Innovations Give to Rotational Molding

Total Page:16

File Type:pdf, Size:1020Kb

Innovations Give to Rotational Molding www.canplastics.com SEPTEMBER 2018 Innovations give NEW SPINS to rotational molding Ontario rotomolder TECHSTAR Making PLASTICS ROBOTS & turns AUTOMATION safer than ever REVITAL POLYMERS wants to recycle your black plastic Cutting-edge AUTOMOTIVE APPLICATIONS CPL_Sept2018issue_AMS.indd 1 2018-08-27 8:56 AM The POWER of Performance NWB-DC+ Portable Dryer Sold & Serviced in Canada by NOVATEC continues to lead the charge in reliable Maguire Products Canada, Inc. drying technology and industry-first innovations. 905-879-1100 TOTA [email protected] • Most sold T L C ES O S W T www.maguirecanada.com • Easiest-to-use smart controls O L • Web-enabled access –5– YEAR warranty O F I P O H NOVATEC products are made in the USA. Supported worldwide. W N E R S www.novatec.com © Copyright 2018 NOVATEC, Inc. CPL_June2018_Novatec.inddCPL_Sept2018issue_AMS.indd 1 2 2018-05-032018-08-27 1:248:56 PMAM contents SEPTEMBER 2018 VOLUME 77 • NUMBER 4 The POWER of Performance FROM THE ARCHIVES The April 1994 issue of Canadian Plastics broke the news about a cutting-edge pro- cessing technology that combined paint- ing of plastic parts with injection molding. Launched at the NPE1994 trade show, the injected paint technology, or IPT, was developed by the EPIC Group, which was made up of 25 companies in six major research areas related to engineering polymers, including H.B. Fuller Evode, Battenfeld GmbH, DSM, Caradon Rolinx, and toolbuilders Clearplas and Mouldflow. The IPT process involved parts being in- 10 jection molded and painted in the same Cover Photo Getty Images mold, and parts ranging from two to 12 mm wall thicknesses had been produced at the show. “Battenfeld cites auto trim, fascia, bumpers, and body panels as likely applications, as well as stereo and TV housings, outdoor furniture, and fixtures,” our report said. Number of the month: 22 26 9* * The number of founders of rotational cover stories: rotational molding molder Techstar Plastics in 1978. (See pg. 13) 10 New technologies add new spins Rotomolding is a small industry, which means development can be limited and progress slow. And it also means that innovations can get overlooked because no one’s paying attention. So in case you missed in every issue them, here are some new offerings in machines, software, and materials. 4 Editor’s View: The straws that break our 13 Techstar Plastics is prospering in Port Perry industry’s back? As they hit a milestone, the owners of this well-known Ontario rotomolder look back on four decades of stress and success. 5 Ideas & Innovations: Solar-powered rotational molding units step into the light features 16 ROBOTS & AUTOMATION: Guardians of the factory 6 News: Industrial automation is more common, and faster, than ever before, • Hamilton Plastic Systems is reborn in the U.S.A. which means more potential danger than ever before. Keeping in • W. Amsler moves to expanded compliance with new safety standards by using the latest protective facility in Bolton, Ontario measures for the robot cell and the operator can prevent disaster. NWB-DC+ Portable Dryer • Dri-Air Industries founder Charlie Sears passes away 20 AUTOMOTIVE: The acceleration of innovation The automotive industry is one of the world’s fastest-changing sectors, Sold & Serviced in Canada by NOVATEC continues to lead the charge in reliable • Supplier News and People and when it comes to new part applications, it’s all about getting the most Maguire Products Canada, Inc. drying technology and industry-first innovations. 27 Technology Showcase from the latest resins. 905-879-1100 TOTA 29 Classifieds [email protected] • Most sold T L C ES O 22 PACKAGING: Ontario firm pops the lid on a new concept in peelable IMLs S W T www.maguirecanada.com • Easiest-to-use smart controls O 29 Advertising Index KBS Impact can save container weight and costs with its peelable in-mold L label, which acts as a tamper-evident seal to replace traditional threaded • Web-enabled access –5– 30 Technical Tips: flip-top closures and induction heat-sealed liners. YEAR Rotational molding design warranty guidelines (part 1) O RECYCLING: ReVital Polymers wants your black plastic trays and containers F I P 24 O H NOVATEC products are made in the USA. Supported worldwide. W N E R S The City of Toronto says that recycling black plastic isn’t worth the trouble. This Sarnia, Ont.