Remark on Representation Theory of General Linear Groups Over a Non-Archimedean Local Division Algebra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CUSPIDAL IRREDUCIBLE COMPLEX OR L-MODULAR REPRESENTATIONS of QUATERNIONIC FORMS of P-ADIC CLASSICAL GROUPS for ODD P
CUSPIDAL IRREDUCIBLE COMPLEX OR l-MODULAR REPRESENTATIONS OF QUATERNIONIC FORMS OF p-ADIC CLASSICAL GROUPS FOR ODD p DANIEL SKODLERACK Abstract. Given a quaternionic form G of a p-adic classical group (p odd) we clas- sify all cuspidal irreducible representations of G with coefficients in an algebraically closed field of characteristic different from p. We prove two theorems: At first: Every irreducible cuspidal representation of G is induced from a cuspidal type, i.e. from a certain irreducible representation of a compact open subgroup of G, constructed from a β-extension and a cuspidal representation of a finite group. Secondly we show that two intertwining cuspidal types of G are up to equivalence conjugate under some ele- ment of G. [11E57][11E95][20G05][22E50] 1. Introduction This work is the third part in a series of three papers, the first two being [35] and [37]. Let F be a non-Archimedean local field with odd residue characteristic p. The construc- tion and classification of cuspidal irreducible representation complex or l-modular of the set of rational points G(F) of a reductive group G defined over F has already been success- fully studied for general linear groups (complex case: [11] Bushnell{Kutzko, [31], [4], [32] Broussous{Secherre{Stevens; modular case: [44] Vigneras, [23] Minguez{Sech´erre)and for p-adic classical groups ([42] Stevens, [21] Kurinczuk{Stevens, [20] Kurinczuk{Stevens joint with the author). In this paper we are generalizing from p-adic classical groups to their quaternionic forms. Let us mention [46] Yu, [15], [16] Fintzen and [19] Kim for results over reductive p-adic groups in general. -
Supercuspidal Representations of Finite Reductive Groups
JOURNAL OF ALGEBRA 184, 839]851Ž. 1996 ARTICLE NO. 0287 Supercuspidal Representations of Finite Reductive Groups Gerhard Hiss IWR der Uni¨ersitatÈ Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany View metadata, citation and similar papersCommunicated at core.ac.uk by Michel Broue brought to you by CORE provided by Elsevier - Publisher Connector Received January 9, 1995 DEDICATED TO MY PARENTS 1. INTRODUCTION A powerful tool in representation theory of finite groups of Lie type is Harish]Chandra induction. It is a method to construct, in a systematic way, representations for the group from those ofŽ. split Levi subgroups. Let G be a finite group of Lie type. An irreducible representationŽ of finite degree over a field containing the <<G th roots of unity. of G is called cuspidal if it does not occur as a subrepresentation of a Harish]Chandra induced representation of a proper Levi subgroup. In order to find all irreducible representations of G, one has to construct the cuspidal repre- sentations of all Levi subgroups first. Then one has to find all irreducible subrepresentations of Harish]Chandra induced cuspidal representations. Some of the cuspidal representations may occur as subquotients of Harish]Chandra induced representations. Following Vigneras, we call an irreducible representation of G super- cuspidal if it does not occur as a subquotient of a Harish]Chandra induced representation of a proper Levi subgroup. Thus, in particular, a supercuspidal representation is cuspidal. If the characteristic of the under- lying field does not divide the order of G, all representations of G are semisimple, so each subquotient is also a subrepresentation. -
Arxiv:2102.03100V1 [Math.NT]
