Movement and Population Size of the River Sculpin Cottus Hangiongensis in the Daitobetsu River of Southern Hokkaido

Total Page:16

File Type:pdf, Size:1020Kb

Movement and Population Size of the River Sculpin Cottus Hangiongensis in the Daitobetsu River of Southern Hokkaido Japanese Journal of Ichthyology 魚 類 学 雑 誌 Vol.32,No.41986 32巻4号1986年 Movement and Population Size of the River Sculpin Cottus hangiongensis in the Daitobetsu River of Southern Hokkaido Akira Goto (Received April 22,1985) Abstract Individual movements and population size of the amphidromous sculpin Cottus hangiongensis,excluding young-of-the-year smaller than 50 mm in body length,were studied from October 1983 to December 1984 in 5 separate sections of the Daitobetsu River of southern Hokkaido,by using mark-recapture methods.During the non-breeding season,distinct in- clinations in density,body length distribution and sex ratio of C.hangiongensis populations were found along the course of the river.The population density was the highest,3.45 per m2,in the lowest section and decreased in the upper sections.Larger males were•\found in larger numbers toward the lower reaches,whereas the sex ratio,which was biased in favor of females,was generally more striking upstream.These characteristics of the population structure may result from the amphidromous life history and the polygynous mating system of this species.Many marked fish were recaptured within the original sections,where they had been marked and released,through- out the year.During the non-breeding season,especially,the mean movement was 40.6 m,with the greatest movement being 92 m.During the breeding season,on the other hand,some sculpins appeared to move downstream before spawning and upstream after spawning.Such down- stream spawning migration may increase the chance of encountering a mate,and for females it may enhance the chance of encountering larger males.Moreover,it may also contribute to a decrease in the mortality rate of their flowing larvae. •\ River sculpins of the genus Cottus found in Bailey(1952)noted limited movement with typical Japan have various life history patterns:cata- yearly movements of approximately 50 m in a dromous for C.kazika(Kuroda,1947),am- Montana stream,and Brown and Downhower phidromous for C.hangiongensis(Goto,1977a, (1982)reported that the mean movement of this 1981)and C.amblystomopsis(Goto,1975,1980), species was 1.2 m from June through July in two and fluvial for C.nozawae(Goto,1975,1977b, tributaries of the Gallatin River,Montana.Mc- 1980)and the"large-egg type"of C.pollux Cleave(1964)estimated that the home range of (Mizuno and Niwa,1961).The larvae of C. mottled sculpins was somewhat less than 50 m. hangiongensis Mori,an amphidromous species, On the other hand,Shetter and Hazzard(1939) are carried by currents into the sea soon after found considerable instability in a population of hatching and then after pelagic life in the sea for mottled sculpins and slimy sculpins(C.cognatus) about one month,the juveniles ascend uprivers. in a Michigan stream. They are commonly distributed in the rivers of In the present study,the amphidromous sculpin southern Hokkaido(Sato and Kobayashi,1951; C.hangiongensis,excluding young-of-the-year Goto,1977a,1981,1984a).The adult fish of this which were smaller than 50 mm in body length, species inhabit benthically the lower reaches of was studied in the Daitobetsu River of southern rivers and feed on larvae of aquatic insects and Hokkaido throughout the year,in order to deter- occasionally on small fish throughout the year mine the spatial stability and movement of the (Goto,1981). population and to estimate the population size by Although river sculpins are generally thought to using mark-recapture methods. be relatively sedentary during the non-breeding season(McCleave,1964;Brown and Downhower, Study area and methods 1982),the spatial stability and movements of adult C.hangiongensis populations are hitherto Study area.The Daitobetsu River studied unknown.In the mottled sculpin C.bairdi, originates on Oshima Mountain of Hokkaido and ―421― 魚 類 学 雑 誌Japan.J.Ichthyol.32(4),1986 restricted to the lower reaches.Within the lower reaches,five sections,(I-V),300-500m off each other in length,were established(Fig.1).The physical characteristics of each section are shown in Table 1.Section I,being 215 m long and 5.2 m wide on the average,consists of Bb type(Kani,1944; Mizuno and Kawanabe,1981)with an abundance of various sized rocks.Both Sections II and III, 130 m long and 7.8 m wide and 150 m long and 7.9 m wide respectively,consist of Aa-Bb transi- tion type.Section II has a relative abundance of rocks of various sizes and Section III,of which the bottom mainly consists of gravels,has rela- tively few rocks.Section IV,the longest section, with