-based recycler begs to differ. www.novatec.com Visit us at www.canplastics.com September 2018 Canadian Plastics 3 © Copyright 2018 NOVATEC, Inc. CPL_June2018_Novatec.indd 1 2018-05-03 1:24 PM CPL_Sept2018issue_AMS.indd 3 2018-08-27 8:56 AM editor’s view Canadian Plastics magazine reports on and interprets develop ments in plastics markets and technologies worldwide for plastics processors, moldmakers and end-users based in Canada. www.canplastics.com The straws that break our EDITOR M ark Stephen 416-510-5110 Fax: 416-442-2230 industry’s back? [email protected] NATIONAL ACCOUNT MANAGER t’s official: The first step toward retailers and municipalities are no Catherine Connolly 289-921-6520 actually criminalizing a big seg- doubt aware of the first point, why are [email protected] ment of our industry was taken in they targeting straws? There’s a sym- I ART DIRECTOR July, when the city of Santa Barbara, bolic aspect, for sure: By banning plas- Andrea M. Smith Calif. passed an ordi- tic straws, we can all feel good about ACCOUNT COORDINATOR nance allowing restau- keeping marine life safe without hav- Tracey Hanson rant employees to be ing to give up anything vital. 416-510-6762 punished with up to six But as other plastics industry mem- [email protected] months of jail time or a bers have already suggested, it’s possi- CIRCULATION MANAGER US$1,000 fine for offer- ble there’s a bigger goal in sight — one Aashish Sharma 416-442-5600 ext. 5206 ing plastic straws to their that involves using the so-called “gate- [email protected] customers. way drug” strategy. For the uninitiated, VP PRODUCTION/GROUP PUBLISHER You’re aware, I’m a gateway drug is a drug such as alco- Diane Kleer sure, that plastic straw bans have been hol or marijuana whose use can lead to [email protected] spreading like wildfires throughout other, more addictive drugs. Same PRESIDENT & CEO North America, the UK, and Europe as thing here. In this analogy, straw bans Mike Fredericks more and more major retailers and represent the first illicit puffs that the PRINTED IN CANADA municipalities disavow them. The bans “dealers” — environmentalists, image- ISSN 008-4778 (Print) ISSN 1923-3671 (Online) began in earnest in June, when a dis- conscious corporations, and left-lean- Publication Mail Agreement #40065710 turbing eight-minute video of a research ing politicians — exploit to push us all team removing a plastic straw stuck in a into the equivalent of the final stage of 2018 SUBSCRIPTION RATES 6 issues Canadian Plastics, plus Dec. 2019 Buyers’ Guide: sea turtle’s nose went viral; the video raging opioid abuse: the comprehen- CANADA: 1 Year $75.50 plus applicable taxes; has 40 million views on YouTube and sive global ban of all single-use plastic 2 Years $121.00+ taxes USA: US$132.50/year counting. products. FOREIGN: US$151.00/year Two points, I think, are worth mak- Sounds farfetched? I hope it is, but ing. First, if the goal of banning plastic umpteen municipal plastic bag bans CIRCULATION [email protected] straws is to reduce the pollution that have been enacted worldwide since Tel: 426-442-5600 ext. 3539 can harm marine life, then the wrong the sea turtle video went viral, and in Fax: 416-510-6875 or 416-442-2191 Mail: 111 Gordon Baker Road, Suite 400, end-product is being targeted. Weigh- mid-August both Chile and New Zea- Toronto, ON M2H 3R1 ing in at just one sixty-seventh of an land announced national bans on plas- Occasionally, Canadian Plastics will mail information on ounce, plastic straws account for 0.15 tic bags. behalf of industry related groups whose products and ser- per cent of the average North Ameri- Total bans such as these are the real vices we believe June be of interest to you. If you prefer not to receive this information, please contact our circulation can’s annual use of plastic, almost threat to our industry. In North Amer- department in any of the four ways listed above. none of which winds up in the oceans ica and Europe, at least, virtually every Annex Privacy Officer [email protected] because our laws generally prohibit it. molecule of a single-use plastic prod- • Tel: 800-668-2374 And of all the plastic that does wind uct can be recycled; with regard to No part of the editorial content of this publication June up in the ocean worldwide — over- plastic in the oceans, meanwhile, by all be reprinted without the publisher’s written permission ©2018 Annex Business Media. All rights reserved. Opin- whelmingly from China, Indonesia, means let’s insist in trade talks that ions expressed in this magazine are not necessarily those Thailand, the Philippines, and Viet- those five countries listed above stop of the editor or the publisher. No liability is assumed for nam — only about 0.02 per cent is their dumping. Which makes plastic errors or omissions. plastic straws. Which means that even bans unnecessary other than as virtue- All advertising is subject to the publisher’s approval. Such approval does not imply any endorsement of the products if all the billions of plastic straws man- signalling. The time to reverse this or services advertised.
