Genetically Modified Mosquitoes Educator Materials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Relaxed Selection in the Wild
TREE-1109; No of Pages 10 Review Relaxed selection in the wild David C. Lahti1, Norman A. Johnson2, Beverly C. Ajie3, Sarah P. Otto4, Andrew P. Hendry5, Daniel T. Blumstein6, Richard G. Coss7, Kathleen Donohue8 and Susan A. Foster9 1 Department of Biology, University of Massachusetts, Amherst, MA 01003, USA 2 Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003, USA 3 Center for Population Biology, University of California, Davis, CA 95616, USA 4 Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 5 Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 2K6, Canada 6 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA 7 Department of Psychology, University of California, Davis, CA 95616, USA 8 Department of Biology, Duke University, Durham, NC 02138, USA 9 Department of Biology, Clark University, Worcester, MA 01610, USA Natural populations often experience the weakening or are often less clear than typical cases of trait evolution. removal of a source of selection that had been important When an environmental change results in strong selection in the maintenance of one or more traits. Here we refer to on a trait from a known source, a prediction for trait these situations as ‘relaxed selection,’ and review recent evolution often follows directly from this fact [2]. When studies that explore the effects of such changes on traits such a strong source of selection is removed, however, no in their ecological contexts. In a few systems, such as the clear prediction emerges. Rather, the likelihood of various loss of armor in stickleback, the genetic, developmental consequences can only be understood by integrating the and ecological bases of trait evolution are being discov- remaining sources of selection and processes at all levels of ered. -
Inclusive Fitness As a Criterion for Improvement LSE Research Online URL for This Paper: Version: Accepted Version
Inclusive fitness as a criterion for improvement LSE Research Online URL for this paper: http://eprints.lse.ac.uk/104110/ Version: Accepted Version Article: Birch, Jonathan (2019) Inclusive fitness as a criterion for improvement. Studies in History and Philosophy of Science Part C :Studies in History and Philosophy of Biological and Biomedical Sciences, 76. ISSN 1369-8486 https://doi.org/10.1016/j.shpsc.2019.101186 Reuse This article is distributed under the terms of the Creative Commons Attribution- NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ [email protected] https://eprints.lse.ac.uk/ Inclusive Fitness as a Criterion for Improvement Jonathan Birch Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, London, WC2A 2AE, United Kingdom. Email: [email protected] Webpage: http://personal.lse.ac.uk/birchj1 This article appears in a special issue of Studies in History & Philosophy of Biological & Biomedical Sciences on Optimality and Adaptation in Evolutionary Biology, edited by Nicola Bertoldi. 16 July 2019 1 Abstract: I distinguish two roles for a fitness concept in the context of explaining cumulative adaptive evolution: fitness as a predictor of gene frequency change, and fitness as a criterion for phenotypic improvement. Critics of inclusive fitness argue, correctly, that it is not an ideal fitness concept for the purpose of predicting gene- frequency change, since it relies on assumptions about the causal structure of social interaction that are unlikely to be exactly true in real populations, and that hold as approximations only given a specific type of weak selection. -
Doxorubicin-Induced Death in Neuroblastoma Does Not Involve Death Receptors in S-Type Cells and Is Caspase-Independent in N-Type Cells
Oncogene (2002) 21, 6132 – 6137 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Doxorubicin-induced death in neuroblastoma does not involve death receptors in S-type cells and is caspase-independent in N-type cells Sally Hopkins-Donaldson1, Pu Yan1, Katia Balmas Bourloud1, Annick Muhlethaler1, Jean-Luc Bodmer2 and Nicole Gross*,1 1Department of Pediatric Onco-Hematology, Centre Hospitalier Universitaire Vaudois, CH1011 Lausanne, Switzerland; 2Institute of Biochemistry, University of Lausanne, CH-1066, Epalinges, Switzerland Death induced by doxorubicin (dox) in neuroblastoma tumors in infants frequently undergo spontaneous (NB) cells was originally thought to occur via the Fas remission. Failure to undergo programmed cell death pathway, however since studies suggest that caspase-8 is a putative mechanism for cancer cell resistance to expression is silenced in most high stage NB tumors, it is chemotherapy, while in contrast spontaneous remission more probable that dox-induced death occurs via a is thought to be a result of increased apoptosis (Oue et different mechanism. Caspase-8 silenced N-type invasive al., 1996). NB cell lines LAN-1 and IMR-32 were investigated for Apoptosis signaling occurs via two different path- their sensitivity to dox, and compared to S-type ways which converge on a common machinery of cell noninvasive SH-EP NB cells expressing caspase-8. All demise that is activated by caspases (Strasser et al., cell lines had similar sensitivities to dox, independently of 2000). The death receptor pathway is activated by caspase-8 expression. Dox induced caspase-3, -7, -8 and ligands of the tumor necrosis factor (TNF) family -9 and Bid cleavage in S-type cells and death was which induce the trimerization of their cognate blocked by caspase inhibitors but not by oxygen radical receptors (Daniel et al., 2001). -
