Photocatalytic Degradation of Monolinuron and Linuron in An

Total Page:16

File Type:pdf, Size:1020Kb

Photocatalytic Degradation of Monolinuron and Linuron in An Document généré le 25 sept. 2021 22:28 Revue des sciences de l'eau Journal of Water Science Photocatalytic Degradation of Monolinuron and Linuron in an Aqueous Suspension of Titanium Dioxide Under Simulated Solar Irradiation Dégradation photocatalytique du monolinuron et du linuron dans une suspension aqueuse de dioxide de titanium au contact de lumière solaire simulée Razika Zouaghi, Abdennour Zertal, Bernard David et Sylvie Guittonneau Volume 20, numéro 2, 2007 Résumé de l'article La dégradation photocatalytique de deux herbicides, le monolinuron (MLN) et URI : https://id.erudit.org/iderudit/015810ar le linuron (LN), a été étudiée dans une suspension de TiO au contact de 2 DOI : https://doi.org/10.7202/015810ar lumière solaire simulée. L’objectif de cette étude est de comparer leur photoréactivité et d’évaluer l’influence de différents paramètres tels que la Aller au sommaire du numéro concentration initiale en pesticide, la concentration en catalyseur et le flux photonique sur la cinétique de dégradation du monolinuron. L’étude comparative de la dégradation des deux herbicides a montré que les deux composés présentent une réactivité comparable avec le système TiO /lumière Éditeur(s) 2 simulée. Dans les conditions opératoires de cette étude, la dégradation Université du Québec - INRS-Eau, Terre et Environnement (INRS-ETE) photocatalytique du LN et du MLN suit une cinétique de pseudo ordre 1. La pseudo-constante k est inversement proportionnelle à la concentration obs ISSN initiale en pesticide et peut être décrite par une équation de Langmuir-Hinshelwood. L’étude de l’influence de la concentration en TiO a 2 1718-8598 (numérique) permis de montrer que la cinétique de dégradation du MLN augmente avec la dose de catalyseur, mais un surdosage n’est pas nécessaire pour augmenter Découvrir la revue l’efficacité du procédé. Cette étude a permis également de montrer que la pseudo‑constante d’ordre 1 de dégradation du MLN augmente linéairement avec le flux lumineux jusqu’à 580 W m-2 puis décroît. Dans ces conditions, la Citer cet article recombinaison des électrons trous est favorisée. Enfin, la cinétique de dégradation du MLN en fonction du pH passe par un optimum de pH proche du Zouaghi, R., Zertal, A., David, B. & Guittonneau, S. (2007). Photocatalytic pH de point de charge nulle (pH = 6). Degradation of Monolinuron and Linuron in an Aqueous Suspension of Titanium Dioxide Under Simulated Solar Irradiation. Revue des sciences de l'eau / Journal of Water Science, 20(2), 163–172. https://doi.org/10.7202/015810ar Tous droits réservés © Revue des sciences de l'eau, 2007 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ PHOTOCATALYTIC DEGRADATION OF MONOLINURON AND LINURON IN AN AQUEOUS SUSPENSION OF TITANIUM DIOXIDE UNDER SIMULATED SOLAR IRRADIATION Dégradation photocatalytique du monolinuron et du linuron dans une suspension aqueuse de dioxide de titanium au contact de lumière solaire simulée Razika Zouaghia b, Abdennour Zertala, Bernard Davidb and Sylvie Guittonneaub* aLaboratoire des Sciences et Technologie de l’Environnement, Université de Mentouri, Constantine, Algérie bLaboratoire de Chimie Moléculaire et Environnement, Université de Savoie, Savoie Technolac, 73376 Le Bourget du Lac, France Reçu le 30 octobre 2005, accepté le 18 september 2006 ABSTRACT an electron-hole recombination was favored. Finally, the photocatalytic degradation rate depended on pH, where an optimum was found at a pH value close to the pH of the point The photocatalytic degradation of two phenylurea of zero charge (pH = 6). herbicides, monolinuron (MLN) and linuron (LN), was investigated in an aqueous suspension