Recommended publications
  • Polyvinyl Chloride Molding Powder
    Europa,schesP_ MM M II M M M MM MM M MM II J European Patent Office _ _ _ © Publication number: 0 273 766 B1 Office europeen* des.. brevets , © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 08.03.95 © Int. CI.6: C08K 13/02, C08L 27/06, //(C08K1 3/02,3:24,5:02) © Application number: 87311502.6 @ Date of filing: 29.12.87 © Polyvinyl chloride molding powder. © Priority: 29.12.86 JP 311269/86 Chuo-ku Osaka 541 (JP) @ Date of publication of application: 06.07.88 Bulletin 88/27 @ Inventor: Kobayashl, Masanorl 1- 17-9, Klyomldal © Publication of the grant of the patent: Kawachlnagano 08.03.95 Bulletin 95/10 Osaka-fu (JP) Inventor: Matsuura, Isao © Designated Contracting States: 4-5-5-303, Kamlhamuro BE DE FR GB IT NL Takatsuki Osaka-fu (JP) © References cited: Inventor: Wakatsukl, Aklra 2- 1-132, Kuwatacho CHEMICAL ABSTRACTS, vol. 89, 10th July Ibarakl 1978, page 39, abstract no. 7120k, Columbus, Osaka-fu (JP) Ohio, US; & JP-A-78 16 750 Inventor: Shlda, Yu 1-9-1-208, Tamagawa CHEMICAL ABSTRACTS, vol. 101, 26th No- Takatsuki vember 1984, page 47, abstract no. 1931 61 p, Osaka-fu (JP) Columbus, Ohio, US; & JP-A-59 140 261 CHEMICAL ABSTRACTS, vol. 104, 19th May © Representative: Geerlng, Keith Edwin et al 1986, page 46, abstract no. 169545h, Colum- REDDIE & GROSE 00 bus, Ohio, US; & JP-A-60 219 247 16 Theobalds Road CO London WC1X 8PL (GB) CO © Proprietor: SUMITOMO CHEMICAL COMPANY, iv LIMITED CO Kltahama 4-chome 5-33 IV CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Teflon™ PFA 9738-JN Rotomolding Fluoroplastic Resin
    Teflon™ PFA 9738-JN Rotomolding Fluoroplastic Resin Product Information Description Processing Teflon™ PFA 9738-JN is a premium resin available only as For rotational molding, Teflon™ PFA 9738-JN powder is placed a free-flowing powder. Its most unique features, controlled inside a hollow metal structure that is slowly rotated biaxially particle size and size distribution, provide proper flow and and heated above the melting point of the powder. As the powder fusion behavior in rotational molding process. In addition, melts, it builds up on the inner surface of the structure. Powder Teflon™ PFA 9738-JN is chemically modified to yield enhanced flow and distribution are critical, because the high melt viscosity resin purity, lower extractable fluorides, and freedom from of Teflon™ PFA limits the lateral flow of melted resin. A cooling other foreign materials. Its surface smoothness is improved step then causes the molten resin to solidify and densify in place, by minimizing spherulite size, and its chemical permeability creating an integral lining or a removable, hollow plastic part. resistance is enhanced by increasing its crystallinity. This Good molding requires close attention to many details, such as product contains no additives and is designed for hostile choice of metals for the mold, preparation of the metal surface, chemical environments where purity in the parts-per-billion rate of rotation, venting, and heating/ cooling cycles. The equipment range is needed. must operate at high temperature and resist thermal shock. The properties of Teflon™ PFA 9738-JN in molded form are similar to other grades of Teflon™ PFA (perfluoroalkoxy) Safety Precautions fluoroplastic resin.