a length of 430 m and 5.8 m in width,consists of Aa type and has a rocky bottom in most parts. Section V,being 210 m long and 6.2 m wide,con- sists of Aa type and is relatively abundant in various sized rocks.Additionally,Section VI, being located upstream beyond the notched weir and consisting of Aa type,was prepared to study the upstream migration of sculpins from below the weir(Fig.1). Fig.1.Map of the Daitobetsu River showing the Methods for mark-recapture study.Studies on sections studied. population estimates and movement of individuals of C.hangiongensis were conducted in the Daito- drains into Hakodate Bay(Fig.1).It is charac- betsu River from October,1983 to December, terized by relatively high gradients and is about 1984.Sculpins larger than 50 mm in body 17 km long.In this river,there is a notched weir length,which were captured with dip nets and approximately 4 km upstream from the river selected from total catches,were anesthetized for mouth,which partially blocks upstream migra- a few minutes with approximately 0.0001 % ethyl- tion of amphidromous sculpins(Goto,1984a)so aminobenzoate solution before marking.Fish that only a small number of adult C.hangiongensis were examined to determine sex by external sexual are distributed in waters further upstream from characters(Goto,1984b),standard length was the weir(Goto,1974). measured to the nearest 0.1 mm,and then the fish The study sites were set up within the lower were marked by removing combinations of 1st reaches from the river mouth to the notched weir dorsal-fin spines and 2nd dorsal-fin rays.De- because the spawning grounds of this species and tailed procedures for individual marking has been the distribution of the main population were described elsewhere(Goto,1985).After mark- Table 1.Physical characteristics of each section of the Daitobetsu River studied. * This figure includes 470 m2 of Hayase Rapids with rock bottom. ** This figure includes 170 m2 of Hirase Rapids with rock bottom. ―422― Goto:Movement and Population of River Sculpin Fig.2.Length frequency distributions for Cottus hangiongensis captured in 5 sections of the Daitobetsu River in October(left side)and in November(right side),1983. ing,the fish were placed in a holding crof until section.The body length frequency distributions completely recovered from the anesthetic,at of male and female sculpins larger than 50 mm are which time they were released near the middle of shown for the samples captured in Sections I each section.During this study,an approximate through V in October and November 1983(Fig.2). total of 2,500 sculpins were marked individually in As pointed out by Goto(1984b),sexual dimor- all five sections(I-V). phism in body size where males were larger than As a general rule,recapture of marked fish was females,was found in all sections,particularly in attempted in each section in every month,from Sections I and II which were located in the lower one month after the first marking in October 1983, reaches of the river.Females ranging from 50 except in January and February of 1984 when mm to 110 mm in body length,mainly appeared the river was covered with snow.Dip nets were to be 1+ and 2+ aged fish with the modes of 60-70 used in recapture attempts,with nearly equal mm and about 85-95 mm respectively.In males, catching efforts,every time.Especially during the the body length ranged from 55 mm to 150 mm, period from mid April to early June,1984,fishing though the age composition could not be inferred by using dip nets for recapture was done generally from the size distributions. every five days in the region between Section II The sex ratio of sculpins was biased in favor of and Section III(Section II-III). females at every section in the both months. Moreover,such bias in the sex ratio was generally Results more striking in the upstream direction where the male/female ratio varied from approximately 1:2 Body length distribution and sex ratio for each in Section I to about 1:5 in Section V(Fig.2). ―423― 魚 類 学 雑 誌Japan.J.Ichthyol.32(4),1986 Spatial stability and movement.Movement of The majority of sculpins recaptured were pres- sculpins was estimated from the data on location ent in their original sections throughout the year when the marked fish were recaptured(Table 2). (Table 2).Especially from October 1983 through Fish recaptured were divided into two groups: mid April 1984,all fish were recaptured in the one group consisting of recaptures found in their original sections,except two fish,one of which original sections and the other group consisting was captured in a downstream section in November of recaptures found in sections other than the and the other which was captured in an upstream original sections at which they were released after section in December.From mid April to May,.