of TiO2 using simulated solar irradiation. The objective of the study was to compare Keywords: Linuron; Monolinuron; phenyl urea herbicides; their photocatalytic reactivity and to assess the influence of photocatalysis; titanium dioxide. various parameters such as initial pesticide concentration, catalyst concentration and photonic flux on the photocatalytic degradation rate of MLN and LN. A comparative study of the RÉSUMÉ photocatalytic degradation kinetics of both herbicides showed that these two compounds have a comparable reactivity with La dégradation photocatalytique de deux herbicides, le TiO2/simulated sun light. Under the operating conditions of this study, the photocatalytic degradation of MLN and LN monolinuron (MLN) et le linuron (LN), a été étudiée dans une suspension de TiO au contact de lumière solaire simulée. followed pseudo first-order decay kinetics. Theobs k values 2 indicated an inverse dependence on the initial herbicide L’objectif de cette étude est de comparer leur photoréactivité concentration and were fitted to the Langmuir-Hinshelwood et d’évaluer l’influence de différents paramètres tels que equation. Photocatalytic degradation rates increased with la concentration initiale en pesticide, la concentration en catalyseur et le flux photonique sur la cinétique de dégradation TiO2 dosage, but overdoses did not necessarily increase the photocatalytic efficiency. The degradation rate of MLN du monolinuron. L’étude comparative de la dégradation des increased with radiant flux until an optimum at 580 W m-2 deux herbicides a montré que les deux composés présentent une was reached and then decreased. Under these conditions, réactivité comparable avec le système TiO2/lumière simulée. *Auteur pour correspondance : Téléphone: (33)4 79 75 86 06 Télécopieur: (33) 4 79 75 86 74 Courriel : [email protected] [email protected] ISSN : 1718-8598 Revue des Sciences de l’Eau 20(2) (2007) 163-172 164 Photocatalytic degradation Dans les conditions opératoires de cette étude, la dégradation O O photocatalytique du LN et du MLN suit une cinétique de CH3 CH3 Cl NH N Cl NH N pseudo ordre 1. La pseudo-constante kobs est inversement proportionnelle à la concentration initiale en pesticide et peut O O H3C Cl H3C être décrite par une équation de Langmuir-Hinshelwood. (a) (b) L’étude de l’influence de la concentration en TiO2 a permis de montrer que la cinétique de dégradation du MLN Figure 1. Chemical structure of (a) monolinuron (MLN) and augmente avec la dose de catalyseur, mais un surdosage n’est (b) linuron (LN). pas nécessaire pour augmenter l’efficacité du procédé. Cette Formule chimique du (a) monolinuron (MLN) et (b) linuron étude a permis également de montrer que la pseudo-constante (LN). d’ordre 1 de dégradation du MLN augmente linéairement avec le flux lumineux jusqu’à 580 W m-2 puis décroît. Dans ces conditions, la recombinaison des électrons trous est favorisée. moderately soluble in water (s = 735 and 81 mg L-1 at 25°C for Enfin, la cinétique de dégradation du MLN en fonction du MLN and LN respectively) (TOMLIN, 2000). Consequently, pH passe par un optimum de pH proche du pH de point de MLN and LN can give rise to important residues in soil and charge nulle (pH = 6). in water. Mots clés : Linuron; Monolinuron; herbicides phényl urées; The aim of the present work was to study the photocatalytic photocatalyse;oxyde de titane degradation of LN and MLN in presence of TiO2 in aqueous solution using simulated solar irradiation. The effect of various parameters, such as herbicide concentration, photonic flux, 1. INTRODUCTION mass of catalyst and pH on the decay of MLN, was investigated. These herbicides were the subject of direct photolysis butthere are no published papers concerning their photocatalytic In the last few decades, considerable