    [Show full text]
  • Stabilization of Polypropylene for Rotational Molding Applications
    Journal of Research Updates in Polymer Science, 2015, 4, 179-187 179 Stabilization of Polypropylene for Rotational Molding Applications Iñaki Emaldi1,2,*, Christopher Mark Liauw3 and Herman Potgieter4,5 1Division of Chemistry and the Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK 2Institute of Polymeric Materials POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Centre, Av. Tolosa 72, San Sebastian, 20018, Spain 3Division of Mechanical Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK 4School of Research Enterprise and Innovation, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK 5School of Chemical and Metallurgical Engineering, University of the Witwatersrand, P.O. Wits, 2050, South Africa Abstract: Rotational molding (RM) is a useful process for making large hollow objects. Due to its relatively high toughness and forgiving thermal oxidative degradation behavior, polyethylene is a most widely used material. However, it has too low elastic modulus for some important applications which leads to adaptation of polypropylene (PP) as a RM material. PP requires specially tailored antioxidant (AO) packages if it is to have any chance of surviving the often long (up to ca. 30 minutes) cycle times associated with RM. During the study the addition of the following stabilizers and antioxidants (AO) to the PP copolymer were investigated: a hindered phenolic primary AO, a phosphite secondary AO, a thioester secondary AO and a hindered amine light stabilizer. Synergistic effects between the primary and secondary AOs, as well as optimum heating times, were investigated. During the investigation formulations were prepared by compression molding and bench-scale RM.
    [Show full text]
  • Design Innovation in Rotational Moulding
    DESIGN INNOVATION IN ROTATIONAL MOULDING Wednesday 19th May 2010 Design Innovation in Rotational Moulding At PDM10 Exhibition Wednesday 19th May 2010 Telford International Centre, Telford, Shropshire SEMINAR PROGRAMME 10.25 Chairman Introduction: Martin Spencer, Rototek 10.30 Overview of Rotational Moulding Nick Henwood – 493K · Design Consideration · Process Control · Repeatability of Process 11.00 Materials available to the Rotomoulder John Steele – ICO Polymers · Most commonly used materials · Comparative Properties · Alternative materials used by progressive Rotomoulders 11.30 Design bugs out….. Ian Thompson – Kinneir Dufort 12.00 Coffee Break 12.15 Adding value by innovative design in rotomoulding Aldo Quaratino – Matrix Polymers 12.45 New Surface Treatments Matteo Cortesi – Persico 13.05 Moulding Graphics Peter Clark – MIG 13.25 Recycling and Rotomoulding Mark Roberts – Linpac Recycling · Availability of Raw materails 13.45 Discussion 14.00 Close of Seminar Delegate List Design Innovation in Rotational Moulding At PDM10 Exhibition Wednesday 19th May 2010 Telford International Centre, Telford, Shropshire Name Company ___________________________________________________ Mr Darren Beevor Polypipe Building Products Mr Tony Bunting Amber Plastics Ltd Mr Fabricio Castilho Omya International Mr Peter Clark Mould in Graphics Mr Colin Clements Caledonian Industries Ltd Mr Jonathan Concannon JFC Manufacturing Mr Matteo Cortesi Persico Mr Mark Del Canto Industrial Plastics Limited Mr Rod Dix Orchid Plastics Ltd Mrs Karen Drinkwater JSC Rotational
    [Show full text]
  • Plastic Rotational Molding in This Guide, We Will Cover
    A GUIDE TO PLASTIC ROTATIONAL MOLDING IN THIS GUIDE, WE WILL COVER: Overview of Plastic Rotational Molding Advantages of RotoMolding Plastic Molding Process Comparison The Rational Molding Process Critical Design Considerations for Rotationally Molded Parts The Nominal Wall… the Frame of your Product Uniform Wall Thickness Non-uniform Wall Thickness Flat Surface Limitations Parallel wall separation Requirements for corner angles Draft angles for easy removal Designs using internal and external undercuts Rotational Molding Tooling Fabricated Molds Cast Aluminum Molds CNC Molds Epoxy Molds Mold-in-Graphic Options Typical Projects Sterling Technologies | 10047 Keystone Drive • Lake City, PA 16423 | 814.774.2500 | SterlingRotationalMolding.com A ROTATIONAL MOLDING OVERVIEW Rotational Molding is a unique plastic molding process used to produce large hollow parts. Often referred to as rotomolding, because the molds are slowly rotated in an oven spreading the resin inside using centrifugal force to fill the walls of the mold. Depending on the purpose of part, wall and corner thickness can vary to suit that requirement. This is critical for water and air tight containers and tanks. Rotational molding is a versatile manufacturing option with many benefits over standard thermoform, injection and blow molding. This process makes it possible to design very large hollow pieces in virtually any shape, size, color and configuration. Generally, pieces are lightweight with strong structural integrity. The process uses a variety of mold types and molding machines that contain loading, heating and cooling areas. Once a mold is bolted to one of the machine’s rotating arms, the pre-measured plastic resin is loaded. Several molds on as many as three arms can be used at the same time.