First Draft of an Epidemic: How Key Media Players Framed Zika
Reuters Institute Fellowship Paper University of Oxford First draft of an epidemic: how key media players framed Zika by Maria Cleidejane Esperidião Hilary Term, 2018 Sponsor: Thomson Reuters Foundation 1 TABLE OF CONTENTS Acknowledgements…………………………………………………………… …4 Abstract………………………………………………………………………………5 Introduction…………………………………………………………………………6. Chapter One: Covering Epidemics……………………………………………….9 1.1 Understanding a framework……………………………………………….9 1.2 Fear, risk and threat………………………………………………………..12. Chapter Two: Zika: Examining national and global context………………. 15 2.1 Zika Virus: links to microcephaly and other neurological disorders..15 2.2 Science in transition………………………………………………..………16. 2.3 Brazil and the world in transition……………………………………..…18 Chapter Three: Framing Zika…………………………………………………....25. 3.1 Methodology and theoretical framework……………………………… 25. 3.2 How did we collected the data?..................................................................27. 3.3 Findings: from global threat to regional disaster………………………29 3.3.1 The case of Al-Jazeera………………………………………………….29 3.3.2 The case of BBC…………………………………………………………33 3.3.3 The case of CNN………………………………………………………..40 Conclusions, Limitations and Recommendations…………………………… 51 Bibliography……………………………………………………………………….54 Appendixes………………………………………………………………………...58 2 I suppose, in the end, we journalists try—or should try—to be the first impartial witnesses to history. If we have any reason for our existence, the least must be our ability to report history as it happens so that no one can say: “We -
Ninth Meeting of the WHO Vector Control Advisory Group
MEETING REPORT 12-14 November 2018 Ninth meeting of the WHO Vector Control Advisory Group MEETING REPORT 12-14 November 2018 Ninth meeting of the WHO Vector Control Advisory Group WHO/CDS/VCAG/2018.05 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or ervics es. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Ninth meeting of the WHO Vector Control Advisory Group. Geneva: World Health Organization; 2018 (WHO/CDS/VCAG/2018.05). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. -
Aedes Aegypti (Yellow Fever Mosquito) Fact Sheet
STATE OF CALIFORNIA-HEALTH AND HUMAN SERVICES AGENCY California Department of Public Health Division of Communicable Disease Control Aedes aegypti (Yellow Fever Mosquito) Fact Sheet What is the Aedes aegypti mosquito? Aedes aegypti, also known as the “yellow fever mosquito”, is an invasive mosquito; it is not native to California. This black and white striped mosquito bites people and animals during the day. Why are we concerned about the Aedes aegypti mosquito in California? This mosquito is an aggressive day biting mosquito and has the potential to transmit several viruses, including dengue, chikungunya, and yellow fever. However, none of these viruses are currently known to be transmitted within California. The eggs of Aedes aegypti have the ability to survive being dry for long periods of time which allows eggs to be easily spread to new locations. Where do Aedes aegypti mosquitoes lay their eggs? Female mosquitoes lay their eggs in small artificial or natural containers that hold water. Containers can include dishes under potted plants, bird baths, ornamental fountains, tin cans, or discarded tires. Even a small amount of standing water can produce mosquitoes. What is the life cycle of the Aedes aegypti mosquito? About three days after feeding on blood, the female lays her eggs inside a container just above the water line. Eggs are laid over a period of several days, are resistant to drying, and can survive for periods of six or more months. When the container is refilled with water, the eggs hatch into larvae. The entire life cycle (i.e., from egg to adult) can occur in as little as 7-8 days. -
Guidelines for Aedes Aegypti and Aedes Albopictus Surveillance and Insecticide Resistance Testing in the United States
