Deterministic Primality Proving on Proth Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Deterministic Primality Proving on Proth Numbers Deterministic Primality Proving on Proth Numbers Tsz-Wo Sze ([email protected]) November 9, 2018 Abstract We present an algorithm to decide the primality of Proth numbers, N =2et+1, without assuming any unproven hypothesis. The expected running time and the worst case running time of the algorithm are 2 O˜((t log t + log N) log N) and O˜((t log t + log N) log N) bit operations, respectively. 1 Introduction A Proth number is a positive integer of the form N = 2e t +1 forsomeodd t with 2e >t> 0. (1.1) · A self-taught farmer, Fran¸cois Proth, published Theorem 1.1 below in 1878; see [24] for more details and a proof of Theorem 1.1. Theorem 1.1 (Proth Theorem). Let N be a Proth number defined in (1.1). If (N 1)/2 a − 1 (mod N) (1.2) ≡− arXiv:0812.2596v5 [math.NT] 4 Jul 2011 for some integer a, then N is a prime. As a consequence, the primality of Proth numbers can be decided by a simple, fast probabilistic primality test, called the Proth test, which ran- domly chooses an integer a 0 (mod N) and then computes 6≡ (N 1)/2 b a − (mod N). (1.3) ≡ We have the following cases. 2010 Mathematics Subject Classification: Primary 11Y11; Secondary 11A41. Key words and phrases: Proth Numbers, Cullen Numbers, Primality Proving, Pri- mality Test. 1 (i) If b 1 (mod N), then N is a prime by Theorem 1.1. ≡− (ii) If b 1 (mod N) and b2 1 (mod N), then N is composite because 6≡ ± ≡ gcd(b 1,N) are non-trivial factors of N. ± (iii) If b2 1 (mod N), then N is composite by Fermat’s little theorem. 6≡ (iv) If b 1 (mod N), the primality of N remains unknown. ≡ Case (iv) is the reason that the Proth test is probabilistic. In case (i), the integer a is a quadratic nonresidue modulo N. The procedure is repeated until the primality of N is decided. 1 When N is a prime, the Proth test has probability 2 being able to return N prime in one iteration since the number of quadratic nonresidues modulo N 1 N is exactly 2− . The expected number of iterations is O(1). Equation (1.3) can be computed in O˜(log2 N) bit operations using fast integer multiplica- tions [9, 19]. Consequently, the expected running time is O˜(log2 N) bit operations uniformly for all t< 2e. However, the worst case running time is exponential since the number of a such that b 1 (mod N) is linear to N. ≡ For any integer N, when N 1 is fully factored or when N 1 is partially − − factored, deterministic algorithms by Konyagin and Pomerance can be used to prove primality in polynomial time [15]. Their algorithms apply to all Proth numbers N = 2et +1, and run in O˜(log3+C N), where C > 0 is a constant depending on e and t. The key idea is the use of smooth numbers so that an “exponentially large” subgroup of (Z/NZ)× can be created by a “polynomial sized” set of generators. We will use smooth numbers to calculate √ 1 (mod N) in Algorithm 2.3. − There are interesting special cases of Proth numbers. When t = 1, the Proth number N = 2e + 1 is a Fermat number. It is easy to see that N is composite if e is not a power of two. In addition, the primality of N can be decided by the Pepin test [18], which is virtually the same as the Proth test, except that a = 3 is specified in equation (1.2). The Pepin test is deterministic due to the following theorem. Theorem 1.2 (Pepin Test). Let N = 2e + 1 > 3. Then N is a prime if and only if (N 1)/2 3 − 1 (mod N). (1.4) ≡− We skip the proof of Theorem 1.2 and show a trivial generalization, Theorem 1.3, below. As a result, for Proth numbers with t not divisible by 3, the primality can be decided in O˜(log2 N) bit operations. 