    [Show full text]
  • Rotational Molding Polyethylene, Pellets Version 1.6 Revision Date 2019-10-18
    SAFETY DATA SHEET Rotational Molding Polyethylene, Pellets Version 1.6 Revision Date 2019-10-18 According to Regulation (EC) No. 1907/2006, Regulation (EC) No. 2015/830 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product information Product Name : Rotational Molding Polyethylene, Pellets Material : 1103123, 1102187, 1101776, 1101775, 1101774, 1101773, 1101772, 1101730, 1084750, 1084749, 1084748, 1084747, 1084746, 1084745, 1084744, 1108042, 1103396, 1103395, 1101755, 1101754, 1101753, 1101752, 1084908, 1084907, 1084906, 1084905, 1084904, 1084903, 1084902, 1084772, 1084761, 1084760, 1084759, 1084758, 1084757, 1084756, 1084784, 1084783, 1084782, 1084781, 1084780, 1084779, 1084778 EC-No.Registration number Chemical name CAS-No. Legal Entity EC-No. Registration number Index No. Ethylene 74-85-1 Chevron Phillips Chemical Company LP 200-815-3 01-2119462827-27-0004 601-010-00-3 1-Hexene 592-41-6 Chevron Phillips Chemical Company LP 209-753-1 01-2119475505-34-0005 1.3 Details of the supplier of the safety data sheet Company : Chevron Phillips Chemical Company LP 10001 Six Pines Drive The Woodlands, TX 77380 Local : Chevron Phillips Chemicals International N.V. Airport Plaza (Stockholm Building) Leonardo Da Vincilaan 19 1831 Diegem Belgium SDS Requests: (800) 852-5530 Technical Information: (832) 813-4862 Responsible Party: Product Safety Group SDS Number:100000014515 1/12 SAFETY DATA SHEET Rotational Molding Polyethylene, Pellets Version 1.6 Revision Date 2019-10-18 Email:[email protected] 1.4 Emergency telephone:
    [Show full text]
  • A Study of the Cause of Failure of Rotationally Molded, High-Density Polyethylene, Sodium Hypochlorite Storage Tanks" (2011)
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2011-03-17 A Study of the Cause of Failure of Rotationally Molded, High- Density Polyethylene, Sodium Hypochlorite Storage Tanks Dixon Harold Abell Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Construction Engineering and Management Commons, and the Manufacturing Commons BYU ScholarsArchive Citation Abell, Dixon Harold, "A Study of the Cause of Failure of Rotationally Molded, High-Density Polyethylene, Sodium Hypochlorite Storage Tanks" (2011). Theses and Dissertations. 2609. https://scholarsarchive.byu.edu/etd/2609 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. A Study of the Failure Mechanisms in Rotational Molded, High Density Cross-Linked Polyethylene, Sodium Hypochlorite Storage Tanks by Dixon Harold Abell A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael P. Miles, Chair Perry W. Carter A. Brent Strong School of Technology Brigham Young University April 2011 Copyright © 2011 Harold Abell All Rights Reserved ABSTRACT A Study of the Failure Mechanisms in Rotational Molded, High-Density Cross-Linked Polyethylene, Sodium Hypochlorite Storage Tanks Harold Abell School of Technology Master of Science The topic of chemical oxidative degradation in rotational molded polyethylene (high- density cross-linked) chemical (sodium hypochlorite) storage tanks is an industry problem that ranks at the top of current business issues for manufacturers of chemical storage tanks.