Guidelines for Aedes aegypti and Aedes albopictus Surveillance and Insecticide Resistance Testing in the United States Version 2, 11/9/16 Table of Contents Intended Audience ....................................................................................................................................... 1 Part 1: Guidelines for Conducting Surveillance and for Reporting Presence, Absence, and Relative Abundance of Aedes aegypti and Aedes albopictus ...................................................................................... 1 Background .................................................................................................................................................. 1 Surveillance Aims ......................................................................................................................................... 2 CDC Surveillance Recommendations ......................................................................................................... 2 Reporting to CDC ......................................................................................................................................... 4 CDC Use of Reported Data ......................................................................................................................... 4 References ................................................................................................................................................... 5 Part 2: Insecticide Resistance Testing for Known Mosquito Vectors of Zika, Dengue, and Chikungunya -
Transgenic Rescue from Embryonic Lethality and Renal Carcinogenesis in the Eker Rat Model by Introduction of a Wild-Type Tsc2 Ge
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 3990–3993, April 1997 Medical Sciences Transgenic rescue from embryonic lethality and renal carcinogenesis in the Eker rat model by introduction of a wild-type Tsc2 gene (hereditary cancerytwo-hit modelytumor suppressor geneyanimal modelygene therapy) TOSHIYUKI KOBAYASHI*, HIROAKI MITANI*, RI-ICHI TAKAHASHI†,MASUMI HIRABAYASHI†,MASATSUGU UEDA†, HIROSHI TAMURA‡, AND OKIO HINO*§ *Department of Experimental Pathology, Cancer Institute, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo 170, Japan; †YS New Technology Institute Inc., Shimotsuga-gun, Tochigi 329-05, Japan; and ‡Laboratory of Animal Center, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173, Japan Communicated by Takashi Sugimura, National Cancer Center, Tokyo, Japan, February 3, 1997 (received for review December 9, 1996) ABSTRACT We recently reported that a germ-line inser- activity for Rap1a and localizes to Golgi apparatus. Other tion in the rat homologue of the human tuberous sclerosis gene potential functional domains include two transcriptional acti- (TSC2) gives rise to dominantly inherited cancer in the Eker vation domains (AD1 and AD2) in the carboxyl terminus of the rat model. In this study, we constructed transgenic Eker rats Tsc2 gene product (19), a zinc-finger-like region (our unpub- with introduction of a wild-type Tsc2 gene to ascertain lished observation), and a potential src-homology 3 region whether suppression of the Eker phenotype is possible. Rescue (SH3) binding domain (20). However, the function of tuberin from embryonic lethality of mutant homozygotes (EkeryEker) is not yet fully understood. and suppression of N-ethyl-N-nitrosourea-induced renal car- Human tuberous sclerosis is an autosomal dominant genetic cinogenesis in heterozygotes (Ekery1) were both observed, disease characterized by phacomatosis with manifestations defining the germ-line Tsc2 mutation in the Eker rat as that include mental retardation, seizures, and angiofibroma, embryonal lethal and tumor predisposing mutation. -
I Xio- and Made the Rather Curious Assumption That the Mutant Is
NOTES AND COMMENTS NATURAL SELECTION AND THE EVOLUTION OF DOMINANCE P. M. SHEPPARD Deportment of Genetics, University of Liverpool and E.B. FORD Genetic Laboratories, Department of Zoology, Oxford 1. INTRODUCTION CROSBY(i 963) criticises the hypothesis that dominance (or recessiveness) has evolved and is not an attribute of the allelomorph when it arose for the first time by mutation. None of his criticisms is new and all have been discussed many times. However, because of a number of apparent mis- understandings both in previous discussions and in Crosby's paper, and the fact that he does not refer to some important arguments opposed to his own view, it seems necessary to reiterate some of the previous discussion. Crosby's criticisms fall into two parts. Firstly, he maintains, as did Wright (1929a, b) and Haldane (1930), that the selective advantage of genes modifying dominance, being of the same order of magnitude as the mutation rate, is too small to have any evolutionary effect. Secondly, he criticises, as did Wright (5934), the basic assumption that a new mutation when it first arises produces a phenotype somewhat intermediate between those of the two homozygotes. 2.THE SELECTION COEFFICIENT INVOLVED IN THE EVOLUTION OF DOMINANCE Thereis no doubt that the selective advantage of modifiers of dominance is of the order of magnitude of the mutation rate of the gene being modified. Crosby (p. 38) considered a hypothetical example with a mutation rate of i xio-and made the rather curious assumption that the mutant is dominant in the absence of modifiers of dominance. -
