9New York University Medical Center, Tuxedo, New York; 10Massachusetts Institute of Technology, Cambridge, Massachusetts Participants at the Napa Conference on Genetic and Molecular Ecotoxicology assessed the status of this field in light of heightened concerns about the genetic effects of exposure to hazardous substances and recent advancements in our capabilities to measure those effects. We present here a synthesis of the ideas discussed throughout the conference, including definitions of important concepts in the field and critical research needs and opportunities. While there were many opinions expressed on these topics, there was general agreement that there are substantive new opportuni- ties to improve the impact of genetic and molecular ecotoxicology on prediction of sublethal effects of exposure to hazardous substances. Future studies should emphasize integration of genetic ecotoxicology, ecological genetics, and molecular biology and should be directed toward improving our understanding of the ecological implications of genotoxic responses. Ecological implications may be assessed at either the population or ecosys- tem level; however, a population-level focus may be most pragmatic.
    [Show full text]
  • Shortcomings of the Laboratory-Derived Median Lethal Concentration for Predicting Mortality in Field Populations: Exposure Duration and Latent Mortality
    Environmental Toxicology and Chemistry, Vol. 23, No. 9, pp. 2147±2153, 2004 q 2004 SETAC Printed in the USA 0730-7268/04 $12.00 1 .00 SHORTCOMINGS OF THE LABORATORY-DERIVED MEDIAN LETHAL CONCENTRATION FOR PREDICTING MORTALITY IN FIELD POPULATIONS: EXPOSURE DURATION AND LATENT MORTALITY YUAN ZHAO* and MICHAEL C. NEWMAN Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Gloucester Point, Virginia 23062-1346, USA (Received 15 October 2003; Accepted 9 February 2004) AbstractÐExposure duration and intensity (concentration or dose) determine lethal effects of toxicants. However, environmental regulators have focused on exposure intensity and have considered duration only peripherally. Conventional testing for toxicology tends to ®x exposure time and to use the median lethal concentration (LC50) at that time to quantify mortality. Fixing the exposure duration and selecting the 50% mortality level for reasons of statistical and logistical convenience result in the loss of ecologically relevant information generated at all other times and ignore latent mortality that manifests after the exposure ends. In the present study, we used survival analysis, which is widely employed in other ®elds, to include both time and concentration as covariates and to quantify latent mortality. This was done with two contrasting toxicants, copper sulfate (CuSO4) and sodium pentachlorophenol (NaPCP). Amphipods (Hyalella azteca) were exposed to different toxicant concentrations, and the percentage mortalities were noted both during and after the exposure ended. For CuSO4 at the conventional 48-h LC50 concentrations, the predicted proportions dead after including latent mortality were 65 to 85%, not 50%.
    [Show full text]
  • Love Canal Follow-Up Health Study
    Love Canal Follow-up Health Study Prepared by the Division of Environmental Health Assessment Center for Environmental Health New York State Department of Health for the U.S. Department of Health and Human Services Agency for Toxic Substances and Disease Registry In memory of Charlene M. Spampinato and her longstanding dedication to the Love Canal project. October 2008 State of New York Funding Provided by Department of Health United States Agency for Toxic Substances and Disease Registry CONTENTS Page LIST OF ABBREVIATIONS………………………………………………....................iii LIST OF FIGURES.……………………………………………………………...............iv LIST OF TABLES ……………………………………………………………….............v LIST OF APPENDICES....…...…...…..…………………………………………...........vii EXECUTIVE SUMMARY………………………………………………………….........1 INTRODUCTION………………………………………………………………………..5 Love Canal History……………………………………………………….6 Environmental Sampling………………………………………………….8 Study Area………………………………………………….....................10 Review of Earlier Love Canal Health Studies…………………………...11 Community Involvement………………………………………………...15 Study Objectives…………………………………………………………17 METHODS………………………………………………………………………………19 Study Population……………………………………………………........19 Comparison Populations………………………………………………....20 Tracing Former Love Canal Residents…………………………………..20 Exposure Assessment………………………………………………........22 Outcome Assessment……………………………………………….…....25 Mortality…………………………………………………….…...25 Cancer Incidence………………………………………………....26 Reproductive Outcomes……………………………………….…28 Potential Confounders…………………………………………………....31
    [Show full text]
  • Indoor Air Quality Factors in Designing a Healthy Building,” Annual