2 Theorem 1.3 (Generalized Pepin Test). Let N = 2et + 1 > 3 be a Proth number defined in (1.1) such that 3 ∤ t. Then N is a prime if and only if (N 1)/2 3 − 1 (mod N). (1.5) ≡− Proof. For any Proth number, we have e 1 by the condition 2e >t> 0. ≥ If e = 1, then t = 1 by the same condition. However, the case N = 3 is excluded by the assumption N > 3. Therefore, we have e 2. ≥ When N is a prime, we have 3 ∤ N. Then, N 2 (mod 3) by the ≡ assumption 3 ∤ t. The Legendre symbol 3 = N = 2 = 1 so that 3 is N 3 3 − a quadratic nonresidue modulo N. Finally, the theorem follows from Theorem 1.1. Similarly, there is a deterministic, O˜(log2 N) algorithm to decide the primality of Proth numbers with t not divisible by 5. Theorem 1.4. Let N = 2e t + 1 > 5 be a Proth number defined in (1.1) · such that 5 ∤ t. Then N is a prime if and only if (N 1)/2 a − 1 (mod N), ≡− where 5, if N 0, 2, 3 (mod 5); a = 5 √5 ≡ (1.6) ( − ± (mod N), if N 4 (mod 5). 2 ≡ Proof. Suppose N is a prime with N 2, 3 (mod 5). Then, 5(N 1)/2 1 ≡ − ≡− (mod N) since 5 is a quadratic nonresidue modulo N. Suppose N is a prime with N 4 (mod 5). Then, 5 is a quadratic ≡ residue modulo N. Let α + √α2 4 1 √5 Z ζ = − , where α = − ± . 2 2 ∈ NZ Both values of ζ are 5th roots of unity modulo N. However, 5th roots of unity are not in Z/NZ since N 1 (mod 5). Therefore, ζ Z/NZ and 2 5 √5 6≡ 6∈ α 4= − ∓ are quadratic nonresidues modulo N. − 2 The theorem follows from Theorem 1.1. Note that, when N 4 (mod 5), it is unnecessary to calculate √5 ≡ (mod N) in equation (1.6). We may check whether (N 1)/2 5+ x − − 1 (mod x2 5,N) 2 ≡− − 3 5 √5 since, for N prime, both − ±2 are quadratic nonresidues modulo N. Another interesting special case of Proth numbers is Cullen numbers [8]. A Cullen number is a number of the form C = 2n n +1 for n 1. n · ≥ Notice that n is allowed to be even. Obviously, a Cullen number is a Proth number since 2n > n for any positive integer n. There are well-known divisibility properties of Cullen numbers [13]. A list is given below without proofs. Let p be any odd prime. Let n = (2k k)(p 1) k for k 0. Then, p C . • k − − − ≥ | nk Let d = ord 2. If p C , then p C . • p | n | n+pd If the Legendre symbol 2 = 1, then p C . • p − | (p+1)/2 2 If the Legendre symbol p = 1, then p C(3p 1)/2. • | − In [22, 21], a new idea is introduced for deciding the primality of Proth numbers but the details are missing. In this paper, we fill in all the details and extend the idea to obtain the following theorem. Theorem 1.5. Let N be a Proth number defined in (1.1). There is an algorithm deciding the primality of N. The expected running time and the worst case running time of the algorithm are O˜((t log t + log N) log N) and O˜((t log t + log N) log2 N) bit operations, respectively. When t = O(log N), the expected running time and the worst case run- ning time are O˜(log2 N) and O˜(log3 N) bit operations, respectively. Note that Cullen numbers are covered in this case. To the best of our knowledge, our algorithm (Algorithm 4.1) is the fastest among other known primality proving algorithms for numbers of this kind. By primality proving algo- rithms, we mean primality algorithms that always return the correct output. Adleman-Pomerance-Rumely [1] runs in sub-exponential time. The running times of AKS [2] and Lenstra-Pomerance’s modified AKS algorithm [12] are O˜(log7.5 N) and O˜(log6 N), respectively. The algorithms by Konyagin 4 and Pomerance [15] run in O˜(log3+C N) for some 0 < C 3/7, C a con- ≤ stant depending on e and t. All the algorithms mentioned above have been proved unconditionally. With extra assumptions such as the Extended Rie- mann Hypothesis, we have the following results: The elliptic curve primality proving algorithm [5, 10] runs in O˜(log5 N). The running time of Miller’s algorithm [17] is O˜(log4 N). AKS can be improved [6, 16] to O˜(log4 N). The Proth test becomes deterministic and the running time is O˜(log4 N) since it only has to check congruence equation (1.2) with 2 a k, where k is ≤ ≤ O(log2 N) by the results from Ankeny [3]. For t = O(log N), Algorithm 4.1 attains the same order of expected running time, O˜(log2 N), as the probabilistic Proth test. Although Algo- rithm 4.1 is a randomized algorithm, it always returns the correct output in one iteration. In contrast, the Proth test may be unable to decide the primality of N in any fixed number of iterations because of the exponential time worst cases. When the actual numbers of bit operations are compared, the Proth test is faster.