attention has been transformation. given to the toxic and persistent pollutants coming from industrial and agricultural human activities. The application of photochemistry to environmental remediation and treatment has also been an active area of research and heterogeneous 2. MATERIALS AND METHODS photocatalysis using UV/TiO2 system has often been proposed to eliminate these pollutants (BAHNEMANN et al., 1994; CUNNINGHAM and SRIJARANAI, 1994; HERRMANN, 2.1 Reactants 1999; MARINAS et al., 2001; OLLIS and EL-EKABI, 1993). Titanium dioxide is widely used as photocatalyst All reagents were of the purest grade commercially available because it is photochemically stable, non-toxic and low cost and were used without further purification. Monolinuron (AUGUGLIARO et al., 1995; TAPOLOV et al., 2000). This (3-(4-chlorophenyl)-1-methoxy-1-methylurea, 99%) was process is based on the generation of reactive species (electron/ Riedel- de Haën and linuron (3-(3,4-dichlorophenyl)-1- positive hole pairs) upon absorption of UV light (λ < 368 nm) methoxy-1-methylurea), 98%) was from Chem. Service. by the photocatalyst. In the presence of oxygen, the electron Titanium dioxide Degussa P25 was mostly in the anatase may induce reduction and leads to the formation of superoxide form (70% anatase, 30% rutile) with an average particle size anions. Positive holes oxidize adsorbed organic substrates or of 30 nm and BET surface area of 50 m2 g-1. Acetonitrile, react with water leading to the formation of hydroxyl radicals. HPLC grade product, was purchased from Merck. Current These radicals are well known to be strong oxidant agents reagents such as NaHCO3 and Na2CO3 were analytic grades (the reduction potential is as high as 2.8 V/HSE) and react (Merck). Water was purified by Milli-Q system (Millipore) efficiently without any selectivity with most organic substrates and controlled by its resistivity (18 MΩ cm-1). (D’OLIVEIRA et al., 1990; OKAMOTO et al., 1985; OLLIS et al., 1989). 2.2 Photocatalytic experiments -1 Phenylurea herbicides were introduced in the 1950’s and Suspensions of TiO2 (0-1.5 g L ) in aqueous solutions of their use has considerably increased.
Recommended publications
  • Common and Chemical Names of Herbicides Approved by the WSSA
    Weed Science 2010 58:511–518 Common and Chemical Names of Herbicides Approved by the Weed Science Society of America Below is the complete list of all common and chemical of herbicides as approved by the International Organization names of herbicides approved by the Weed Science Society of for Standardization (ISO). A sponsor may submit a proposal America (WSSA) and updated as of September 1, 2010. for a common name directly to the WSSA Terminology Beginning in 1996, it has been published yearly in the last Committee. issue of Weed Science with Directions for Contributors to A herbicide common name is not synonymous with Weed Science. This list is published in lieu of the selections a commercial formulation of the same herbicide, and in printed previously on the back cover of Weed Science. Only many instances, is not synonymous with the active ingredient common and chemical names included in this complete of a commercial formulation as identified on the product list should be used in WSSA publications. In the absence of label. If the herbicide is a salt or simple ester of a parent a WSSA-approved common name, the industry code number compound, the WSSA common name applies to the parent as compiled by the Chemical Abstracts Service (CAS) with compound only. CAS systematic chemical name or the systematic chemical The chemical name used in this list is that preferred by the name alone may be used. The current approved list is also Chemical Abstracts Service (CAS) according to their system of available at our web site (www.wssa.net).