L The special values of the standard -functions for GSp2n × GL1 Shuji Horinaga, Ameya Pitale, Abhishek Saha, Ralf Schmidt Abstract We prove the expected algebraicity property for the critical L-values of character twists of the standard L-function associated to vector-valued holomorphic Siegel cusp forms of archimedean type (k1, k2,...,kn), where kn ≥ 2n + 2 and all ki are of the same parity. For the proof, we use an explicit integral representation to reduce to arithmetic properties of differential operators on vector-valued nearly holomorphic Siegel cusp forms. We establish these properties via a representation-theoretic approach. Contents 1 Introduction 1 1.1 Notation........................................ 4 2 Lie algebra action and differential operators 5 2.1 Basics on the Lie algebra of Sp2n(R)......................... 6 2.2 Generators for the center of the universal enveloping algebra ........... 7 2.3 Differentialoperators. ..... 8 2.4 The relationship between elements of U(gC) and differential operators . 9 2.5 Scalar and vector-valued automorphic forms . ........... 10 3 Nearly holomorphic Siegel modular forms 14 3.1 Definitionsandbasicproperties . ........ 14 3.2 Nearly holomorphic modular forms and (p−)-finite automorphic forms . 15 3.3 Action of Aut(C).................................... 18 3.4 Arithmeticity of certain differential operators on nearly holomorphic cusp forms . 24 4 Special values of L-functions 28 arXiv:2102.03100v1 [math.NT] 5 Feb 2021 4.1 Automorphicrepresentations . ....... 28 4.2 Classicalandadeliccuspforms . ....... 29 4.3 Eisensteinseries ................................ .... 32 4.4 Algebraicity of critical L-values............................ 32 Bibliography 34 1 Introduction The arithmetic of special values of L-functions is of great interest in modern number theory. -
Whittaker–Fourier Coefficients of Cusp Forms
WHITTAKER{FOURIER COEFFICIENTS OF CUSP FORMS ZHENGYU MAO Abstract. We report on the work with E. Lapid about a conjecture relating Whittaker- Fourier coefficients of cusp forms to special values of L−functions. Contents 1. Introduction 1 2. Statement of the conjecture 2 3. Some known cases 5 4. Case of classical group and metaplectic group: automorphic descent 6 References 10 1. Introduction Let G be a quasi-split reductive group over a number field F and A the ring of adeles of F . Let B be a Borel subgroup of G defined over F , N the unipotent radical of B and fix a non-degenerate character N of N(A), trivial on N(F ). For a cusp form ' of G(F )nG(A) we consider the Whittaker{Fourier coefficient Z N −1 −1 W(') = W (') := (vol(N(F )nN(A))) '(n) N (n) dn: N(F )nN(A) If π is an irreducible cuspidal representation then W, if non-zero, gives a realization of π in the space of Whittaker functions on G(A), which by local multiplicity one depends only on π as an abstract representation. It therefore provides a useful tool for understanding π, both computationally and conceptually. It is natural to study the size of W('). In [LM15], inspired by the work of Ichino-Ikeda [II10], with E. Lapid we made a conjecture relating the size of W(') with a special L−value of π. In this note, we report on the work with Lapid on this conjecture. In modular form language, the notion of Whittaker-Fourier coefficient is roughly that of Fourier coefficient of a modular form. -
Max-Planck-Institut Für Mathematik Bonn
Max-Planck-Institut für Mathematik Bonn Non-vanishing square-integrable automorphic cohomology classes - the case GL(2) over a central division algebra by Joachim Schwermer Max-Planck-Institut für Mathematik Preprint Series 2020 (48) Date of submission: September 10, 2020 Non-vanishing square-integrable automorphic cohomology classes - the case GL(2) over a central division algebra by Joachim Schwermer Max-Planck-Institut für Mathematik Faculty of Mathematics Vivatsgasse 7 University Vienna 53111 Bonn Oskar-Morgenstern-Platz 1 Germany 1090 Vienna Austria MPIM 20-48 1 NON-VANISHING SQUARE-INTEGRABLE AUTOMORPHIC 2 COHOMOLOGY CLASSES - THE CASE GL(2) OVER A CENTRAL 3 DIVISION ALGEBRA 4 JOACHIM SCHWERMER Abstract. Let k be a totally real algebraic number field, and let D be a central divi- sion algebra of degree d over k. The connected reductive algebraic k-group GL(2;D)=k has k-rank one; it is an inner form