Recommended publications
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Distribution, Abundance, and Genetic Population Structure of Wood River Sculpin, Cottus Leiopomus
    Western North American Naturalist Volume 68 Number 4 Article 10 12-31-2008 Distribution, abundance, and genetic population structure of Wood River sculpin, Cottus leiopomus Kevin A. Meyer Idaho Department of Fish and Game, Nampa, Idaho, [email protected] Daniel J. Schill Idaho Department of Fish and Game, Eagle, Idaho, [email protected] Matthew R. Campbell Idaho Department of Fish and Game, Eagle, Idaho, [email protected] Christine C. Kozfkay Idaho Department of Fish and Game, Eagle, Idaho, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Meyer, Kevin A.; Schill, Daniel J.; Campbell, Matthew R.; and Kozfkay, Christine C. (2008) "Distribution, abundance, and genetic population structure of Wood River sculpin, Cottus leiopomus," Western North American Naturalist: Vol. 68 : No. 4 , Article 10. Available at: https://scholarsarchive.byu.edu/wnan/vol68/iss4/10 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 68(4), © 2008, pp. 508–520 DISTRIBUTION, ABUNDANCE, AND GENETIC POPULATION STRUCTURE OF WOOD RIVER SCULPIN, COTTUS LEIOPOMUS Kevin A. Meyer1,3, Daniel J. Schill1, Matthew R. Campbell2, and Christine C. Kozfkay2 ABSTRACT.—The Wood River sculpin Cottus leiopomus is endemic to the Wood River Basin in central Idaho and is a nongame species of concern because of its limited distribution. However, status and genetic population structure, 2 factors often central to the conservation and management of species of concern, have not been assessed for this species.
    [Show full text]
  • Appendix A: Common and Scientific Names for Fish and Wildlife Species Found in Idaho
    APPENDIX A: COMMON AND SCIENTIFIC NAMES FOR FISH AND WILDLIFE SPECIES FOUND IN IDAHO. How to Read the Lists. Within these lists, species are listed phylogenetically by class. In cases where phylogeny is incompletely understood, taxonomic units are arranged alphabetically. Listed below are definitions for interpreting NatureServe conservation status ranks (GRanks and SRanks). These ranks reflect an assessment of the condition of the species rangewide (GRank) and statewide (SRank). Rangewide ranks are assigned by NatureServe and statewide ranks are assigned by the Idaho Conservation Data Center. GX or SX Presumed extinct or extirpated: not located despite intensive searches and virtually no likelihood of rediscovery. GH or SH Possibly extinct or extirpated (historical): historically occurred, but may be rediscovered. Its presence may not have been verified in the past 20–40 years. A species could become SH without such a 20–40 year delay if the only known occurrences in the state were destroyed or if it had been extensively and unsuccessfully looked for. The SH rank is reserved for species for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences. G1 or S1 Critically imperiled: at high risk because of extreme rarity (often 5 or fewer occurrences), rapidly declining numbers, or other factors that make it particularly vulnerable to rangewide extinction or extirpation. G2 or S2 Imperiled: at risk because of restricted range, few populations (often 20 or fewer), rapidly declining numbers, or other factors that make it vulnerable to rangewide extinction or extirpation. G3 or S3 Vulnerable: at moderate risk because of restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors that make it vulnerable to rangewide extinction or extirpation.
    [Show full text]
  • 2010 Animal Species of Concern
    MONTANA NATURAL HERITAGE PROGRAM Animal Species of Concern Species List Last Updated 08/05/2010 219 Species of Concern 86 Potential Species of Concern All Records (no filtering) A program of the University of Montana and Natural Resource Information Systems, Montana State Library Introduction The Montana Natural Heritage Program (MTNHP) serves as the state's information source for animals, plants, and plant communities with a focus on species and communities that are rare, threatened, and/or have declining trends and as a result are at risk or potentially at risk of extirpation in Montana. This report on Montana Animal Species of Concern is produced jointly by the Montana Natural Heritage Program (MTNHP) and Montana Department of Fish, Wildlife, and Parks (MFWP). Montana Animal Species of Concern are native Montana animals that are considered to be "at risk" due to declining population trends, threats to their habitats, and/or restricted distribution. Also included in this report are Potential Animal Species of Concern -- animals for which current, often limited, information suggests potential vulnerability or for which additional data are needed before an accurate status assessment can be made. Over the last 200 years, 5 species with historic breeding ranges in Montana have been extirpated from the state; Woodland Caribou (Rangifer tarandus), Greater Prairie-Chicken (Tympanuchus cupido), Passenger Pigeon (Ectopistes migratorius), Pilose Crayfish (Pacifastacus gambelii), and Rocky Mountain Locust (Melanoplus spretus). Designation as a Montana Animal Species of Concern or Potential Animal Species of Concern is not a statutory or regulatory classification. Instead, these designations provide a basis for resource managers and decision-makers to make proactive decisions regarding species conservation and data collection priorities in order to avoid additional extirpations.