    [Show full text]
  • Risks of Linuron Use to Federally Threatened California Red-Legged Frog (Rana Aurora Draytonii)
    Risks of Linuron Use to Federally Threatened California Red-legged Frog (Rana aurora draytonii) Pesticide Effects Determination Environmental Fate and Effects Division Office of Pesticide Programs Washington, D.C. 20460 June 19, 2008 Primary Authors: Michael Davy, Agronomist Wm. J. Shaughnessy, Ph.D, Environmental Scientist Environmental Risk Branch II Environmental Fate and Effects Division (7507C) Secondary Review: Donna Randall, Senior Effects Scientist Nelson Thurman, Senior Fate Scientist Environmental Risk Branch II Environmental Fate and Effects Division (7507P) Branch Chief, Environmental Risk Assessment Branch #: Arthur-Jean B. Williams, Acting Branch Chief Environmental Risk Branch II Environmental Fate and Effects Division (7507P) 2 Table of Contents 1. Executive Summary.................................................................................................8 2. Problem Formulation .............................................................................................14 2.1 Purpose...........................................................................................................................14 2.2 Scope..............................................................................................................................16 2.3 Previous Assessments ....................................................................................................18 2.4 Stressor Source and Distribution ...................................................................................19 2.4.1 Environmental Fate
    [Show full text]
  • Literature Review of Controlling Aquatic Invasive Vegetation With
    Eurasian watermilfoil in Christmas Lake, 2011 Literature Review on Controlling Aquatic Invasive Vegetation with Aquatic Herbicides Compared to Other Control Methods: Effectiveness, Impacts, and Costs Prepared for: Prepared by: Minnehaha Creek Watershed District Steve McComas Blue Water Science St. Paul, MN 55116 September 2011 1 Literature Review on Controlling Aquatic Invasive Vegetation with Aquatic Herbicides Compared to Other Control Methods: Effectiveness, Impacts, and Costs Steve McComas, Blue Water Science Table of Contents page number Introduction .................................................................................................................................................................. 1 Use of Herbicides as an Aquatic Plant Control Technique ...................................................................................... 2 How Herbicides Work and Their Mode of Action ....................................................................................................... 3 Aquatic Herbicide Impacts on Humans and the Ecosystem ....................................................................................... 8 Where to Find Sources of Specific Information on herbicide Products and Their Active Ingredients ....................... 16 Harvesting, Drawdown, and Biocontrol as Aquatic Plant Control Techniques ................................................... 17 Summary of Control Techniques for Non-Native Curlyleaf Pondweed and Eurasian Watermilfoil ................... 25 Control Techniques for Other
    [Show full text]
  • Analysis of 22 Base-Neutral Pesticides and Pesticide
    Analysis of 22 Base-Neutral Pesticides and Pesticide Metabolites in Raw and Treated Waters Using Liquid Chromatography and Positive Ion Electrospray-Mass Spectrometry Application Water Analysis Authors Introduction Pam Chamberlain and Toni Hall Due to the widespread use of agricultural pesti- Wessex Water plc, cides and the consequential drainage into public Bath, UK waterways and underground water reservoirs, Agilent contact these types of compounds must be monitored for health and safety reasons, and in order to comply Paul Zavitsanos with governmental regulations and standards. Agilent Technologies, Inc. There are numerous and varied methods for the 2850 Centerville Road analysis of certain classes of pesticides. Some Wilmington, DE 19808-1610 examples include: a) separate analyses of triazines USA by gas chromatography (GC) [1], b) analysis of thermally unstable urons using liquid chromatog- Abstract raphy (LC) with UV diode array detection (DAD) [1], and c) an online method using solid-phase A method was defined for the quantitative analysis of extraction (SPE) with LC and DAD, and briefly by 22 pesticides and pesticide metabolites in raw and LC/MS (LC/mass spectrometry) [2]. We needed a treated drinking water. The method used solid-phase robust, high-throughput analytical method for extraction of the water sample, liquid chromatography varied pesticides, capable of validation to UKAS and electrospray-mass spectrometry. Results were shown (United Kingdom Accreditation Service) and DWI to meet UK regulatory requirements of recovery, (Drinking Water Inspectorate) requirements. To sensitivity, accuracy, and precision. develop an appropriate compound list, we com- bined pesticide data for the Wessex region, obtained from Central Science Lab (CSL, York), with stability and leaching data to predict problem pesticides.
    [Show full text]
  • Determination of Atrazine and Degradation Products in Luxembourgish Drinking Water: Origin and Fate of Potential Endocrine-Disrupting Pesticides T
    This article was downloaded by: [CRP Gabriel Lippmann (Centre de Recherch] On: 05 January 2012, At: 04:44 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Food Additives & Contaminants: Part A Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tfac20 Determination of atrazine and degradation products in Luxembourgish drinking water: origin and fate of potential endocrine-disrupting pesticides T. Bohn a , E. Cocco a , L. Gourdol a , C. Guignard a & L. Hoffmann a a Centre de Recherche Public – Gabriel Lippmann, Department of Environment and Agro- Biotechnologies, 41, rue du Brill, L-4422 Belvaux, Luxembourg Available online: 27 Jun 2011 To cite this article: T. Bohn, E. Cocco, L. Gourdol, C. Guignard & L. Hoffmann (2011): Determination of atrazine and degradation products in Luxembourgish drinking water: origin and fate of potential endocrine-disrupting pesticides, Food Additives & Contaminants: Part A, 28:8, 1041-1054 To link to this article: http://dx.doi.org/10.1080/19440049.2011.580012 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources.