Recommended publications
  • On Cullen Numbers Which Are Both Riesel and Sierpiński Numbers
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Number Theory 132 (2012) 2836–2841 Contents lists available at SciVerse ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt On Cullen numbers which are both Riesel and Sierpinski´ numbers ∗ Pedro Berrizbeitia a, J.G. Fernandes a, ,MarcosJ.Gonzáleza,FlorianLucab, V. Janitzio Mejía Huguet c a Departamento de Matemáticas, Universidad Simón Bolívar, Caracas 1080-A, Venezuela b Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, Mexico c Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo #180, Col. Reynosa Tamaulipas, Azcapotzalco, 02200, México DF, Mexico article info abstract Article history: We describe an algorithm to determine whether or not a given Received 27 January 2012 system of congruences is satisfied by Cullen numbers. We use Revised 21 May 2012 this algorithm to prove that there are infinitely many Cullen Accepted 21 May 2012 numbers which are both Riesel and Sierpinski.´ (Such numbers Available online 3 August 2012 should be discarded if you are searching prime numbers with Communicated by David Goss Proth’s theorem.) Keywords: © 2012 Elsevier Inc. All rights reserved. Cullen numbers Covering congruences Sierpinski´ numbers Riesel numbers 1. Introduction n The numbers Cn = n2 + 1 where introduced, in 1905, by the Reverend J. Cullen [1] as a particular n n case of the Proth family k2 + 1, where k = n. The analogous numbers Wn = n2 − 1 where intro- duced as far as we know, in 1917, by Cunningham and Woodall [3].
    [Show full text]
  • Mersenne and Fermat Numbers 2, 3, 5, 7, 13, 17, 19, 31
    MERSENNE AND FERMAT NUMBERS RAPHAEL M. ROBINSON 1. Mersenne numbers. The Mersenne numbers are of the form 2n — 1. As a result of the computation described below, it can now be stated that the first seventeen primes of this form correspond to the following values of ra: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281. The first seventeen even perfect numbers are therefore obtained by substituting these values of ra in the expression 2n_1(2n —1). The first twelve of the Mersenne primes have been known since 1914; the twelfth, 2127—1, was indeed found by Lucas as early as 1876, and for the next seventy-five years was the largest known prime. More details on the history of the Mersenne numbers may be found in Archibald [l]; see also Kraitchik [4]. The next five Mersenne primes were found in 1952; they are at present the five largest known primes of any form. They were announced in Lehmer [7] and discussed by Uhler [13]. It is clear that 2" —1 can be factored algebraically if ra is composite; hence 2n —1 cannot be prime unless w is prime. Fermat's theorem yields a factor of 2n —1 only when ra + 1 is prime, and hence does not determine any additional cases in which 2"-1 is known to be com- posite. On the other hand, it follows from Euler's criterion that if ra = 0, 3 (mod 4) and 2ra + l is prime, then 2ra + l is a factor of 2n— 1.