American Mosquito Control Association January 2017
BEST PRACTICES FOR INTEGRATED MOSQUITO MANAGEMENT: A FOCUSED UPDATE American Mosquito Control Association January 2017 AMCA – BEST PRACTICES FOR MOSQUITO CONTROL 2017: A FOCUSED UPDATE STEERING COMMITTEE Christopher M. Barker, PhD Kenn K. Fujioka, PhD Associate Professor District Manager School of Veterinary Medicine San Gabriel Valley Mosquito and Vector University of California, Davis Control District Davis, California West Covina, California Charles E. Collins, Jr., MS, MBA Christopher R. Lesser Executive Vice President, Market Access Manatee County Mosquito Control District ACTIVATE Palmetto, Florida Parsippany, New Jersey Sarah R. Michaels, MSPH, PhD candidate Joseph M. Conlon Entomologist Technical Advisor New Orleans Mosquito Control Board American Mosquito Control Association New Orleans, Louisiana Mount Laurel, New Jersey Bill Schankel, CAE C. Roxanne Connelly, PhD Executive Director Professor American Mosquito Control Association University of Florida Mount Laurel, New Jersey Florida Medical Entomology Laboratory Vero Beach, Florida Kirk Smith, PhD Laboratory Supervisor Mustapha Debboun, PhD, BCE Vector Control Division Director Maricopa County Environmental Services Department Mosquito & Vector Control Division Phoenix, Arizona Harris County Public Health Houston, Texas Isik Unlu, PhD Adjunct Professor Eileen Dormuth, MEd, PHR Center for Vector Biology Director of Instructional Design Rutgers University ACTIVATE New Brunswick, New Jersey Parsippany, New Jersey Superintendent Ary Faraji, PhD Mercer County Mosquito Control Manager -
Using Drosophila to Teach Genetics
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 1996 Volume V: Genetics in the 21st Century: Destiny, Chance or Choice Using Drosophila to Teach Genetics Curriculum Unit 96.05.01 by Christin E. Arnini The objectives of this unit are to take basic concepts of genetics and apply them to an organism, easily raised and observed in the classroom. It has been a challenge in the teaching of High School Biology, to take the abstract ideas of genes, chromosomes, heredity, and make them visable and tangible for the students. Drosophila melanogaster offers a way for teachers to help students make connections between populations, the organism, the cell, the chromosome, the gene, and the DNA. As a part of a unit on genetics, this unit on Drosophila can give students the opportunity to get to know an organism well, observing closely its development and physical characteristics, and then questioning how it is that the fly came to be this way. Unit Format: I. Discussion of Drosophila 1. Review of genetics concepts 2. Thomas Hunt Morgan and the historical frame 3. Drosophila chromosomes, characteristics, and developmental stages 4. Mutations 5. Homeobox genes 6. Homologs in other vertebrates 7. Making a map 8. DNA Sequencing II. Activities: 1. Observations of the individual flies, 2. Doing genetic crossses, and predicting offspring outcomes in the Lab, 3. Salivary gland extraction, and staining of chromosomes 4. Creating a genetic map 5. DNA sequencing simulation, 6. Virtual Fly Lab. III. Appendix IV. Bibliography and resources Curriculum Unit 96.05.01 1 of 21 Chromosomes are the structures that contain the hereditary material of an organism. -
Aedes Aegypti Distribution by State 3
Vector Hazard Report: Pictorial Guide to CONUS Zika Virus Vectors Information gathered from products of The Walter Reed Biosystematics Unit (WRBU) VectorMap Systematic Catalogue of the Culicidae 1 Table of Contents 1. Notes on the biology of Zika virus vectors 2. Aedes aegypti Distribution by State 3. Aedes albopictus Distribution by State 4. Overview of Mosquito Body Parts 5. General Information: Aedes aegypti 6. General Information : Aedes albopictus 7. Taxonomic Keys 8. References 2 Aedes aegypti Distribution by State Collections Reported 3 Aedes albopictus Distribution by State Collections Reported 4 Notes on the Biology of Zika Virus Vectors Aedes aegypti and Aedes albopictus, the major vectors of dengue, chikungunya & Zika viruses, are originally of African and Asian origin, respectively. The spread of these two species around the world in the past 50 years is well documented and facilitated by a unique life trait: their eggs can survive desiccation. This trait allows eggs laid by these species to travel undetected in receptacles like used tires, or lucky bamboo plants, which are distributed throughout the world. When these receptacles are wetted (e.g. by rain), the larva emerge and grow to adults in their new environment. In temperate or tropical environments conditions are highly suitable for populations to quickly become established, as these mosquitoes have done in Brazil and nearly every other country in North, Central and South America. Compounding this problem is that these mosquito species are capable of ovarian viral transmission – meaning that if the mother is infected with a virus, she can pass it on to her offspring through her eggs.