    [Show full text]
  • RIVM Briefrapport 601716009 Environmental Risk Limits For
    Letter report 601716009/2008 J.W.A. Scheepmaker | J.W. Vonk Environmental risk limits for monolinuron RIVM Letter report 601716009/2008 Environmental risk limits for monolinuron J.W.A. Scheepmaker J.W. Vonk Contact: J.W.A. Scheepmaker Expertise Centre for Substances [email protected] This investigation has been performed by order and for the account of Directorate-General for Environmental Protection, Directorate for Soil, Water and Rural Area (BWL), within the framework of the project ‘Standard setting for other relevant substances within the WFD’. RIVM, P.O. Box 1, 3720 BA Bilthoven, the Netherlands Tel +31 30 274 91 11 www.rivm.nl © RIVM 2008 Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication. 2 RIVM Letter report 601716009 Rapport in het kort Environmental risk limits for monolinuron Dit rapport geeft milieurisicogrenzen voor het herbicide monolinuron in water. Milieurisicogrenzen zijn de technisch-wetenschappelijke advieswaarden voor de uiteindelijke milieukwaliteitsnormen in Nederland. De milieurisicogrenzen zijn afgeleid volgens de methodiek die is voorgeschreven in de Europese Kaderrichtlijn Water. Hierbij is gebruikgemaakt van de beoordeling in het kader van de Europese toelating van gewasbeschermingsmiddelen (Richtlijn 91/414/EEG), aangevuld met gegevens uit de openbare literatuur. RIVM Letter report 601716009 3 4 RIVM Letter report 601716009 Contents 1 Introduction 7 1.1 Background
    [Show full text]
  • Isolation and Characterization of Bradyrhizobium Sp. SR1 Degrading Two Β-Triketone Herbicides
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 14005 To link to this article : DOI:10.1007/s11356-015-4544-1 URL : http://dx.doi.org/10.1007/s11356-015-4544-1 To cite this version : Romdhane, Sana and Devers-Lamrani, Marion and Martin-Laurent, Fabrice and Calvayrac, Christophe and Rocaboy-Faquet, Emilie and Riboul, David and Cooper, Jean- François and Barthelmebs, Lise Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides. (2015) Environmental Science and Pollution Research. ISSN 0944- 1344 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides Sana Romdhane1,2,3 & Marion Devers-Lamrani3 & Fabrice Martin-Laurent 3 & Christophe Calvayrac2 & Emilie Rocaboy-Faquet1 & David Riboul4,5 & Jean-François Cooper2 & Lise Barthelmebs1 Abstract In this study, a bacterial strain able to use dissipate both herbicides, degradation rate of sulcotrione was sulcotrione, a β-triketone herbicide, as sole source of carbon ten times higher than that of mesotrione, showing a greater and energy was isolated from soil samples previously treated affinity of degrading-enzyme system to sulcotrione. with this herbicide. Phylogenetic study based on16S rRNA Degradation pathway of sulcotrione involved the formation of gene sequence showed that the isolate has 100 % of similarity 2-chloro-4-mesylbenzoic acid (CMBA), previously identified with several Bradyrhizobium and was accordingly designated in sulcotrione degradation, and of a new metabolite identified as Bradyrhizobium sp.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,232,484 Pignatello 45 Date of Patent: Aug
    USOO5232484A United States Patent (19) 11 Patent Number: 5,232,484 Pignatello 45 Date of Patent: Aug. 3, 1993 (54). DEGRADATION OF PESTICIDES BY Waste Disposal Proceedings EPA/600/9-85/030, pp. FERRC REAGENTS AND PEROXDEN 72 to 85. THE PRESENCE OF LIGHT Johnson, L. J., and Talbot, H. W., 39 Experimentia 1236-1246 (1983). 75 Inventor: Joseph J. Pignatello, Hamden, Conn. Mill, T., and Haag, W. R., Preprints of Extended Ab 73 Assignee: The Connecticut Agricultural stracts, 198th Nat. Meeting Amer. Chem. Soc. Div. Experiment Station, New Haven, Env, Chem., A.C.S., Washington, 1969, paper 155, pp. Conn. 342-345. 21 Appl. No.: 744,365 Munnecke, D. M., 70 Residue Rev. 1-26 (1979). Murphy, A. P., et al., 23 Environ. Sci. Technol. 166-169 22 Filed: Aug. 13, 1991 (1989). 51 int. Ci...................... A01N 37/38; A01N 43/70; Nye, J. C., 1985 National Workshop on Pesticide Waste CO2F 1/72 Disposal Proceedings EPA/600/9-85/030 pp. 43 to 52 U.S.C. .................................... 588/206; 210/759; 480. 588/207; 588/210 Plimmer, J. R., et al., 19 J.Agr. Food Chem. 572-573 58 Field of Search ........................... 71/117, 116,93; (1971). 210/749, 758, 759 Schmidt, C., 1986 National Workshop on Pesticide Waste Disposal Proceedings EPA/600/9-87/001, pp. 56) References Cited 45 to 52. U.S. PATENT DOCUMENTS Sedlak, D. L. and Andren, A. W., 25 Environ. Sci. 3,819,516 6/1974 Murchison et al. ................... 422A24 Technol. 777-782 (1991). 4,569,769 2/1986 Walton et al.