    [Show full text]
  • Primes and Primality Testing
    Primes and Primality Testing A Technological/Historical Perspective Jennifer Ellis Department of Mathematics and Computer Science What is a prime number? A number p greater than one is prime if and only if the only divisors of p are 1 and p. Examples: 2, 3, 5, and 7 A few larger examples: 71887 524287 65537 2127 1 Primality Testing: Origins Eratosthenes: Developed “sieve” method 276-194 B.C. Nicknamed Beta – “second place” in many different academic disciplines Also made contributions to www-history.mcs.st- geometry, approximation of andrews.ac.uk/PictDisplay/Eratosthenes.html the Earth’s circumference Sieve of Eratosthenes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Sieve of Eratosthenes We only need to “sieve” the multiples of numbers less than 10. Why? (10)(10)=100 (p)(q)<=100 Consider pq where p>10. Then for pq <=100, q must be less than 10. By sieving all the multiples of numbers less than 10 (here, multiples of q), we have removed all composite numbers less than 100.
    [Show full text]
  • Arxiv:1412.5226V1 [Math.NT] 16 Dec 2014 Hoe 11
    q-PSEUDOPRIMALITY: A NATURAL GENERALIZATION OF STRONG PSEUDOPRIMALITY JOHN H. CASTILLO, GILBERTO GARC´IA-PULGAR´IN, AND JUAN MIGUEL VELASQUEZ-SOTO´ Abstract. In this work we present a natural generalization of strong pseudoprime to base b, which we have called q-pseudoprime to base b. It allows us to present another way to define a Midy’s number to base b (overpseudoprime to base b). Besides, we count the bases b such that N is a q-probable prime base b and those ones such that N is a Midy’s number to base b. Furthemore, we prove that there is not a concept analogous to Carmichael numbers to q-probable prime to base b as with the concept of strong pseudoprimes to base b. 1. Introduction Recently, Grau et al. [7] gave a generalization of Pocklignton’s Theorem (also known as Proth’s Theorem) and Miller-Rabin primality test, it takes as reference some works of Berrizbeitia, [1, 2], where it is presented an extension to the concept of strong pseudoprime, called ω-primes. As Grau et al. said it is right, but its application is not too good because it is needed m-th primitive roots of unity, see [7, 12]. In [7], it is defined when an integer N is a p-strong probable prime base a, for p a prime divisor of N −1 and gcd(a, N) = 1. In a reading of that paper, we discovered that if a number N is a p-strong probable prime to base 2 for each p prime divisor of N − 1, it is actually a Midy’s number or a overpseu- doprime number to base 2.
    [Show full text]
  • Appendix a Tables of Fermat Numbers and Their Prime Factors
    Appendix A Tables of Fermat Numbers and Their Prime Factors The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss Disquisitiones arithmeticae, Sec. 329 Fermat Numbers Fo =3, FI =5, F2 =17, F3 =257, F4 =65537, F5 =4294967297, F6 =18446744073709551617, F7 =340282366920938463463374607431768211457, Fs =115792089237316195423570985008687907853 269984665640564039457584007913129639937, Fg =134078079299425970995740249982058461274 793658205923933777235614437217640300735 469768018742981669034276900318581864860 50853753882811946569946433649006084097, FlO =179769313486231590772930519078902473361 797697894230657273430081157732675805500 963132708477322407536021120113879871393 357658789768814416622492847430639474124 377767893424865485276302219601246094119 453082952085005768838150682342462881473 913110540827237163350510684586298239947 245938479716304835356329624224137217. The only known Fermat primes are Fo, ... , F4 • 208 17 lectures on Fermat numbers Completely Factored Composite Fermat Numbers m prime factor year discoverer 5 641 1732 Euler 5 6700417 1732 Euler 6 274177 1855 Clausen 6 67280421310721* 1855 Clausen 7 59649589127497217 1970 Morrison, Brillhart 7 5704689200685129054721 1970 Morrison, Brillhart 8 1238926361552897 1980 Brent, Pollard 8 p**62 1980 Brent, Pollard 9 2424833 1903 Western 9 P49 1990 Lenstra, Lenstra, Jr., Manasse, Pollard 9 p***99 1990 Lenstra, Lenstra, Jr., Manasse, Pollard