    Spengler, J.D. and Chen, Q. 2000. “Indoor air quality factors in designing a healthy building,” Annual Review of Energy and the Environment, 25, 567-600. Indoor Air Quality Factors in Designing a Healthy Building John D. Spengler School of Public Health, Harvard University, 665 Huntington Avenue, Boston, Massachusetts 02115; e-mail: [email protected] Qingyan (Yan) Chen Building Technology Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139; e-mail: [email protected] KEY WORDS: regulations, contaminant sources, building materials and systems, ventilation models, design tools Shortened title: IAQ in Designing a Healthy Building Abstract Current guidelines for green buildings are cursory and inadequate for specifying materials and designing ventilation systems to ensure a healthful indoor environment, i.e. a “healthy building,” by design. Public perception, cultural preferences, litigation trends, current codes and regulations, rapid introduction of new building materials and commercial products, as well as the prevailing design-build practices, pose challenges to systems integration in the design, construction and operation phases of modern buildings. We are on the verge of a paradigm shift in ventilation design thinking. In the past, thermal properties of air within a zone determined heating, ventilating, and air- conditioning (HVAC) specifications. In the future, occupant-specific and highly responsive systems will become the norm. Natural ventilation, displacement ventilation, microzoning with subfloor plenums, along with the use of point of source heat control and point of use sensors, will evolve to create a "smart" responsive ventilation-building dynamic system. Advanced ventilation design tools such as the modeling of computational fluid dynamics (CFD) will be used routinely.
    [Show full text]
  • Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in the Great Lakes
    Hdb Env Chem Vol. 5, Part N (2006): 71–150 DOI 10.1007/698_5_040 © Springer-Verlag Berlin Heidelberg 2005 Published online: 2 December 2005 Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in the Great Lakes Ross J. Norstrom Centre for Analytical and Environmental Chemistry, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada [email protected] 1Introduction................................... 73 2 Occurrence and Geographical Distribution .................. 75 2.1 Air........................................ 75 2.1.1ConcentrationsinAir.............................. 75 2.1.2AirDepositionModels............................. 78 2.2 Water....................................... 83 2.2.1SaginawRiver.................................. 83 2.2.2DetroitRiver................................... 84 2.2.3NiagaraRiver.................................. 85 2.3 LakeSediments................................. 86 2.4 RiverandBaySediments............................ 91 2.4.1 Fox River/GreenBaySediments........................ 91 2.4.2LakeSuperiorBaySediments.......................... 91 2.4.3 Saginaw River/SaginawBaySediments.................... 92 2.4.4DetroitRiverSediments............................. 94 2.4.5NiagaraRiverSediments............................ 95 2.5 Fish........................................ 97 2.5.1 Surveys of 2378-TeCDD and 2378-TeCDF . ................ 98 2.5.2ComprehensiveSurveys............................. 103 2.6 SeabirdsandSnappingTurtleEggs...................... 107 2.6.1HerringGullEggs...............................
    [Show full text]
  • European Centre for Ecotoxicology and Toxicology of Chemicals
    EUROPEAN CENTRE FOR ECOTOXICOLOGY AND TOXICOLOGY OF CHEMICALS EUROPEAN CENTRE FOR ECOTOXICOLOGY AND TOXICOLOGY OF CHEMICALS ECETOC at a glance 2 Purpose 3 Values 3 Vision 3 Mission 3 Approach 3 Membership 4 ECETOC Member Companies 4 Membership benefits 5 Message from the Chairman 6 ECETOC Board of Administration 7 Report from the Secretary General 8 Science Programme 10 Foreword from the Scientific Committee Chairman 10 ECETOC revises its science strategy 11 Summary of the 2011 Science Programme 12 Highlights of 2011 15 Task forces established 16 Task forces completed 18 Workshops 21 Symposia and other meetings 24 Science Awards 28 Long-range Research Initiative 29 Communication 31 Publications 31 Online communication 32 External Representation 32 Members of the Scientific Committee 34 Members of the Secretariat 34 Finance 35 Abbreviations 36 ECETOC I European Centre for Ecotoxicology and Toxicology of Chemicals I Annual Report 2011 I page 2 Introduction Membership Message Board of Report from Science Science Long-range Communication Members of Finance Abbreviations from the Administration the Secretary Programme Awards Research the Scientific Chairman General Initiative Committee Established in 1978, ECETOC is Europe’s leading industry association for developing and promoting top quality science in human and environmental risk assessment of chemicals. Members include the main companies with interests in the manufacture and use of chemicals, biomaterials and pharmaceuticals, and organisations active in these fields. ECETOC is the scientific forum where member company experts meet and co-operate with government and academic scientists, to evaluate and assess the available data, identify gaps in knowledge and recommend research, and publish critical reviews on the ecotoxicology and toxicology of chemicals, biomaterials and pharmaceuticals.