of the split k-group GL(2d)=k. We construct auto- morphic representations π of GL(2d)=k which occur non-trivially in the discrete spec- trum of GL(2d; k) and which have specific local components at archimedean as well as non-archimedean places of k so that there exist automorphic representations π0 of 0 GL(2;D)(Ak) with Ξ(π ) = π under the Jacquet-Langlands correspondence. These re- quirements depend on the finite set VD of places of k at which D does not split, and on 0 the quest to construct representations π of GL(2;D)(Ak) which either represent cusp- idal cohomology classes or give rise to square-integrable classes which are not cuspidal, that is, are eventually represented by a residue of an Eisenstein series. -
Arxiv:1404.0861V1 [Math.RT] 3 Apr 2014 St Td the Study to Is Rbe Foei Neetdi Opeecaatrinformat Character Complete in Interested Understood
NOTES ON REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE DIPENDRA PRASAD These are the notes of some lectures given by the author for a workshop held at TIFR in December, 2011, giving an exposition of the Deligne-Lusztig theory. The aim of these lectures was to give an overview of the subject with several examples without burdening them with detailed proofs of the theorems involved for which we refer to the original paper of Deligne and Lusztig, as well as the beautiful book of Digne and Michel on the subject. The author thanks Shripad M. Garge for writing and texing the first draft of these notes. Contents 1. Preliminaries on Algebraic groups 2 2. Classical groups and tori 3 3. Some Exceptional groups 5 4. Basic notions in representation theory 6 5. The Deligne-Lusztig theory 7 6. Unipotent cuspidal representations 9 7. The Steinberg representation 9 8. Dimension of the Deligne-Lusztig representation 10 9. The Jordan decomposition of representations 11 10. Exercises 12 11. References 13 arXiv:1404.0861v1 [math.RT] 3 Apr 2014 The Deligne-Lusztig theory constructs certain (virtual) representations of G(Fq) denoted as RG(T, θ) where G is a connected reductive algebraic group defined over Fq, T is a maximal torus in G defined ∼ × over F and θ is a character of T (F ), θ : T (F ) C× Q . The representation R (T, θ) is called q q q → −→ l G the Deligne-Lusztig induction of the character θ of T (Fq) to G(Fq), generalizing parabolic induction with which it coincides when T is a maximally split maximal torus in G. -
SUPERCUSPIDAL REPRESENTATIONS of Glnpfq DISTINGUISHED by a GALOIS INVOLUTION
SUPERCUSPIDAL REPRESENTATIONS OF GLnpFq DISTINGUISHED BY A GALOIS INVOLUTION by Vincent Sécherre Abstract.— Let F{F0 be a quadratic extension of non-Archimedean locally compact fields of resi- dual characteristic p ‰ 2, and let σ denote its non-trivial automorphism. Let R be an algebraically closed field of characteristic different from p. To any cuspidal representation π of GLnpFq, with coef- ficients in R, such that πσ » π_ (such a representation is said to be σ-selfdual) we associate a quadra- tic extension D{D0, where D is a tamely ramified extension of F and D0 is a tamely ramified exten- ˆ sion of F0, together with a quadratic character of D0 . When π is supercuspidal, we give a necessary and sufficient condition, in terms of these data, for π to be GLnpF0q-distinguished. When the charac- ˆ teristic ` of R is not 2, denoting by ω the non-trivial R-character of F0 trivial on F{F0-norms, we prove that any σ-selfdual supercuspidal R-representation is either distinguished or ω-distinguished, but not both. In the modular case, that is when ` ¡ 0, we give examples of σ-selfdual cuspidal non- supercuspidal representations which are not distinguished nor ω-distinguished. In the particular case where R is the field of complex numbers, in which case all cuspidal representations are supercuspi- dal, this gives a complete distinction criterion for arbitrary complex cuspidal representations, as well as a purely local proof, for cuspidal representations, of the dichotomy and disjunction theorem due to Kable and Anandavardhanan–Kable–Tandon, when p ‰ 2. -