    [Show full text]
  • CM55: Special Prime-Field Elliptic Curves Almost Optimizing Den Boer's
    CM55: special prime-field elliptic curves almost optimizing den Boer's reduction between Diffie–Hellman and discrete logs Daniel R. L. Brown∗ February 24, 2015 Abstract Using the Pohlig{Hellman algorithm, den Boer reduced the discrete logarithm prob- lem to the Diffie–Hellman problem in groups of an order whose prime factors were each one plus a smooth number. This report reviews some related general conjectural lower bounds on the Diffie–Hellman problem in elliptic curve groups that relax the smoothness condition into a more commonly true condition. This report focuses on some elliptic curve parameters defined over a prime field size of size 9 + 55 × 2288, whose special form may provide some efficiency advantages over random fields of similar sizes. The curve has a point of Proth prime order 1 + 55 × 2286, which helps to nearly optimize the den Boer reduction. This curve is constructed using the CM method. It has cofactor 4, trace 6, and fundamental discriminant −55. This report also tries to consolidate the variety of ways of deciding between elliptic curves (or other algorithms) given the efficiency and security of each. Contents 1 Introduction3 2 Previous Work and Motivation4 2.1 den Boer's Reduction between DHP and DLP . .4 2.2 Complex Multiplication Method of Generating Elliptic Curves . .4 2.3 Earlier Publication of the CM55 Parameters . .4 3 Provable Security: Reducing DLP to DHP5 3.1 A Special Case of den Boer's Algorithm . .5 3.2 More Costly Reductions with Fewer Oracle Calls . .7 3.3 Relaxing the Smoothness Requirements . 11 4 Resisting Other Attacks on CM55 (if Trusted) 13 4.1 Resistance to the MOV Attack .
    [Show full text]
  • Cullen Numbers with the Lehmer Property
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000–000 S 0002-9939(XX)0000-0 CULLEN NUMBERS WITH THE LEHMER PROPERTY JOSE´ MAR´IA GRAU RIBAS AND FLORIAN LUCA Abstract. Here, we show that there is no positive integer n such that n the nth Cullen number Cn = n2 + 1 has the property that it is com- posite but φ(Cn) | Cn − 1. 1. Introduction n A Cullen number is a number of the form Cn = n2 + 1 for some n ≥ 1. They attracted attention of researchers since it seems that it is hard to find primes of this form. Indeed, Hooley [8] showed that for most n the number Cn is composite. For more about testing Cn for primality, see [3] and [6]. For an integer a > 1, a pseudoprime to base a is a compositive positive integer m such that am ≡ a (mod m). Pseudoprime Cullen numbers have also been studied. For example, in [12] it is shown that for most n, Cn is not a base a-pseudoprime. Some computer searchers up to several millions did not turn up any pseudo-prime Cn to any base. Thus, it would seem that Cullen numbers which are pseudoprimes are very scarce. A Carmichael number is a positive integer m which is a base a pseudoprime for any a. A composite integer m is called a Lehmer number if φ(m) | m − 1, where φ(m) is the Euler function of m. Lehmer numbers are Carmichael numbers; hence, pseudoprimes in every base. No Lehmer number is known, although it is known that there are no Lehmer numbers in certain sequences, such as the Fibonacci sequence (see [9]), or the sequence of repunits in base g for any g ∈ [2, 1000] (see [4]).