    [Show full text]
  • Toxicity and Assessment of Chemical Mixtures
    Toxicity and Assessment of Chemical Mixtures Scientific Committee on Health and Environmental Risks SCHER Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR Scientific Committee on Consumer Safety SCCS Toxicity and Assessment of Chemical Mixtures The SCHER approved this opinion at its 15th plenary of 22 November 2011 The SCENIHR approved this opinion at its 16th plenary of 30 November 2011 The SCCS approved this opinion at its 14th plenary of 14 December 2011 1 Toxicity and Assessment of Chemical Mixtures About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) and are made up of external experts. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCCS The Committee shall provide opinions on questions concerning all types of health and safety risks (notably chemical, biological, mechanical and other physical risks) of non- food consumer products (for example: cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.).
    [Show full text]
  • A Superfund Solution for an Economic Love Canal
    Pace Law Review Volume 30 Issue 1 Fall 2009 Real Property, Mortgages, and the Economy: A Article 22 Call for Ethics and Reforms September 2009 A Superfund Solution for an Economic Love Canal Mehmet K. Konar-Steenberg William Mitchell College of Law Follow this and additional works at: https://digitalcommons.pace.edu/plr Part of the Banking and Finance Law Commons, and the Property Law and Real Estate Commons Recommended Citation Mehmet K. Konar-Steenberg, A Superfund Solution for an Economic Love Canal, 30 Pace L. Rev. 310 (2009) Available at: https://digitalcommons.pace.edu/plr/vol30/iss1/22 This Article is brought to you for free and open access by the School of Law at DigitalCommons@Pace. It has been accepted for inclusion in Pace Law Review by an authorized administrator of DigitalCommons@Pace. For more information, please contact [email protected]. A Superfund Solution for an Economic Love Canal Mehmet K. Konar-Steenberg* ´7KHUHLVVLPSO\QRJRRGUHDVRQIRUXVWRUHVSRQGWRRQHW\SHRI release of a poison, but not another. The test should not be whether poison was released into river water rather than into well water; or by toxic waste buried in the ground rather than toxic waste discharged to the ground. The test should be whether the poison was released. I assure you that the victim GRHV QRW FDUH WR PDNH WKRVH GLVWLQFWLRQV QRU VKRXOG ZHµ Senator Robert T. Stafford1 Introduction Consider this scenario: A profitable but hazardous LQGXVWU\·V ZRUVW-case risks come to pass. Neighborhoods are boarded-up and residents dislocated. Poor and minority communities are hit particularly hard because they offered the OHDVW UHVLVWDQFH WR WKH LQGXVWU\·V TXHVWLRQDEOH SUDFWLFHV³ practices virtually unregulated by the government and undeterred by the tort system.
    [Show full text]
  • ECETOC Guidance on Dose Selection
    ECETOC Guidance on Dose Selection Technical Report No. 138 EUROPEAN CENTRE OFOR EC TOXICOLOGY AND TOXICOLOGY OF CHEMICALS ECETOC Guidance on Dose Selection ECETOC Guidance on Dose Selection Technical Report No. 138 Brussels, March 2021 ISSN-2079-1526-138 (online) ECETOC TR No. 138 1 ECETOC Guidance on Dose Selection 224504 ECETOC Technical Report No. 138 © Copyright – ECETOC AISBL European Centre for Ecotoxicology and Toxicology of Chemicals Rue Belliard 40, B-1040 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC TR No. 138 2 ECETOC Guidance on Dose Selection ECETOC Guidance on Dose Selection Table of Contents 1. SUMMARY 6 2. INTRODUCTION, BACKGROUND AND PRINCIPLES 9 2.1. Background and Principles 9 2.2. Current Regulatory Framework and Guidance 10 2.2.1. Historical perspectives and the evolution of test guidelines 10 2.2.2.
    [Show full text]