    [Show full text]
  • Contrasting Life Histories Contribute to Divergent Patterns of Genetic
    Baek et al. BMC Evolutionary Biology (2018) 18:52 https://doi.org/10.1186/s12862-018-1171-8 RESEARCH ARTICLE Open Access Contrasting life histories contribute to divergent patterns of genetic diversity and population connectivity in freshwater sculpin fishes Song Yi Baek1, Ji Hyoun Kang2, Seo Hee Jo1, Ji Eun Jang3, Seo Yeon Byeon1, Ju-hyoun Wang4, Hwang-Goo Lee4, Jun-Kil Choi4 and Hyuk Je Lee1* Abstract Background: Life history characteristics are considered important factors influencing the evolutionary processes of natural populations, including the patterns of population genetic structure of a species. The sister species Cottus hangiongensis and C. koreanus are small bottom-dwelling freshwater sculpin fishes from South Korea that display marked life history divergence but are morphologically nearly indistinguishable. Cottus hangiongensis evolved an ‘amphidromous’ life history with a post-hatching pelagic larval phase. They spawn many small eggs in the low reaches of rivers, and hatched larvae migrate to the sea before returning to grow to maturity in the river mouth. In contrast, C. koreanus evolved a ‘fluvial’ landlocked type with benthic larvae. They release a smaller number of larger eggs, and the larvae undergo direct development, remaining benthic in the upstream rivers throughout their entire lives. We tested whether there were differences in patterns and levels of within-population genetic diversities and spatial population structure between the two closely related Korean sculpins using mitochondrial DNA control region sequences and seven nuclear microsatellite loci. Results: The combined analyses of both marker sets revealed that C. hangiongensis harboured considerably higher levels of within-population genetic diversities (e.g.
    [Show full text]
  • What Is a Margined Sculpin?
    WDFW – WA State Status Report - The margined sculpin (Cottus marginatus) is physically distinguishable from the paiute sculpin (Cottus beldingi), the only other similar sculpin species within its range, by medial chin pores and anal fin rays. The margined sculpin has one chin pore and 14 to 17 anal rays while the paiute sculpin has two chin pores and 11 to 14 anal rays. ODFW – records of Reticulate, Prickly, and Piute sculpin in the Umatilla and Walla Walla basins. Paul Shearer = Distribution limited to Walla Walla and Umatilla Basins. Common where it occurs. Doug Markle – Fishes of OR = they are in there. Inland Fishes of WA = Found in pools and slow-moving glides in headwater tributaries. Adults found in deeper and faster water than juveniles. Found in habitats with small gravel and silt substrates. Umatilla and Walla Walla Basins – based on personal observation from District Fish Biologist, no known samples. Dots on the map are from OSU museum specimens McPhail and Lindsey 1986 – The margined sculpin is the only fish endemic to the mid-Columbia River basin. What about the Umatilla Dace? Carlin et al 2012 WDFW – State Candidate Species - Knowledge about sculpins in Washington is limited. However, based on available information it is know that margined sculpin are confined to an extremely small range worldwide and in Washington. Also, much of the stream habitat it dwells in is degraded with an uncertain future. Because of its small range and degraded habitat conditions it is vulnerable and likely to become threatened or endangered in a significant portion of its range without cooperative management.