    [Show full text]
  • Fibonacci S-Cullen and S-Woodall Numbers
    1 2 Journal of Integer Sequences, Vol. 18 (2015), 3 Article 15.1.4 47 6 23 11 Fibonacci s-Cullen and s-Woodall Numbers Diego Marques Departamento de Matem´atica Universidade de Bras´ılia Bras´ılia, Brazil [email protected] Ana Paula Chaves Instituto de Matem´atica e Estat´ıstica Universidade Federal de Goi´as Goi´as, Brazil [email protected] Abstract m The m-th Cullen number Cm is a number of the form m2 + 1 and the m-th m Woodall number Wm has the form m2 1. In 2003, Luca and St˘anic˘aproved that − the largest Fibonacci number in the Cullen sequence is F4 = 3 and that F1 = F2 = 1 are the largest Fibonacci numbers in the Woodall sequence. Very recently, the second m author proved that, for any given s> 1, the equation Fn = ms 1 has only finitely many solutions, and they are effectively computable. In this note,± we shall provide the explicit form of the possible solutions. 1 Introduction m A Cullen number is a number of the form m2 +1 (denoted by Cm), where m is a nonnegative integer. This sequence was introduced in 1905 by Father J. Cullen [2] and it was mentioned in the well-known book of Guy [5, Section B20]. These numbers gained great interest in 1976, when Hooley [7] showed that almost all Cullen numbers are composite. However, despite being very scarce, it is still conjectured that there are infinitely many Cullen primes. 1 In a similar way, a Woodall number (also called Cullen number of the second kind) is m a positive integer of the form m2 1 (denoted by Wm).
    [Show full text]
  • Goldbach's Conjecture
    U.U.D.M. Project Report 2020:37 Goldbach’s Conjecture Johan Härdig Examensarbete i matematik, 15 hp Handledare: Veronica Crispin Quinonez Examinator: Martin Herschend Augusti 2020 Department of Mathematics Uppsala University Goldbach's Conjecture Johan H¨ardig Contents 1 Introduction 3 1.1 Definition of the Conjectures . 3 2 Prime Numbers and their Distribution 4 2.1 Early Results . 4 2.2 Prime Number Theorem . 6 3 Heuristic and Probabilistic Justification 8 3.1 Method Presented by Gaze & Gaze . 8 3.1.1 Sieve Method by Gaze & Gaze . 9 3.1.2 Example . 10 3.2 Prime Number Theorem for Arithmetic Progressions . 11 3.3 Distribution of Primes Across Prime Residue Classes . 14 3.4 Heuristic Justification by Gaze & Gaze . 15 3.4.1 Conclusion . 16 3.5 Goldbach's Comet . 17 4 The Ternary Goldbach's Conjecture 18 4.1 Historical Overview . 18 4.2 Approach . 19 4.3 Theorems and Methods in the Proof . 20 4.3.1 Hardy-Littlewood Circle Method . 20 4.3.2 Vinogradov's Theorem . 22 4.3.3 The Large Sieve . 24 4.3.4 L-functions . 24 4.3.5 Computational Methods . 26 4.4 The Proof . 29 1 CONTENTS 2 Abstract The following text will provide a historical perspective as well as investigate different approaches to the unsolved mathematical problem Goldbach's conjecture stated by Christian Goldbach in the year 1742. First off, there will be an overview of the early history of prime num- bers, and then a brief description of the Prime Number Theorem. Subsequently, an example of a heuristic and probabilistic method of justifying the binary Goldbach's conjecture, proposed by Gaze and Gaze, will be discussed.
    [Show full text]
  • Elementary Proof That an Infinite Number of Cullen Primes Exist
    Elementary Proof that an Infinite Number of Cullen Primes Exist Stephen Marshall 21 February 2017 Abstract This paper presents a complete proof of the Cullen Primes are infinite, even though only 16 of them have been found as of 21 Feb 2017. We use a proof found in Reference 1, that if p > 1 and d > 0 are integers, that p and p+ d are both primes if and only if for integer m: m = (p-1)!( + ) + + We use this proof for d = to prove the infinitude of Cullen prime numbers. The author would like to give many thanks to the authors of 1001 Problems in Classical Number Theory, Jean-Marie De Koninck and Armel Mercier, 2004, Exercise Number 161 (see Reference 1). The proof provided in Exercise 6 is the key to making this paper on the Cullen Prime Conjecture possible. Introduction James Cullen, (19 April 1867 – 7 December 1933) was born at Drogheda, County Louth, Ireland. At first he was educated privately, then he studied pure and applied mathematics at the Trinity College, Dublin for a while, he went to 1 Mungret College, Limerick, before deciding to become a Jesuit, studying in England in Mansera House, and St. Mary's, and was ordained as a priest on 31 July 1901. In 1905, he taught mathematics at Mount St. Mary's College in Derbyshire and published his finding of what is now known as Cullen numbers in number theory. In number theory of prime numbers, a Cullen number is a natural number of the form n Cn = n2 + 1 Cullen numbers were first studied by James Cullen in 1905.