    [Show full text]
  • Rotomolding of Thermoplastic Elastomers Based on Low-Density Polyethylene and Recycled Natural Rubber
    applied sciences Article Rotomolding of Thermoplastic Elastomers Based on Low-Density Polyethylene and Recycled Natural Rubber Ramin Shaker and Denis Rodrigue * Department of Chemical Engineering, Université Laval, Quebec City, QC G1V 0A6, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-(418)-656-2903 Received: 11 November 2019; Accepted: 8 December 2019; Published: 11 December 2019 Abstract: In this study, regenerated and nonregenerated off-the-road (OTR) ground tire rubber (GTR) was blended with low-density polyethylene (LDPE) to produce thermoplastic elastomers (TPE) by rotational molding. In particular, blending was performed by two different methods: melt blending (extrusion) and dry blending (high shear mixer). Then, different GTR concentrations (0, 20, 35, and 50 wt %) were used to determine the effect of rubber content on the processability and properties of the rotomolded compounds. From the samples produced, a complete morphological (optical and scanning electron microscopy), physical (density and hardness), and mechanical (tension, flexion, and impact) characterization was performed. The results showed that increasing the rubber content decreased the mechanical rigidity and strength but increased the elasticity and ductility. Finally, although melt blending led to slightly better properties than dry blending, the latter is more interesting to limit possible material degradation (mechanical, thermal, and oxidative), while reducing processing cost and time. Keywords: polyethylene; natural rubber; recycling; rotomolding; process optimization 1. Introduction Today, plastics and rubbers are widely used in different applications, and this is why the recent decades are sometimes called the “plastic age” [1]. One of the most prominent examples of this increasing trend is the production and uses of rubbers (natural and synthetic).
    [Show full text]
  • Rotational Molding of Poly(Lactic Acid)/Polyethylene Blends: Effects of the Mixing Strategy on the Physical and Mechanical Properties
    polymers Article Rotational Molding of Poly(Lactic Acid)/Polyethylene Blends: Effects of the Mixing Strategy on the Physical and Mechanical Properties Eduardo Ruiz-Silva 1, Mirleth Rodríguez-Ortega 1, Luis Carlos Rosales-Rivera 1,* , Francisco Javier Moscoso-Sánchez 1,*, Denis Rodrigue 2 and Rubén González-Núñez 1,* 1 Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán #1451, Guadalajara, Jalisco 44430, Mexico; [email protected] (E.R.-S.); [email protected] (M.R.-O.) 2 Department of Chemical Engineering and CERMA, Université Laval, Quebec, QC G1V 0A6, Canada; [email protected] * Correspondence: [email protected] (L.C.R.-R.); [email protected] (F.J.M.-S.); [email protected] (R.G.-N.); Tel.: +52-331-378-5900 (ext. 27545) (R.G.-N.) Abstract: In this study, blends of poly(lactic acid) (PLA)/linear medium density polyethylene (LMDPE) at different weight ratios were prepared by rotational molding. Two mixing strategies were used to evaluate the effect of phase dispersion on the physical and mechanical properties: (i) Dry-blending (DB) using a high shear mixer, and (ii) melt-blending (MB) using a twin-screw extruder. Thermal, morphological, and mechanical analyses were performed on the neat polymers and their blends. The thermal analysis was completed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and the blends prepared by MB had lower thermal stability Citation: Ruiz-Silva, E.; than the ones prepared via DB due to some thermo-oxidative degradation through the double Rodríguez-Ortega, M.; thermal process (extrusion and rotomolding).
    [Show full text]
  • Developments in Polypropylene for Rotomolding
    DEVELOPMENTS IN POLYPROPYLENE FOR ROTOMOLDING Dr Nick Henwood, Technical Director, Matrix Polymers, UK Abstract The position of polypropylene (PP) as a material for rotational molding is reviewed and a general specification is proposed for a suitable rotomolding grade. Attempts to achieve an improvement in the impact strength of PP, by formulation with impact modifiers, are described and the effects on other physical properties of such modifications are highlighted. A novel approach to improving the impact strength of PP is introduced, which utilizes a two-layer technique. Initial results from testing two-layer structures look promising. Introduction The history of rotomolding over the last three decades has been characterized by strong growth, fuelled by the inherent design flexibility of the method, innovative process developments and a steady supply of new applications. Rapid growth is continuing in new markets such as Eastern Europe, Latin America and the Far East. However, on-going growth in mature markets, like Europe and North America, will depend on new applications for the process continuing to be established. Another characteristic of rotomolding is the limited range of polymer types that can be used to produce a successful part. During the process, virtually no shear is imposed on the polymer melt and relatively few polymers have suitable rheological characteristics to enable them to sinter and flow successfully under zero shear conditions. An additional factor is the harsh environment that the polymer must withstand during the process, with relatively long cycle times compared to, say, injection molding or blow molding. Polyethylene (PE) has long been the predominant polymer used in rotomolding, due to its ease of processing and its optimum balance between stiffness and toughness.