    [Show full text]
  • Lecture Inhibition of Photosynthesis Inhibition at Photosystem II
    1 Lecture Inhibition of Photosynthesis Inhibition at Photosystem II 1. General Information The popular misconception is that susceptible plants treated with these herbicides “starve to death” because they can no longer photosynthesize. In actuality, the plants die long before the food reserves are depleted. The photosynthetic inhibitors can be divided into two distinct groups, the inhibitors of Photosystem I and inhibitors of Photosystem II. Both of these groups work in the energy production step of photosynthesis, or the light reactions. Light is required as well as photosynthesis for these herbicides to kill susceptible plants. Herbicides that inhibit Photosystem II do not act as “electron interceptors” or “electron thieves” but rather they bind to the QB protein in the normal electron transport sequence, thereby blocking electron transport to the PQ pool. Herbicides that inhibit Photosystem II are represented by several herbicide families including the symmetrical triazines, triazinones (asymmetrical triazines), substituted ureas, uracils, pyridazinones, phenyl carbamates, nitriles, benzothiadiazoles, phenyl pyridazines, and acid amides. These herbicides have preemergence and/or postemergence activity. ) Note: The pyridazinones, nitrile, and acid amide families of herbicides also have specific herbicides that do not have this mode of action (will be discussed later). 2. Mode of Action See Figure 7.1 (The electron transport chain in photosynthesis and the sites of action of herbicides that interfere with electron transfer in this chain (Q = electron acceptor; PQ = plastoquinone; page 2). Review Photosystem I and II. The specific mode of action is as follows: If foliar applied, herbicide moves through the cuticle into the cell and chloroplast. It binds to the QB protein preventing it from accepting and transferring electrons to the plastoquinone (PQ) pool in Photosystem II.
    [Show full text]
  • Pesticide Poisoning Handbook
    Index of Pesticide Products Symbols Admire ..................................................... 91 Advantage ................................................ 91 1-2-dichloroethane ................................. 162 Afalon .................................................... 124 1,2-dichloropropane ............................... 162 Aficida ...................................................... 57 1,3-dichloropropene ............................... 162 Afugan ...................................................... 47 2,3,6-TBA .............................................. 121 Agritox ..................................................... 44 2,3,7,8-tetra CDD ..................................... 98 Agrosan .................................................. 152 2,4-D .......................... 98, 99, 101, 218, 222 Agrothion ................................................. 46 2,4-DB ................................................ 98, 99 alachlor ........................................... 120, 229 2,4-dichlorophenoxyacetic acid ......... 98, 99 alachlor mercapturate ............................. 225 2,4-dichlorophenoxybutyric acid ....... 98, 99 Alanox .................................................... 120 2,4-dichlorophenoxypropionic acid ... 98, 99 alcohols ...................................196, 200-201 2,4-DP ................................................ 98, 99 aldicarb ..................................................... 57 2,4,5-T ................................................ 98, 99 aldehydes ...............................................