    [Show full text]
  • Primegrid's Mega Prime Search
    PrimeGrid’s Mega Prime Search On 23 October 2012, PrimeGrid’s Proth Prime Search project found the Mega Prime: 9*23497442 +1 The prime is 1,052,836 digits long and will enter Chris Caldwell's “The Largest Known Primes Database” (http://primes.utm.edu/primes) ranked 51st overall. This prime is also a Generalized Fermat prime and ranks as the 12th largest found. The discovery was made by Heinz Ming of Switzerland using an Intel Core(TM) i7 CPU 860 @ 2.80GHz with 8GB RAM, running Windows 7 Professional. This computer took just over 5 hours 59 minutes to complete the primality test using LLR. Heinz is a member of the Aggie The Pew team. The prime was verified by Tim McArdle, a member of the Don't Panic Labs team, using an AMD Athlon(tm) II P340 Dual-Core Processor with 6 GB RAM, running Windows 7 Professional. Credits for the discovery are as follows: 1. Heinz Ming (Swtzerland), discoverer 2. PrimeGrid, et al. 3. Srsieve, sieving program developed by Geoff Reynolds 4. PSieve, sieving program developed by Ken Brazier and Geoff Reynolds 5. LLR, primality program developed by Jean Penné 6. OpenPFGW, a primality program developed by Chris Nash & Jim Fougeron with maintenance and improvements by Mark Rodenkirch OpenPFGW, a primality program developed by Chris Nash & Jim Fougeron, was used to check for Fermat Number divisibility (including generalized and extended). For more information about Fermat and generalized Fermat Number divisors, please see Wilfrid Keller's sites: http://www.prothsearch.net/fermat.html http://www1.uni-hamburg.de/RRZ/W.Keller/GFNfacs.html Generalized and extended generalized Fermat number divisors discovered are as follows: 9*2^3497442+1 is a Factor of GF(3497441,7) 9*2^3497442+1 is a Factor of xGF(3497438,9,8) 9*2^3497442+1 is a Factor of GF(3497441,10) 9*2^3497442+1 is a Factor of xGF(3497439,11,3) 9*2^3497442+1 is a Factor of xGF(3497441,12,5) Using a single PC would have taken years to find this prime.
    [Show full text]
  • Collection of Problems on Smarandache Notions", by Charles Ashbacher
    Y ---~ y (p + 1,5(p + 1)) p p + 1 = Ex-b:u.s "1:T::n.i."'I7ex-lI!d.~ Pre._ •Va.:U. ~996 Collect;io:n. of Problern..s O:n. Srn..a.ra:n.dache N"o"i;io:n.s Charles Ashbacher Decisio:n.rn..a.rk 200 2:n.d A:v-e. SE Cedar Rapids, IA. 52401 U"SA Erhu.s U":n.i"V"ersity Press Vall 1996 © Cha.rles Ashbacher & Erhu.s U":n.i"V"ersity Press The graph on the first cover belongs to: M. Popescu, P. Popescu, V. Seleacu, "About the behaviour of some new functions in the number theory" (to appear this year) . "Collection of Problems on Smarandache Notions", by Charles Ashbacher Copyright 1996 by Charles Ashbacher and Erhus University Press ISBN 1-879585-50-2 Standard Address Number 297-5092 Printed in the United States of America Preface The previous volume in this series, An Introduction to the Smarandache Function, also by Erhus Cniversity Press, dealt almost exclusively with some "basic" consequences of the Smarandache function. In this one, the universe of discourse has been expanded to include a great many other things A Smarandache notion is an element of an ill-defined set, sometimes being almost an accident oflabeling. However, that takes nothing away from the interest and excitement that can be generated by exploring the consequences of such a problem It is a well-known cliche among writers that the best novels are those where the author does not know what is going to happen until that point in the story is actually reached.
    [Show full text]