    [Show full text]
  • Wenaha Wildlife Area Plan Draft
    DRAFT WENAHA WILDLIFE AREA MANAGEMENT PLAN January 2007 Oregon Department of Fish and Wildlife 3406 Cherry Avenue NE Salem, Oregon 97303 Table of Contents Executive Summary ...................................................................................................... 1 Introduction ................................................................................................................... 1 Purpose of the Plan ...................................................................................................... 1 Oregon Department of Fish and Wildlife Mission and Authority.................................... 2 Purpose and Need of the Wenaha Wildlife Area .......................................................... 2 Wildlife Area Goals and Objectives .............................................................................. 2 Wildlife Area Establishment.......................................................................................... 3 Description and Environment ...................................................................................... 4 Physical Resources ...................................................................................................... 4 Location ................................................................................................................... 4 Climate..................................................................................................................... 4 Topography and Soils .............................................................................................
    [Show full text]
  • Field Key to the Freshwater Fishes of British Columbia
    FIELD KEY TO THE FRESHWATER FISHES OF BRITISH COLUMBIA J.D. McPhail and R. Carveth Fish Museum, Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, B.C., Canada, V6T 1Z4 (604) 822-4803 Fax (604) 822-2416 © The Province of British Columbia Published by the Resources Inventory Committee Canadian Cataloguing in Publication Data McPhail, J. D. (John Donald) Field key to the freshwater, fishes of British Columbia Also available through the Internet. Previously issued: Field key to the freshwater fishes of British Columbia. Draft for 1994 field testing, 1994. Includes bibliographical references: p. ISBN 0-7726-3830-6 (Field guide) ISBN 0-7726-3844-6 (Computer file) 1. Freshwater fishes - British Columbia - Identification. I. Carveth, R. II. Resources Inventory Committee (Canada) III. Title. QL626.5.B7M36 1999 597.176'09711 C99-960109-1 Additional Copies of this publication can be purchased from: Government Publications Centre Phone: (250) 387-3309 or Toll free: 1 -800-663-6105 Fax: (250) 387-0388 www.publications.gov.bc.ca Digital Copies are available on the Internet at: http://www.for.gov. bc.ca/ric Text copyright © 1993 J.D. McPhail Illustrations copyright © 1993 D.L. McPhail All rights reserved. Design and layout by D.L. McPhail "Admitted that some degree of obscurity is inseparable from both theology and ichthyology, it is not inconsistent with profound respect for the professors of both sciences to observe that a great deal of it has been created by themselves." Sir Herbert Maxwell TABLE OF CONTENTS Introduction · i Region 1 - Vancouver Island 1 Region 2 - Fraser 27 Region 3 - Columbia 63 Region 4 - MacKenzie 89 Region 5 - Yukon 115 Region 6 - North Coast 127 Region 7 - Queen Charlotte Islands 151 Region 8 - Central Coast 167 Appendix 193 Acknowledgements .
    [Show full text]
  • Study of Intrapopulation Variation in Movement and Habitat Use in a Stream Fish (Cottus Perifretum): Integrating Behavioural, Ecological and Genetic Data
    Faculteit Wetenschappen Departement Biologie Study of intrapopulation variation in movement and habitat use in a stream fish (Cottus perifretum): integrating behavioural, ecological and genetic data Studie van individuele verschillen in verplaatsingsgedrag en habitatkeuze van een riviervis (Cottus perifretum): integratie van gedrag, ecologische en genetische data Dissertation for the degree of Doctor in Science: Biology at the University of Antwerp to be defended by ALEXANDER KOBLER Promotor: Prof. Dr. Marcel Eens Antwerpen, 2012 Doctoral Jury Promotor Prof. Dr. Marcel Eens Chairman Prof. Dr. Erik Matthysen Jury members Prof. Dr. Lieven Bervoets Prof. Dr. Gudrun de Boeck Prof. Dr. Filip Volckaert Dr. Gregory Maes Dr. Michael Ovidio ISBN: 9789057283864 © Alexander Kobler, 2012. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author. A naturalist’s life would be a happy one if he had only to observe and never to write. Charles Darwin Acknowledgments My Ph.D. thesis was made possible through a FWO (Fonds Wetenschappelijk Onderzoek - Vlaanderen) project-collaboration between the University of Antwerp and the Catholic University of Leuven. First of all, I wish to thank Marcel Eens, the head of the Biology-Ethology research group in Antwerp, who supervised me during all phases of my thesis. Marcel, I am very grateful for your trust and patience. You gave me confidence and incentive during this difficult journey. Hartelijk bedankt! In Leuven, I was guided by Filip Volckaert, the head of the Biodiversity and Evolutionary Genomics research group, and Gregory Maes.