    [Show full text]
  • PLANTS TOLERANT to HPPD INHIBITOR HERBICIDES HPPD-Inhibitorherbizid-Resistente Pflanzen Plantes Tolérantes À Des Herbicides Inhibant L’HPPD
    (19) TZZ _¥Z_T (11) EP 2 516 630 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 9/02 (2006.01) C12N 15/82 (2006.01) 15.11.2017 Bulletin 2017/46 A01H 5/00 (2006.01) A01H 5/10 (2006.01) (21) Application number: 10793270.9 (86) International application number: PCT/EP2010/070561 (22) Date of filing: 22.12.2010 (87) International publication number: WO 2011/076877 (30.06.2011 Gazette 2011/26) (54) PLANTS TOLERANT TO HPPD INHIBITOR HERBICIDES HPPD-Inhibitorherbizid-resistente Pflanzen Plantes tolérantes à des herbicides inhibant l’HPPD (84) Designated Contracting States: • HAIN, Ruediger AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 60594 Frankfurt (DE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (56) References cited: WO-A1-2009/144079 WO-A2-96/38567 (30) Priority: 23.12.2009 EP 09015984 29.12.2009 US 290573 P • DATABASE EMBL [Online] 7 February 2006 10.11.2010 EP 10190655 (2006-02-07), "Synechococcus sp. JA-3-3Ab 10.11.2010 US 412093 P putative 4-hydroxyphenylpyruvate dioxygenase", XP002583274, retrieved from EBI (43) Date of publication of application: accession no. EMBL:ABC98696 Database 31.10.2012 Bulletin 2012/44 accession no. ABC98696 • DATABASE EMBL [Online] 7 February 2006 (73) Proprietor: Bayer Intellectual Property GmbH (2006-02-07), "Synechococcus sp. 40789 Monheim (DE) JA-2-3B’a(2-13) 4-hydroxyphenylpyruvate dixygenase, putative", XP002583275, retrieved (72) Inventors: from EBI accession no.
    [Show full text]
  • Emerging Strategies for the Bioremediation of the Phenylurea Herbicide Diuron
    fmicb-12-686509 August 6, 2021 Time: 15:23 # 1 REVIEW published: 12 August 2021 doi: 10.3389/fmicb.2021.686509 Emerging Strategies for the Bioremediation of the Phenylurea Herbicide Diuron Jiayi Li1,2, Wenping Zhang1,2, Ziqiu Lin1,2, Yaohua Huang1,2, Pankaj Bhatt1,2 and Shaohua Chen1,2* 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China, 2 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China Diuron (DUR) is a phenylurea herbicide widely used for the effective control of most annual and perennial weeds in farming areas. The extensive use of DUR has led to its widespread presence in soil, sediment, and aquatic environments, which poses a threat to non-target crops, animals, humans, and ecosystems. Therefore, the removal of DUR from contaminated environments has been a hot topic for researchers in recent decades. Bioremediation seldom leaves harmful intermediate metabolites and is emerging as the most effective and eco-friendly strategy for removing DUR from Edited by: the environment. Microorganisms, such as bacteria, fungi, and actinomycetes, can Xingxing Peng, Sun Yat-sen University, China use DUR as their sole source of carbon. Some of them have been isolated, including Reviewed by: organisms from the bacterial genera Arthrobacter, Bacillus, Vagococcus, Burkholderia, Fabrice Martin-Laurent, Micrococcus, Stenotrophomonas, and Pseudomonas and fungal genera Aspergillus, Institut National de la Recherche Pycnoporus, Pluteus, Trametes, Neurospora, Cunninghamella, and Mortierella. A Agronomique (INRA), France Alessandro D’Annibale, number of studies have investigated the toxicity and fate of DUR, its degradation Tuscia University, Italy pathways and metabolites, and DUR-degrading hydrolases and related genes.
    [Show full text]