On the Computation of Local Components of a Newform 3
ON THE COMPUTATION OF LOCAL COMPONENTS OF A NEWFORM DAVID LOEFFLER AND JARED WEINSTEIN 1. Introduction 1.1. The problem. Let f be a cuspidal newform for Γ1(N) with weight k 2 and character ε. There are well-established methods for computing such forms≥ using modular symbols, see [Ste07]. Let πf be the corresponding automorphic representa- tion of the ad`ele group GL2(AQ). (As there are numerous possible normalisations, we shall recall the construction in section 2.1 below.) This representation decom- poses as a restricted tensor product over all places v of Q: πf = πf,v, v O where πf,v is an irreducible admissible representation of GL2(Qv). The isomor- phism class of the infinite component πf,∞ is determined by the weight k alone: it is the unique discrete series subrepresentation of the representation constructed via unitary induction from the character k/2 t1 t1 k ∗ sgn(t1) t2 7→ t 2 of the Borel subgroup of GL2(R) [Gel75, prop. 5.21]. Similarly, the component πf,p for a prime p ∤ N is the unramified principal series with Satake parameters equal 2 k−1 to the roots of the polynomial X apX + ε(p)p . We are led naturally to the following problem: − Problem 1.1. Compute the local components π for each prime p N. f,p | Problem 1.1 may be recast from an arithmetic perspective as a question about the local behavior of Galois representations. Suppose the Fourier coefficients of f arXiv:1008.2796v1 [math.NT] 17 Aug 2010 lie in a number field E. -
Jacquet Modules and Induced Representations∗
Jacquet modules and induced representations∗ Marko Tadi´c 1. Introduction In this paper, we shall review some possible applications of Jacquet mod- ules to the study of parabolically induced representations of reductive p-adic groups. Let us start with a few brief remarks about the history of Jacquet mod- ules. Jacquet modules do not make their appearance in representation theory until the end of the 1960’s. Using them, H. Jacquet was able to obtain some important basic results in the representation theory of p-adic groups (e.g., his subrepresentation theorem and the equivalence of the different charac- terizations of cuspidal [Jc]). These results are still somewhat qualitative in nature. To use Jacquet modules as a calculational tool, more quantitative results are needed. A major step in this direction was taken by W. Cassel- man, who calculated the Jordan-H¨older series for the Jacquet module of an induced representation, among other things ([Cs]). A significant number of his results were obtained independently by J. Bernstein and A.V. Zelevinsky ([B-Z]). Before going on to discuss how one can use Jacquet modules to study reducibility questions for induced representations, let us indicate some limi- tations to this approach. For example, consider SL(2). If χ2 = 1 with χ =6 1, SL(2) the representation IndP∅ (χ) is reducible. However, one cannot obtain this reducibility through a simple use of Jacquet modules. A similar situation SL(2) occurs with IndP∅ (1), except that in this case the representation is irre- ∗This paper has been published in Mathematical Communications vol. -
Smooth Representations of P-Adic Reductive Groups
SMOOTH REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS FLORIAN HERZIG These are notes for my expository talk at the Instructional Conference on Representation Theory and Arithmetic at Northwestern University, May 5–9, 2008. 