    [Show full text]
  • Dispersants for Plastics Product Guide
    PERFORMANCE COATINGS THERMOPLASTICS & THERMOSETS DISPERSANTS PRODUCT GUIDE FOR PLASTICS HYPERDISPERSANTS FOR THERMOPLASTICS AND THERMOSETS Solplus™ and Solsperse™ hyperdispersants and coupling agents have been developed to meet the needs of the plastic industry, for both thermoplastic and thermoset polymers, as well as polyurethanes. THERMOPLASTIC MASTERBATCH AND COMPOUNDING Solplus™ DP310 hyperdispersant is recommended for the dispersion of organic and inorganic pigments and fillers in thermoplastic masterbatch and compound applications. It can be used in a variety of thermoplastic polymers including polyethylene, polypropylene, polystyrene, ABS and PVC. MORE EFFICIENT DISPERSION Increased Higher Increased Less filter Upgraded productivity pigment/filler color blockage/ performance loadings strength fiber breakage of lower cost systems COST SAVINGS IMPROVED QUALITY Stronger, Less Improved Improved Improved Meets new brighter specks mechanical stability flame environmental colors properties retardancy standards 2 PLASTICIZER AND POLYOL DISPERSIONS The recommended Solplus™ hyperdispersant for the production of plasticizer and polyol dispersions is dependent upon the pigment: Solplus™ K500 Inorganic pigments and fillers Solplus™ DP700 Inorganic pigment fillers and carbon black Solplus™ K200 Organic pigment (phthalate free dispersions) Solplus™ K210 Organic pigments (phthalate based dispersions) Solplus™ R700 Organic pigments THERMOSET/COMPOSITE APPLICATIONS (polyether polyols) Solplus™ R710 Organic pigments Engineered specifically for composite
    [Show full text]
  • The Coloration
    The coloration OF PLASTICS AND RUBBER The coloration OF PLASTICS AND RUBBER TRADEMARKS: GRAPHTOL® HOSTASIN™ 1 HANSA® HOSTASOL™ 1 HOSTALEN® 1 HOSTAVIN® 1 TELALUX™ NOVOPERM® HOSTANOX® 1 POLYSYNTHREN® HOSTAPERM® 1 PV FAST® HOSTAPRINT™ 1 SOLVAPERM® TELASPERSE™ SECTION 1 of this brochure is an introduction and NOTE ON THE THERMAL STABILITY The coloration of plastics is an area guide to the coloration of plastics and includes chapters OF DIARYLIDE PIGMENTS covering colorant classification, colorant selection Pigments indicated with the symbol ❖ throughout of technology in which everyone has criteria and an overview of the Clariant product ranges this brochure are collectively identified chemically for plastics coloration. This is followed by a product as diarylide pigments. Due to the potential for thermal an opinion, everyone else can do it by product guide to the main areas of application using decomposition (refer to the relevant material safety data the following key: sheets) from these pigments, a heat stability of 200 °C is better and cheaper and where the given, even when the coloring attributes of the pigment ■ Suitable would remain stable at higher temperatures. mistakes are highly visible and usually ● Limited suitability (preliminary testing required) — Not suitable Further information can be found in ETAD INFORMATION expensive. This brochure sets out NOTICE No. 2 » Thermal Decompo sition of Diarylide SECTION 2 provides a concise guide; polymer by Pigments« – September 1990. to provide the reader with a practical polymer to the coloring possibilities with Clariant organic colorants which includes polymer properties, CLARIANT SHADE CARDS AND insight in polymers, processes and processing and coloring techniques and details of the TECHNICAL BROCHURES individual colorants, their suitability for an application The Clariant Plastics & Coatings Business strives to applications applying to the plastics and their application data in the selected polymer and provide a high level of technical information regarding process.
    [Show full text]