    [Show full text]
  • Xerces Society's
    Conserving the Gems of Our Waters Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black CONSERVING THE GEMS OF OUR WATERS Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins Laura McMullen Sarina Jepsen Michele Blackburn Aimée Code Scott Hoffman Black The Xerces Society for Invertebrate Conservation www.xerces.org The Xerces® Society for Invertebrate Conservation is a nonprot organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citizens to implement conservation programs worldwide. The Society uses advocacy, education, and applied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional oces from coast to coast. The Xerces Society is an equal opportunity employer and provider. Xerces® is a trademark registered in the U.S. Patent and Trademark Oce © 2018 by The Xerces Society for Invertebrate Conservation Primary Authors and Contributors The Xerces Society for Invertebrate Conservation: Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black. Acknowledgements Funding for this report was provided by the Oregon Watershed Enhancement Board, The Nature Conservancy and Portland General Electric Salmon Habitat Fund, the Charlotte Martin Foundation, Meyer Memorial Trust, and Xerces Society members and supporters.
    [Show full text]
  • Columbia Sculpin (Cottus Hubbsi) Is a Small, Freshwater Sculpin (Cottidae)
    COSEWIC Assessment and Status Report on the Columbia Sculpin Cottus hubbsi in Canada SPECIAL CONCERN 2010 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2010. COSEWIC assessment and status report on the Columbia Sculpin Cottus hubbsi in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 32 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC acknowledges Don McPhail for writing the provisional status report on the Columbia Sculpin, Cottus hubbsi, prepared under contract with Environment Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim status report and 2-month interim status reports were overseen by Dr. Eric Taylor, COSEWIC Freshwater Fishes Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le chabot du Columbia (Cottus hubbsi) au Canada. Cover illustration/photo: Columbia Sculpin — illustration by Diana McPhail. Her Majesty the Queen in Right of Canada, 2011. Catalogue No. CW69-14/268-2011E-PDF ISBN 978-1-100-18590-3 Recycled paper COSEWIC Assessment Summary Assessment Summary – November 2010 Common name Columbia Sculpin Scientific name Cottus hubbsi Status Special Concern Reason for designation In Canada, this small freshwater fish is endemic to the Columbia River basin where it has a small geographic distribution.
    [Show full text]
  • Hood Canal Bridge Ecosystem Impact Assessment Plan: Framework and Phase 1 Details FINAL – September 27, 2016
    Hood Canal Bridge Ecosystem Impact Assessment Plan: Framework and Phase 1 Details FINAL – September 27, 2016 Prepared by: Hood Canal Bridge Assessment Team and contributing experts (see reverse) Cite document as: Hood Canal Bridge Assessment Team. 2016. Hood Canal Bridge Ecosystem Impact Assessment Plan: Framework and Phase 1 Details. Long Live the Kings, Seattle, WA. Bridge Assessment Team Megan Moore, NOAA Northwest Fisheries Science Center* Tarang Khangaonkar, Pacific Northwest National Laboratory* Barry Berejikian, NOAA Northwest Fisheries Science Center* Hans Daubenberger, Port Gamble S’Klallam Tribe* Steve Jeffries, Washington Department of Fish and Wildlife* Paul McCollum, Port Gamble S’Klallam Tribe Erik Neatherlin, Washington Department of Fish and Wildlife Scott Pearson, Washington Department of Fish and Wildlife* Chris Harvey, NOAA Northwest Fisheries Science Center* Austen Thomas, Smith-Root* Carl Ward, Washington Department of Transportation John Wynands, Washington Department of Transportation Contributors Kevin Redman, RPS Evans Hamilton Daniel Deng, Pacific Northwest National Laboratory Tim Essington, University of Washington Monique Lance, Washington Department of Fish and Wildlife Marshal Richmond, Pacific Northwest National Laboratory Julie Keister, University of Washington Ken Warheit, Washington Department of Fish and Wildlife Coordinators Michael Schmidt, Long Live the Kings+ Iris Kemp, Long Live the Kings Susan O’Neil, Long Live the Kings Lucas Hall, Long Live the Kings *Principals +Project Manager and Lead. For
    [Show full text]