1. Motivation Smooth representations of p-adic groups arise in number theory mainly through the study of automorphic representations, and thus in the end, for example, from modular forms. We saw in the first lecture by Matt Emerton that a modular form, thought of as function on the set of lattices with level N structure, we obtain a ∞ function in C (GL2(Z)\GL2(R) × GL2(Z/N), C) satisfying certain differ- ential equations (coming from holomorphicity and the weight of the modular form) and growth conditions (related to the cusps). As was suggested, this space has an adelic interpretation: by the strong approximation theorem, GL2(AQ) = GL2(Q)GL2(Zb)GL2(R), and a simple argument shows that ∞ ∼ ∞ C (GL2(Z)\GL2(R) × GL2(Z/N), C) = C (GL2(Q)\GL2(AQ)/U(N), C), where U(N) = ker(GL2(Zb) GL2(Z/N)). Taking the union of these spaces over all N ≥ 1 (still with holomorphicity and growth conditions imposed), we ∞ ∞ get a big “automorphic” space A ⊂ C (GL2(Q)\GL2(AQ), C) which has ∞ a natural action of GL2( ) by right translations. This action is “smooth”: AQ by definition, every element of A∞ is fixed by some open subgroup, namely U(N) for some N. Moreover if we start with a cuspidal newform f, we can get a subrep- resentation π∞ ⊂ A∞ by restricting ourselves to all oldforms of f in each level. -
GEOMETRY of DUAL SPACES of REDUCTIVE GROUPS (Non-Archimedean Case)
GEOMETRY OF DUAL SPACES OF REDUCTIVE GROUPS (non-archimedean case) MARKO TADIC Department of Mathematics, University of Zagreb, P.O. Box 187, 41001 Zagreb, Yugoslavia Introduction J. M. G. Fell introduced in [ 1O] the notion of the non-unitary dual space of a locally compact group. By his definition, it is a topological space. The main part of that paper deals with the basic properties of the topology of non-unitary dual space. This paper can be considered mainly as a continuation of such investi- gations, in the case of a p-adic reductive group G. We write down proofs of the basic properties of this topological space for such G. Since in the last twenty years after the appearance of [ 10] the topology of non-unitary dual has not attracted much attention, we begin with a longer introduction explaining motivations and reasons for writing this paper. Let G be a connected reductive group over a non-archimedean local field F. The set of all equivalence classes of topologically irreducible unitary represen- tations of G is denoted by G. The set d is in a natural way a topological space. The topology may be described in terms of approximation of matrix coefficients. In the study of some topological space a first reduction may be to decompose it into disjoint union of open and closed subsets. In [26] such a decomposition of G was obtained. One could see easily that the decomposition in [26] was not the finest possible of such type. This author realized that the right setting for the decompo- sition in [26] of (~ is not G but another topological space. -
Automorphic Forms on GL(2)
AUTOMORPHIC FORMS ON GL2 { JACQUET-LANGLANDS Contents 1. Introduction and motivation 2 2. Representation Theoretic Notions 3 2.1. Preliminaries on adeles, groups and representations 3 2.2. Some categories of GF -modules and HF -modules 3 2.3. Contragredient representation 8 3. Classification of local representations: F nonarchimedean 9 3.1. (π; V ) considered as a K-module 10 3.2. A new formulation of smoothness and admissibility 10 3.3. Irreducibility 11 3.4. Induced representations 13 3.5. Supercuspidal representations and the Jacquet module 14 3.6. Matrix coefficients 17 3.7. Corollaries to Theorem 3.6.1 20 3.8. Composition series of B(χ1; χ2) 22 3.9. Intertwining operators 26 3.10. Special representations 36 3.11. Unramified representations and spherical functions 39 3.12. Unitary representations 44 3.13. Whittaker and Kirillov models 45 3.14. L-factors attached to local representations 57 4. Classification of local representations: F archimedean 72 4.1. Two easier problems 72 4.2. From G-modules to (g;K)-modules 73 4.3. An approach to studying (gl2;O(2; R))-modules 77 4.4. Composition series of induced representations 78 4.5. Hecke algebra for GL2(R) 81 4.6. Existence and uniqueness of Whittaker models 82 4.7. Explicit Whittaker functions and the local functional equation 84 4.8. GL2(C) 88 5. Global theory: automorphic forms and representations 88 5.1. Restricted products 88 5.2. The space of automorphic forms 89 5.3. Spectral decomposition and multiplicity one 90 5.4. Archimedean parameters 92 5.5.